首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The antifolate compound methotrexate (MTX) is toxic to the gram-positive bacterium Streptococcus pneumoniae. Interaction of MTX with this bacterium resulted in an increase in the electric transmembrane potential (delta psi) and enhanced the delta psi-dependent uptake of isoleucine and MTX. In contrast, delta psi-independent uptake of glutamine was not changed. Folate, a nontoxic analog of MTX, did not exhibit these membrane effects, nor did it prevent the effect of MTX, suggesting that the NH2 in position 4 of the pteridine ring of the MTX molecule is involved in the MTX response. A strain bearing the nonsense mutation amiA9, selected for MTX resistance, did not exhibit increased membrane potential after MTX pretreatment. This suggests that MTX interacts with a specific membrane component in S. pneumoniae. A resulting change in ion permeability could lead to changes in the magnitude of the delta psi. The MTX-sensitive component is altered or absent in mutant amiA9.  相似文献   

2.
Celiptium, a cationic and amphiphilic drug currently employed in cancer chemotherapy, was found to be accumulated against its concentration gradient by the bacterium Streptococcus pneumoniae. Accumulation was reduced in Celiptium resistant amiA mutants which were also observed to have reduced electric transmembrane potentials delta psi. This suggested a relationship between Celiptium toxicity and accumulation in S. pneumoniae, and indicated a delta psi - driven uptake in a manner reminiscent of that observed for other lipophilic cations such as tetraphenylphosphonium.  相似文献   

3.
delta psi-reduced amiA mutants of Streptococcus pneumoniae were shown to be resistant to the positively charged antitumoral drugs 2-N-methylellipticinium (NME) and 2-N-methyl-9-hydroxyellipticinium (NMHE). Conversely, mutants selected for their resistance to NMHE were mapped within the amiA locus and exhibited the pleiotropic AmiA- phenotype. This shows that delta psi is a critical parameter in determining resistance to these drugs in S. pneumoniae and suggests that they are accumulated within this bacterium in response to delta psi. As a consequence NME and NMHE appear to be valuable tools for selecting delta psi-reduced mutants in S. pneumoniae.  相似文献   

4.
Entry of methotrexate (MTX) into the folate prototrophic bacterium Streptococcus pneumoniae was poorly inhibited by folate or its natural derivative folinic acid, suggesting that if MTX is transported via a folate transporter, the affinity of that transporter for MTX is higher than for folate. In the range of concentrations tested, MTX uptake was non-concentrative and decreased in ATP-depleted bacteria. When the external concentration of MTX was increased from 1 X 10(-7) M to 1 X 10(-6) M, uptake became saturated and was insensitive to ionophores. However when external MTX concentrations were increased to 1 X 10(-5) M, uptake increased linearly, and was inhibited by the ionophores carbonyl cyanide m-chlorophenylhydrazone (CCCP) and valinomycin, suggesting that the process was energized by the protonmotive force (delta p) at this concentration. A model for MTX entry in S. pneumoniae is proposed with respect to these results. The high level of resistance to MTX of the nonsense mutant amiA9 cannot be entirely explained by a decrease in MTX uptake.  相似文献   

5.
Spontaneous Escherichia coli K-12 mutants tolerant to colicin E3 were isolated, and on the basis of their tolerance patterns to 19 kinds of colicins, a new phenotypic class of tolZ mutants was found. The tolZ gene was located between min 77 and 78 on the E. coli K-12 genetic map. The tolZ mutants were tolerant to colicins E2, E3, D, Ia, and Ib, and showed an increased sensitivity to ampicillin, neomycin, and EDTA, but not to deoxycholate; they were able to grow on glucose minimal medium, but not on nonfermentable carbon sources (succinate, acetate, pyruvate, lactate, malate, etc.). The pleiotropic phenotype of the tolZ mutant was due to a single mutation. Both respiration and membrane ATPase activity of the tolZ mutant were normal. The tolZ mutant had a defect in the uptake of proline, glutamine, thiomethyl-beta-D-galactoside, and triphenylmethylphosphonium ion; these uptake systems are driven by an electrochemical proton gradient (delta-mu H+) or a membrane potential (delta psi). In contrast, the uptake of methionine and alpha-methyl-D-glucoside, which is not dependent on delta-mu H+ and delta psi, was normal in the tolZ mutant. Glucose 6-phosphate uptake at pH 5.5, which is driven by a transmembrane pH gradient, in the tolZ mutant was similar to the parent level. These results indicate that the tolZ mutant has a defect in the generation of delta-mu H+ and delta psi.  相似文献   

