首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Quantitative bioassay techniques were used to measure the susceptibility of Heliothis armigera to three nuclear polyhedrosis viruses (NPVs): H. armigera singly-enveloped NPV (HaSNPV), H. zea SNPV (HzSNPV) and H. armigera multiply-enveloped NPV (HaMNPV). Viruses were identified by EcoRI restriction endonuclease analysis. Electrophoretic profiles of DNA fragments revealed that the HaSNPV isolate was a previously undescribed genotypic variant. Bioassays with neonate and 6-day-old larvae measured small but significant differences in virulence between the three viruses. HzSNPV was the most virulent for neonate larvae with a median lethal dose (LD50) of five polyhedra. HaMNPV was least virulent for 6-day-old larvae, with a LD50 of 1400 polyhedra compared with 640–670 polyhedra for HaSNPV and HzSNPV. In addition, the median lethal time (LT50) for infection with HaMNPV in neonate larvae was approximately 1·7 days longer than for the other viruses. Although they varied in virulence, each of the three viruses was sufficiently virulent to have considerable potential as a microbial control agent of H. armigera.  相似文献   

3.
Median lethal doses (LD50s) of nuclear polyhedrosis virus (NPV) were determined in neonatal offspring ofSpodoptera frugiperda (J. E. Smith) (Sf) larvae captured in southeastern Louisiana in 1981, 1982, and 1984. These LD50s ranged from 1.8 to 16.3 polyhedral inclusion bodies (PIB)/insect. The LD50s significantly (P<0.05) increased during the season of 1982 but had no pattern in 1981 or 1984. However, the Sf populations increased in heterogeneity of response to the NPV during all 3 years. The LD50 increased from 4.1 to 18.7 PIB/insect in a Sf laboratory colony exposed to the NPV LD80 for 7 generations, whereas in a control colony not exposed to NPV the LD50 was 5.9 PIB/insect after 7 generations.  相似文献   

4.
A comparison was made of the dosage-mortality responses of larvae of Pieris brassicae and P. rapae to infection by P. brassicae granulosis virus (GV). Bioassays with first, second, third, and fourth-instar larvae of both species revealed a marked difference in susceptibility between instars and between species. Median lethal dosages (LD50s) for P. rapae larvae ranged from five capsules for the first instar to 662 capsules for the fourth instar. With P. brassicae, this range extended from 66 capsules to 2.3 × 107 capsules. The time-mortality responses of the two species were similar when fed virus dosages equivalent to an LD90. Median lethal times (LT50s) ranged from 5 days for first-instar larvae to 7–8 days for fourth-instar larvae. A comparison between a long-established laboratory stock of P. brassicae and a stock recently acquired from the field showed no significant difference in their susceptibility to GV. The implications of the pronounced species differences in susceptibility to GV infection are discussed in relation to the potential field control of P. rapae and P. brassicae.  相似文献   

5.
It has been reported that the susceptibility of insect herbivores to entomoviruses is affected by phytochemicals ingested during the acquisition of viral inoculum on the foliage of host plants. However, the relationship between this susceptibility and phytochemicals is poorly understood. To test this hypothesis of plant‐mediated effects on this susceptibility, we measured the effects of foliage from three plants, soybeans (Glycine max), collards (Brassica oleracea) and water convolvuluses (Ipomoea aquatica), on the susceptibility of larval beet armyworm (Spodoptera exigua) to nucleopolyhedrovirus (NPV), and analysed six foliar chemicals (total phenolics, peroxidase [POD], catalase [CAT], superoxide dismutase [SOD], endochitinase and exochitinase) in the three plants, respectively. The results of exponential modelling indicated that the LD50s (median lethal dose) of NPV to larvae increased with the increase in both phenolics and POD but declined with the increase in four other foliar chemicals, while the opposite trend was found between median lethal time (LT50) of NPV and the six foliar chemicals. This study reveals that phenolics and POD decrease host susceptibility to the entomoviruses and that CAT, SOD, endochitinase and exochitinase increase this susceptibility.  相似文献   