6.
The electrochemical gradient of hydrogen ions, or proton motive force (PMF), was measured in growing Escherichia coli and Klebsiella pneumoniae in batch culture. The electrical component of the PMF (delta psi) and the chemical component (delta pH) were calculated from the cellular accumulation of radiolabeled tetraphenylphosphonium, thiocyanate, and benzoate ions. In both species, the PMF was constant during exponential phase and decreased as the cells entered stationary phase. Altering the growth rate with different energy substrates had no effect on the PMF. The delta pH (alkaline inside) varied with the pH of the culture medium, resulting in a constant internal pH. During aerobic growth in media at pH 6 to 7, the delta psi was constant at 160 mV (negative inside). The PMF, therefore, was 255 mV in cells growing at pH 6.3, and decreased progressively to 210 mV in pH 7.1 cultures. K. pneumoniae cells and two E. coli strains (K-12 and ML), including a mutant deficient in the H+-translocating ATPase and a pleiotropically energy-uncoupled mutant with a normal ATPase, had the same PMF during aerobic exponential phase. During anaerobic growth, however, both species had delta psi values equal to 0. Therefore, the PMF in anaerobic cells consisted only of the delta pH component, which was 75 mV or less in cells growing at pH 6.2 or greater. These data thus met the expectation that cells deriving metabolic energy from respiration have a PMF above a threshold value of about 200 mV when the ATPase functions in the direction of H+ influx and ATP synthesis; in fermenting cells, a PMF below a threshold value was expected since the enzyme functions in the direction of H+ extrusion and ATP hydrolysis. K. pneumoniae cells growing anaerobically had no delta psi whether the N source added was N2, NH+4 or one of several amino acids; the delta pH was unaffected. Therefore, any energy cost incurred by the process of nitrogen fixation could not be detected as an alteration of the proton gradient.  相似文献   

7.
The polar lipids of Streptococcus pneumoniae wild type and aminopterin-resistant strains were analysed. The membrane contained only two acid phospholipids, phosphatidylglycerol and cardiolipin, and a large amount of two glycolipids, glucosyldiglyceride and galactosylglucosyldiglyceride. The unsaturated acyl chains ranged from 58 to 87% of total fatty acids, depending on the strain and on growth conditions. No relation could be established between aminopterin resistance and polar lipid or fatty acid compositions. However, in the presence of bacteriostatic concentrations of aminopterin, the wild type and the resistant mutant did not have the same behavior. The resistant strain maintained its fatty acid composition and a normal [32P]phosphate distribution among phospholipids while the wild type shifted to a higher content in unsaturated fatty acids and to a high relative cardiolipin labelling. Such a differencein [32P] distribution was not observed when bacteriostatic concentrations of chloramphenicol were used, or when growth was stopped after amino acid deprivation induced by high concentrations of isoleucine. The biochemical basis of the aminopterin resistant character of the amiA mutants are not yet well understood but the present study establishes that the mutation confers a certain insensitivity of the lipid metabolism to aminopterin.  相似文献   