6.
1 Granulovirus PoGV is a strong candidate to substitute for chemical insecticides in integrated pest management (IPM) of the potato tuber moth Phthorimaea operculella Zeller (Lepidoptera: Gelechiidae). Generally, susceptibility to baculoviruses decreases with increasing larval age. For effective field applications, knowledge of the age‐related change in susceptibility is crucial. 2 The relative susceptibility of various instars of P. operculella larvae to PoGV was studied by leaf‐disc bioassays in the laboratory at 26 °C incubation temperature. The LC50 increased from 4 × 106 granules/mL for neonate larvae to 1.2 × 107, 1.1 × 108, 4.4 × 108, and 4.2 × 109 granules/mL, signifying resistance ratios of 3, 29, 110, and 1051, for 5, 6, 7, and 9‐day‐old larvae, respectively. 3 The relationship between log‐LC50 values and log‐larval weight was significantly linear. A logistic function described significantly the relation between larval weights and physiological age measured in degree‐days (DD > 13.4 °C). Both functions allowed prediction of the activity ratio of PoGV for different larval ages by using temperature summation to express physiological age. 4 PoGV was found to be highly active against P. operculella larvae up to a physiological age of approximately 50 DD (>13.4 °C) (i.e. the first third of the total larval development time). Thereafter, the virus rapidly lost its activity against older larvae. Prospects for applying this knowledge in the field are discussed.  相似文献   

7.
S. Tvermyr 《BioControl》1969,14(3):245-250
Larvae ofNeodiprion sertifer (Geoff.) were reared on twigs from Scots pine at three different temperatures, 12°C, 18°C and 24°C. The LT50 of virus-infected larvae was 19.3, 9.5 and 4,6 days respectively. In the control the median length of the larval period was 45.7, 29.8 and 22.1 days at the same temperatures. From this results it is concluded that both the LT50 and the length of the larval period are prolonged by low temperature. The medium length of the larval period, however, is relatively more prolonged than is the LT50. Therefore, nuclear polyhedrossis virus may be an effective control agent againstN. sertifer in cool areas even if the LT50 is relatively long.  相似文献   

8.
Host-pathogen relationships were studied between the pink bollworm, Pectinophora gossypiella, and a cytoplasmic polyhedrosis virus (CPV). Results showed that the median effective dose (ED50), the dose that infects half the test subjects, was 1.91 × 102 polyhedral inclusion bodies (PIB)/ml of diet. The median lethal dose (LD50) was 1.72 × 105 PIB/ml. Diagnosis for CPV infection was more reliable in adult pink bollworms than in late-instar larvae. Duration of the larval stage increased with viral dose, but duration of the pupal stage was not affected by CPV. Weights of infected male and female pupae were 23.7 and 24.0% less than those of untreated pupae, respectively. Pupal weights were not significantly influenced by increases in the viral dose. Weights of larvae of a given age decreased as dose increased. The effect of CPV on duration of the immature stages and on pupal weight was not significantly influenced by rearing temperatures between 25.0° and 32.5°C. Pupal weight of infected pink bollworms decreased as the duration of the larval stage increased.  相似文献   

9.
Variations in the resistance to nuclear polyhedrosis virus (NPV) were found in three populations of Spodoptera littoralis. The LD50 for the most resistant population was 1.07 × 104 PIB/5th instar larva as compared to 8.4 × 102 and 5.8 × 102 PIB/larva in the other two populations. The effect of NPV persisted in larvae which survived and pupated. Some of the pupae died, and those which survived produced normally shaped adults. While fecundity was sharply reduced in the less resistant populations, the effect on the most tolerant population was less pronounced. A 3-year-old inoculum, stored unprotected from daylight and without cooling, was much less effective even against the most sensitive larval population as compared to a relatively fresh and refrigerated batch. Larvae in their 6th instar proved to be approximately 10-fold more resistant to the NPV than 5th instar ones, while the difference in weight was only about twice. These variations in resistance to NPV are also discussed from the point of view of applying S. littoralis NPV in pest control schemes.  相似文献   