8.
9.
Citrate transport in Klebsiella pneumoniae   总被引:5,自引:0,他引:5  
Sodium ions were specifically required for citrate degradation by suspensions of K. pneumoniae cells which had been grown anaerobically on citrate. The rate of citrate degradation was considerably lower than the activities of the citrate fermentation enzymes citrate lyase and oxaloacetate decarboxylase, indicating that citrate transport is rate limiting. Uptake of citrate into cells was also Na+ -dependent and was accompanied by its rapid metabolism so that the tricarboxylic acid was not accumulated in the cells to significant levels. The transport could be stimulated less efficiently by LiCl. Li+ ions were cotransported with citrate into the cells. Transport and degradation of citrate were abolished with the uncoupler [4-(trifluoromethoxy)phenylhydrazono]propanedinitrile (CCFP). After releasing outer membrane components and periplasmic binding proteins by cold osmotic shock treatment, citrate degradation became also sensitive towards monensin and valinomycin. The shock procedure had no effect on the rate of citrate degradation indicating that the transport is not dependent on a binding protein. Citrate degradation and transport were independent of Na+ ions in K. pneumoniae grown aerobically on citrate and in E. coli grown anaerobically on citrate plus glucose. An E. coli cit+ clone obtained by transformation of K. pneumoniae genes coding for citrate transport required Na specifically for aerobic growth on citrate indicating that the Na-dependent citrate transport system is operating. Na+ and Li+ were equally effective in stimulating citrate degradation by cell suspensions of E. coli cit+. Citrate transport in membrane vesicles of E. coli cit+ was also Na+ dependent and was energized by the proton motive force (delta micro H+). Dissipation of delta micro H+ or its components delta pH or delta psi by ionophores either totally abolished or greatly inhibited citrate uptake. It is suggested that the systems energizing citrate transport under anaerobic conditions are provided by the outwardly directed cotransport of metabolic endproducts with protons yielding delta pH and by the decarboxylation of oxaloacetate yielding delta pNa+ and delta psi. In citrate-fermenting K. pneumoniae an ATPase which is activated by Na+ was not found. The cells contain however a proton translocating ATPase and a Na+/H+ antiporter in their membrane.  相似文献   

10.
Peptostreptococcus anaerobius converted glutamine stoichiometrically to ammonia and pyroglutamic acid, and the Eadie-Hofstee plot of glutamine transport was biphasic. High-affinity, sodium-dependent glutamine transport (affinity constant [Kt] of 1.5 microM) could be driven by the chemical gradient of sodium, and more than 20 mM sodium was required for half-maximal velocity. High-affinity glutamine transport was not stimulated or inhibited by a membrane potential (delta psi). Low-affinity glutamine transport had a rate which was directly proportional to the external glutamine concentration, required less than 100 microM sodium, and was inhibited strongly by a delta psi. Cells which were treated with N,N-dicyclohexylcarbodiimide to inhibit the F1F0 ATPase still generated a delta psi but did so only if the external glutamine concentration was greater than 15 mM. Low-affinity glutamine uptake could not be saturated by as much as 200 mM glutamine, but glutamine-1 accounts for only a small fraction of the total glutamine at physiological pH values (pH 6 to 7). On the basis of these results, it appeared that the low-affinity glutamine transport was an electrogenic mechanism which was converting a chemical gradient of glutamine-1 into a delta psi. Other mechanisms of delta psi generation (electrogenic glutamine-pyroglutamate or -ammonium exchange) could not be demonstrated.  相似文献   

11.
J Shioi  S Naito    T Ueda 《The Biochemical journal》1989,258(2):499-504
Measurements have been made of the ATP-dependent membrane potential (delta psi) and pH gradient (delta pH) across the membranes of the synaptic vesicles purified from bovine cerebral cortex, using the voltage-sensitive dye bis[3-propyl-5-oxoisoxazol-4-yl]pentamethine oxanol and the delta pH-sensitive fluorescent dye 9-aminoacridine respectively. A pre-existing small delta pH (inside acidic) was detected in the synaptic vesicles, but no additional significant contribution by MgATP to delta pH was observed. In contrast, delta psi (inside positive) increased substantially upon addition of MgATP. This ATP-dependent delta psi was reduced by thiocyanate anion (SCN-), a delta psi dissipator, or carbonyl cyanide p-(trifluoromethoxy)phenylhydrazone (FCCP), a protonmotive-force dissipator. Correspondingly, a substantially larger glutamate uptake occurred in the presence of MgATP, which was inhibited by SCN- and FCCP. A nonhydrolysable analogue of ATP, adenosine 5'-[beta gamma-methylene]triphosphate, did not substitute for ATP in either delta psi generation or glutamate uptake. The results support the hypothesis that a H+-pumping ATPase generates a protonmotive force in the synaptic vesicles at the expense of ATP hydrolysis, and the protonmotive force thus formed provides a driving force for the vesicular glutamate uptake. The delta psi generation by ATP hydrolysis was not affected by orthovanadate, ouabain or oligomycin, but was inhibited by N-ethylmaleimide, quercetin, trimethyltin, 7-chloro-4-nitrobenzo-2-oxa-1,3-diazole and 4-acetamido-4'-isothiocyanostilbene-2,2'-disulphonic acid. These results indicate that the H+-pumping ATPase in the synaptic vesicle is similar to that in the chromaffin granule, platelet granule and lysosome.  相似文献   