10.
The relative susceptibility of third- and fourth-instar Malacosoma neustria larvae to a nucleopolyhedrosis virus was studied by bioassay in the laboratory. Larval mortality increased with increased dosage, whereas the dosage-incubation relationship was reversed. Larval age inversely affected mortality and incubation. The computed LD50's for third- and fourth-instar larvae were 1,405 and 12,320 polyhedral inclusion bodies (PIB's)/larva. The median lethal doses calculated as number of PIB's/mg body weight showed that third-instar larvae were only twice more susceptible to virus than fourths. The LT50 values for 3 × 105, 3 × 104, and 3 × 103 PIB's/larva were 5.9, 6.58, and 8.15 days, respectively, in third-instar assay; the corresponding figures for the two highest concentrations were 9.3 and 10.7 days in the older larvae. Lethally infected individuals died after one or, exceptionally, two molts. No correlation was found between pupal weight or adult emergence of survivors and the virus dose administered to the larvae.  相似文献   

11.
Bioassay of a nucleopolyhedrosis virus of the gypsy moth, Porthetria dispar   总被引:1,自引:0,他引:1  
The pathogenicity of an American isolate of the nucleopolyhedrosis virus of Porthetria dispar was studied. Laboratory data on third-instar larvae showed that mortality was directly related to virus concentration. The computed LD50 was 1,729 PIBs/larva or 72 PIBs/mg larval body weight. The LT50's for 2.5 × 106, 2.5 × 105, 2.5 × 104, 5 × 103, and 2.5 × 103 PIBs/larva were 8.1, 9.9, 11.3, 12.2, and 13.1 days, respectively. Approximately 37 and 60% of the total larval mortality occurred during the third- and fourth-instar, respectively. The periods to pupation and the pupal weights of survivors apparently were not affected by virus concentration. Moth emergence from surviving pupae was not reduced.  相似文献   

12.
The tea slug moth Iragoidae fasciata (Lepidoptera, Eucleidae) is one of the main insect pests that attack tea bushes. A new nucleopolyhedrovirus (NPV) called Iragoidae fasciata NPV (IrfaNPV) was recently isolated from diseased larvae. An 11,626 bp fragment of the viral genomic DNA containing the polyhedrin gene and other 12 genes was cloned and sequenced. Gene comparison and phylogenetic analysis showed that IrfaNPV is a member of the Group I NPVs. However, the genomic organization of IrfaNPV is highly distinct. In addition, electron microscopy analysis showed that IrfaNPV is a single nucleocapsid NPV (SNPV). An inoculation assay showed that IrfaNPV is semi-permissive in the Trichoplusia ni cell line Tn-5Bl-4. Bioassays on lethal concentration (LC50) and lethal time (LT50) were conducted to test the susceptibility of I. fasciata larvae to the virus.  相似文献   

13.
球形芽孢杆菌C3-41对致倦库蚊的毒效及在蚊体内的再循环   总被引:1,自引:1,他引:0  
袁志明  张用梅 《昆虫学报》1994,37(4):404-410
球形芽孢杆菌Csub3-41菌株(Bacillus sphaericus C3-41)对致倦库蚊(Culex puinquefa-seiatus)幼虫有很高毒效,对2龄和3-4龄幼虫的半致死剂量(LD50)分别为63.1 和89.7芽孢/蚊幼虫。处理浓度越高,取食时间越长,蚊幼虫取食到的杀蚊活性物质量越多,死亡率越高。当蚊幼虫取食亚致死剂量杀蚊活性物质后,球形芽孢杆菌在感染的活幼虫体内不增殖;但当蚊幼虫取食致死剂量杀蚊活性物质后,蚊幼死亡,球形芽孢杆菌在死蚊幼虫体内增殖明显,6天内芽孢从感染初期的1.86X102蚊幼虫增加到1.59X106/蚊幼虫。芽孢在死蚊幼虫体内能正常萌发、生长、产孢和形成毒素。增殖的芽孢同样对致倦库蚊幼虫有较高毒力。  相似文献   

14.
A relatively fast and simple peroral technique for the bioassay of insect viruses is described in which newly hatched larvae ingest a uniform volume of virus suspension. Three isolates of the Autographa californica nuclear polyhedrosis virus (NPV) and one isolate of the Heliothis zea NPV were used to test the procedure with Trichoplusia ni and H. zea larvae, respectively. Within-assay and between-assay variation was very low with coefficients of variation averaging 0.012 ± 0.006 and 0.20 ± 0.04 for time-mortality and dose-mortality tests, respectively. The synchronous uptake of virus removed the acquisition-time component of the LT50 values while the constant volume improved the accuracy of LD50 values. The procedure was shown to be suitable for a wide variety of lepidopterous species, including Spodoptera frugiperda, S. eridania, Estigmene acrea, Plutella xylostella, Choristoneura fumiferana, Ostrinia nubilalis, Plodia interpunctella, and Pieris rapae.  相似文献   

15.
R. J. Milner 《BioControl》1973,18(3):305-315
The pathogenicity ofNosema whitei was studied using a dose-mortality technique; larvae ofTribolium castaneum were reared for the duration of each experiment in flour mixed with known numbers of spores. The susceptibility of each of the first 5 larval instars was compared. The LD50 (for mortality after 20 days) increased consistently from the first instar (1.8×106 spores/g) to the fifth instar (1.0×1010 spores/g). The slopes of the probit lines increased consistently as age increased (from b=1.1 to b=3.9). Two factors which reduce the development time ofT. castaneum, high temperature and high humidity, both reduced the pathogenicity ofN. whitei. Thus pathogenicity decreased as the temperature was increased fram 25°C (LD50=4.2×106) through 30°C (LD50=1.3×107) to 35°C (LD50=3.2×106), also pathogenicity decreased consistently as humidity was increased fram 10%, through 30, 50, 70% to 90% R.H. Adults, emerging fromNosema free larvae, became infected only when exposed to a very high dose (2×1010 spores/g for 14 days from the day of emergence). Infected larvae were treated for 1 hr. at 45°C in an attempt to cure the infection. The infected larvae were not cured, rather the treatment had an adverse alfect on their survival.
Résumé La pathogénicité deNosema whitei a été étudiée en élevant des larves deT. castaneum dans de la farine mélangée à des quantités connues de spores. La sensibilité des larves diminue uniformément en fonction de l'age; La DL50 varie de 1,8×106/g (1er stade) à 1,0×1010 spores/g (5e stade). Deux facteurs, qui accélèrent le développement deT. castaneum, des températures et des humidités élevées, réduisent tous les deux la pathogénicité deN. whitei. Les adultes ne peuvent être infectés qu'en les exposant à la dose extrêmement élevée de 2×1010 spores/g. Un traitement par la chaleur (45°C pendant une heure) n'a pas réussi à guérir les larves.


This work financed by a Science Research Council (U.K.) studentship is based on a thesis submitted for a degree of Ph. D. at the University of Newcastle-upon-Tyne.  相似文献   

16.
The cabbage stem flea beetle, Psylliodes chrysocephala (L.) (Coleoptera: Chrysomelidae), is a major pest of winter oilseed rape. The larvae live throughout winter in leaf petioles and stems. Winter temperatures might play an important role in survival during winter and hence population dynamics, yet to what degree is unknown. This study investigates the effect of exposure time, cold acclimation, and larval stage on survival at ?5 and ?10 °C. Exposure time at ?5 °C was 1, 2, 4, 8, 12, 16, and 20 days and 6, 12, 24, 36, 48, 72, 96, 120, and 144 h at ?10 °C. Mortality increased with increasing exposure time and was significantly lower for cold‐acclimated larvae. Estimated time until an expected mortality of 50% (LT50) and 90% (LT90) of larvae exposed to ?5 °C was 7.4 and 9.6 days (non‐acclimated) and 11.0 and 15.1 days (acclimated), respectively. Estimated LT50 for non‐acclimated and acclimated larvae exposed to ?10 °C was 32.6 and 70.5 h, respectively, and estimated LT90 66.8 and 132.2 h. Significant differences in mortality between larval stages were observed only at ?5 °C. When exposed to ?5 °C for 8 days, mortality of first and second instars was 81.2 and 51.3%, respectively. When exposed to ?10 °C for 2 days, mortality of first and second instars was 70.5 and 76.1%. Data on winter temperatures in Denmark from 1990 to 2013 showed that larvae were rarely exposed to a number of continuous days at ?5 or ?10 °C causing a potential larval mortality of 50–90%.  相似文献   