12.
The inhibition effect of ionic lead on membrane ATPase activity, transmembrane potential (delta psi) and permeability level of the Pb-sensitive P. fluorescens B894 and Pb-resistant P. fluorescens B4252 bacteria cells have been studied. It have been shown that decreasing ATPase activity and transmembrane potential values and the increasing of permeability by lead are higher for Pb-sensitive strain then for Pb-resistant. It is suggested that mechanism of the ionic lead toxic effect deals with plasma membrane biochemical parameters (ATPase activity, value of delta psi) alterations and interruption of it barrier function.  相似文献   

13.
Although deficient in photoreactivation and some SOS-like functions, Streptococcus pneumoniae has the capacity to carry out excision repair when exposed to UV light. The repair ability and sensitivity to UV irradiation or treatment with chemical agents in the wild type and a UV-sensitive mutant strain indicate that UV-induced pyrimidine dimers might be repaired in pneumococcus by a system similar to the uvr-dependent system in Escherichia coli. A gene complementing the mutation conferring UV sensitivity of the mutant strain has been cloned. The coding region directs the synthesis of a polypeptide with a molecular weight of 78 kDa. The relationship with uvr-like protein in E. coli is discussed.  相似文献   

14.
No methods are currently available for fully reliable monitoring of membrane potential changes in suspensions of walled cells such as yeast. Our method using the Nernstian cyanine probe diS-C3(3) monitors even relatively fast changes in membrane potential delta psi by recording the shifts of probe fluorescence maximum lambda max consequent on delta psi-dependent probe uptake into, or exit from, the cells. Both increased [K+]out and decreased pHout, but not external NaCl or choline chloride depolarise the membrane. The major ion species contributing to the diS-C3(3)-reported membrane potential in S. cerevisiae are thus K+ and H+, whereas Na+ and Cl- do not perceptibly contribute to measured delta psi. The strongly pHout-dependent depolarisation caused by the protonophores CCCP and FCCP, lack of effect of the respiratory chain inhibitors rotenone and HQNO on the delta psi, as well as results obtained with a respiration-deficient rho- mutant show that the major component of the diS-C3(3)-reported membrane potential is the delta psi formed on the plasma membrane while mitochondrial potential forms a minor part of the delta psi. Its role may be reflected in the slight depolarisation caused by the F1F0-ATPase inhibitor azide in both rho- mutant and wildtype cells. Blocking the plasma membrane H(+)-ATPase with the DMM-11 inhibitor showed that the enzyme participates in delta psi build-up both in the absence and in the presence of added glucose. Pore-forming agents such as nystatin cause a fast probe entry into the cells signifying membrane damage and extensive binding of the probe to cell constituents reflecting obviously disruption of ionic balance in permeabilised cells. In damaged cells the probe therefore no longer reports on membrane potential but on loss of membrane integrity. The delta psi-independent probe entry signalling membrane damage can be distinguished from the potential-dependent diS-C3(3) uptake into intact cells by being insensitive to the depolarising action of CCCP.  相似文献   