17.
In this research work, the susceptibility of egg and four larval instars of Leptinotarsa decemlineata (Say) (Col.: Chrysomelidae) to Insect Growth Regulators (IGRs) compounds (lufenuron 25% EC and fenoxycarb 25% WP) was determined. Different larval instar groups were separated by measuring the head capsule width and were used in all bioassays. The data were analysed with log-probit transformation using the SPSS software. The LC50 for egg was determined by dipping egg masses in different concentration of either compound for 10 s, and LC50 values for each group of larvae was estimated by using treated potato plants. The LC50 values of lufenuron on egg, first, second and third instars of larvae were 682.65, 40.58, 47.83 and 261.38 ppm, respectively, and for fenoxycarb, these were estimated as 897.50, 35.60, 57.91 and 355.23 ppm, respectively. The LD50 values of lufenuron and fenoxycarb on second instar larvae were 139.56 and 228.42 ppm, respectively.  相似文献   

18.
In this study a Brazilian granulovirus strain, PhopGV, isolated from the potato tuber moth (PTM) Phthorimaea operculella, was investigated regarding its potential for biological control and in vivo production. The relationship between mortality of P. operculella larvae and virus concentration was determined at different temperatures on potato tubers and susceptibility of P. operculella to PhopGV was also determined on potato leaves. Virulence of PhopGV to P. operculella was not affected by temperatures from 18 to 30°C. The median lethal concentration (LC50) of larvae fed on potato foliage treated with PhopGV was not higher than that verified with larvae fed on treated tubers. Optimal conditions for production of virus-infected larvae were obtained by using the virus suspensions of 41 × 105, 6.3 × 105 and 62 × 105 OBs ml−1 at 18, 24 and 30°C, which resulted in 32.0, 31.4 and 34.8% of infected larvae collected, respectively. The maximum percentage of infected larvae recovered from tubers was not affected by temperature. However, time for production of virus-infected larvae was longer at 18°C and shorter at 30°C. Persistence of PhopGV was determined on stored tubers and we observed that the virus remained effective for at least two months, causing up to 84.2% mortality of P. operculella at 1 × 107 OBs ml−1. The pathogen was also highly virulent to tomato pinworm, Tuta absoluta, inflicting high percentage of mortality, delaying larval growth and inhibiting pupation. This Brazilian PhopGV strain has potential to control PTM larvae on potato tubers at a broad range of temperature and can be produced in vivo using virus-treated tubers.  相似文献   

19.
A model was developed based on an initial ingestion phase, followed by a period of virus multiplication and host death, to describe the effects of codling moth granulosis virus (CpGV) concentration and time from initial infection on the percentage of codling moth larvae (Cydia pornonella) dying from virus infection in the laboratory. With modification, this model also described the effect of CpGV concentration on the reduction of damage to fruit by C. pomonella larvae in the field. In both cases, the effect of CpGV increased with the l/10th power of virus concentration. LT50 (time to death of 50% of larvae) was inversely related to virus concentration in the laboratory. The model predicts the threshold concentration for death of larvae, as well as LD50(C50 and LD90(C 90,) for all ages of larvae. The model also predicts that if the majority of larvae entered through the sides of apple fruits, rather than through the calyx or near the stalk (as they probably did in the field), then the efficacy of CpGV in reducing fruit damage would be lowered. This effect of site of entry is especially marked at low virus concentrations.  相似文献   

20.
Different doses of a granulosis virus were administered to first- and fifth-instar larvae of the codling moth Laspeyresia pomonella. Virus was very pathogenic for both larval instars. The LD50 values for first- and fifth-instar larvae were 5 and 49 capsules/larva, respectively. However, fifth-instar larvae were much more variable in their response to virus than first-instar larvae. Using probit methods it was calculated that 1 capsule could cause death in about 25% of both larval instars but 1578 capsules were required to cause 70% mortality of fifth-instar larvae as compared to 12 capsules for first-instar larvae. This is the first report of a decided difference in variability of response to virus by two larval instars of the same species. A bimodal response by both larval instars was observed in time-mortality studies. Apparently, about 20% of the larvae were very resistant to virus infections.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号