15.
Calcium transport in membrane vesicles of Streptococcus cremoris   总被引:2,自引:0,他引:2  
Rightside-out membrane vesicles of Streptococcus cremoris were fused with proteoliposomes containing the light-driven proton pump bacteriorhodopsin by a low-pH fusion procedure reported earlier [Driessen, A.J.M., Hellingwerf, K.J. & Konings, W.N. (1985) Biochim. Biophys. Acta 808, 1-12]. In these fused membranes a proton motive force, interior positive and acid, can be generated in the light and this proton motive force can drive the uptake of Ca2+. Collapsing delta psi with a concomitant increase in delta pH stimulates Ca2+ uptake while dissipation of the delta pH results in a reduced rate of Ca2+ uptake. Also an artificially generated delta pH, interior acid, can drive Ca2+ uptake in S. cremoris membrane vesicles. Ca2+ uptake depends strongly on the presence of external phosphate while Ca2+-efflux-induced proton flux is independent of the presence of external phosphate. Ca2+ accumulation is abolished by the divalent cation ionophore A23187. Calcium extrusion from intact cells is accelerated by lactose. Collapse of the proton motive force by the uncoupler carbonylcyanide p-trifluoromethoxyphenylhydrazone or inhibition of the membrane-bound ATPase by N,N'-dicyclohexylcarbodiimide strongly inhibits Ca2+ release. Further studies on Ca2+ efflux at different external pH values in the presence of either valinomycin or nigericin suggested that Ca2+ exit from intact cells is an electrogenic process. It is concluded that Ca2+ efflux in S. cremoris is mediated by a secondary transport system catalyzing exchange of calcium ions and protons.  相似文献   

16.
17.
O Le  B Shen  S E Iismaa    B K Burgess 《Journal of bacteriology》1993,175(23):7707-7710
An Azotobacter vinelandii homolog to the Salmonella typhimurium mutS gene was discovered upstream of the fdxA gene. The product of this gene is much more similar to S. typhimurium MutS than either is to the HexA protein of Streptococcus pneumoniae. An A. vinelandii delta mutS mutant strain was shown to have a spontaneous mutation frequency 65-fold greater than that of the wild type.  相似文献   

18.
19.
M C Trombe  V Rieux    F Baille 《Journal of bacteriology》1994,176(7):1992-1996
In Streptococcus pneumoniae, Ca2+ induces a stress response which is regulated by a proteic activator known as competence factor (CF). This stress response is expressed as the induction of competence for DNA uptake and genetic transformation in exponentially growing cultures and by autolysis in late exponential phase. DNA transport during competence can be described as a homeostatic response that prevents autolysis of the cultures. Electrogenic and cooperative calcium transport with a Hill number (nH) of 2 appears to mediate this Ca2+ response. Mutant strains altered in their kinetics for Ca2+ transport, with nHs of 1 and 4, were isolated and characterized in order to address the role of the kinetics of Ca2+ transport in the Ca2+ response. The reduced cooperativity of Ca2+ uptake in mutant strain Cp2200 was associated with an absolute requirement for added CF to develop competence and with resistance to autolysis. The enhanced cooperativity of Ca2+ uptake in mutant strain Cp3300 was associated with facilitated competence and hypersensitivity to autolysis. Moreover, the mutation carried by strain Cp3300 increases the CF response of previously described competence-defective mutants. The pleiotropic mutants Cp2200 and Cp3300 allowed us to demonstrate that cooperativity of transport determines the Ca2+ response in S. pneumoniae.  相似文献   

20.
Glycine at position 9 is replaced by aspartic acid in the mutant b-subunit of Escherichia coli F1F0-ATPase coded for by the uncF476 allele. The mutant b-subunit is not assembled into the membrane in haploid strains carrying the uncF476 allele, but, if the mutant allele is incorporated into a multicopy plasmid, then some assembly of the mutant b-subunit occurs. Two revertant strains were characterized, one of which (AN2030) was a full revertant, the other (AN1953) a partial revertant. DNA sequencing indicated that in strain AN2030 the uncF476 mutation had reverted to give the sequence found in the normal uncF gene. The partial-revertant strain AN1953, however, retained the DNA sequence of the uncF476 allele, and complementation analysis indicated that the second mutation may be in the uncA gene. Membranes prepared from the partial-revertant strain carried out oxidative phosphorylation, although the membranes appeared to be impermeable to protons, and the ATPase activity was sensitive to the inhibitor dicyclohexylcarbodi-imide.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号