首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Experiments were conducted to determine whether the increased glutathione S-transferase (GSH-T) activity associated with selenium (Se) deficiency is necessarily related to losses in the activity of Se-dependent glutathione peroxidase (SeGSHpx) in chicks. Nutritional Se status was altered in two ways: by treatment with an antagonist of Se utilization, aurothioglucose (AuTG), and by feeding diets containing excess Se. Chicks given AuTG (10–30 mg AU/kg, sc) had growth rates and hepatic GSH concentrations that were comparable to those of saline-treated controls; however, their plasma GSH levels exceeded those of either Se-deficient (6-fold) or-adequate (3-fold) saline-treated chicks. Hepatic SeGSHpx activities of AuTG-treated chicks were hals those of controls under conditions of Se-adequacy; however, this effect was not detected when Se was deficient. Hepatic GSH-TCDNB (assayed with 1-chloro-2,4-dinitrobenzene) activities of AuTG-treated chicks were significantly greater than those of controls when Se was deficient (i.e., when SeGSHpx activity was 12% of the Se-adequate level); however, deprivation of Se did not affect GSH-TCDNB activity in the absence of AuTG. chicks fed excess Se (6–20 ppm as Na2SeO3) in diets containing either low (2 IU/kg) or adequate (100 IU/kg) VE, showed hepatic GSH-TCDNB activities and GSH concentrations greater than those of Se-adequate (0.2 ppm Se) chicks by 100% and 40%, respectively. That increased hepatic GSH-TCDNB activity can occur because of either AuTG or excess Se status under conditions wherein SeGSHpx activity is not affected indicates that the transferase response is not directly related to changes in the peroxidase.  相似文献   

2.
The objective of this study was to compare the efficiency of transfer of selenium (Se) to plasma and milk from inorganic sodium selenite, either free or microencapsulated, and from selenized yeast in dairy cows. The study consisted of an in situ-nylon bags incubation, and in an in vivo experiment to compare the Se status of cows supplemented with either sodium selenite, microencapsulated sodium selenite, or Se yeast. Thirty dairy cows, divided in five groups, were fed the following diets: the control group (CTR) received a total mixed ration supplemented with sodium selenite in order to have 0.3 mg/kg DM of total Se; 0.3M and 0.5M groups received the same control diet supplemented with lipid microencapsulated sodium selenite to provide 0.3 and 0.5 mg/kg DM of total Se, respectively; 0.3Y and 0.5Y groups received selenized yeast to provide 0.3 and 0.5 mg/kg of total Se, respectively. Cows were fed the supplements for 56 days during which milk, blood, and fecal samples were collected weekly to conduct analysis of Se and glutathione peroxidase (GSH-px) activity. Se concentration in the nylon bags was assessed to 72%, 64%, and 40% of the initial value (time 0) after 4, 8, and 24 h of incubation, respectively. In vivo, cows supplemented with 0.3 mg/kg of microencapsulated Se had higher milk Se concentration compared to CTR. The increment was more pronounced at the highest inclusion rate (0.5 mg/kg, 0.5M group). GSH-px activity was not significantly affected by treatments. The results indicate that lipid microencapsulation has the potential to protect nutrients from complete rumen reduction and that Se from microencapsulated selenite is incorporated in milk more efficiently than the free form. Microencapsulated sodium selenite was shown to be comparable to Se-yeast in terms of availability and incorporation in milk when fed at 0.3 mg/kg DM, whereas the inclusion in the diet at 0.5 mg/kg DM resulted in higher plasma and milk concentrations than selenized yeast.  相似文献   

3.
Twenty-one 6 months old female lambs were divided into 7 groups and fed a basal diet containing 0.13 mg Se/kg. The basal diet was further supplemented with 0, 0.1, 0.5 or 1.0 mg Se/kg either as sodium selenite or as selenomethionine, and was fed for 10 weeks. Both feed additives produced an increase in the selenium concentration in the tissues analysed. Significant correlations were found between the concentrations of selenomethionine or sodium selenite added to the feed and the subsequent tissue levels. However, the selenium levels seemed to plateau at approximately 0.5 mg Se/kg of supplemented sodium selenite. The total glutathione peroxidase (GSH-Px) activity of the tissues increased when the selenium supplementation increased from 0 to 0.1 mg/kg for both selenium compounds. With further increase in selenium supplementation the GSH-Px activity in the tissues plateaued except in the blood where the activity continued to rise with increasing selenomethionine supplementation. The selenium dependent GSH-Px activity in the liver rose with increasing selenomethionine supplementation, but approached a plateau when 0.1 mg Se/kg as sodium selenite was added to the feed. The selenium concentration in whole blood responded more rapidly to the selenium supplementation than did GSH-Px activity. The experiment indicates that the optimal selenium concentration in the feed is considerably higher than 0.1 mg Se/kg, and that selenium levels of 1.0 mg/kg in the feed do not result in any risk for the animals or the consumers of the products.  相似文献   

4.
Groups af White Leghorn chicks obtained from dams deprived on selenium (Se), were fed from hatching a low-Se-vitamin E basal diet alone, or supplemented with 0.02, 0.04, 0.06 or 0.08 mg Se/kg diet, as sodium selenite (Na2SeO3 · 5H2O), wheat, barley or fish meal. Prevention of the Se-vitamin E deficiency responsive disease exudative diathesis (ED) as it was clinical observed, induction of the plasma Se dependent enzyme glutathione peroxidase (GSH-Px) activity, and Se concentration in the cardiac muscle were observed to be dietary Se level and source dependent. Slope ratio assay was applied to estimate the biological availability of Se in the natural sources relative to Se in sodium selenite. For the prevention of ED, the bioavailability of Se in wheat, barley and fish meal was 99, 85 and 80 %, respectively. The increase in the plasma GSH-Px activity revealed a bioavailability for Se in wheat, barley and fish meal of 79, 71 and 66 %, respectively. Using retention of Se in the cardiac muscle as the bioassay, a bioavailability of 108, 87 and 100 % was calculated for wheat, barley and fish meal Se, respectively.  相似文献   

5.
6.
Hu  Qiuhui  Pan  Genxing  Zhu  Jianchun 《Plant and Soil》2002,238(1):91-95
The present study examined the effect of fertilization with sodium selenite on the selenium content of tea and the nutritional function of Se-enriched tea. Selenium content of tea leaves was increased up to 0.36 g g–1 by the application of sodium selenite to soil at 0.5 and 1.0 kg Se ha–1. Application by a Se-enriched organic manure at a rate of 0.5 kg Se ha–1 provided a higher biological availability of selenium for plant uptake compared with a similar amount of sodium selenite. Foliar spray of sodium selenite at 50–100 g Se ha–1 increased the selenium content to 0.32–1.45 g g–1 in tea leaves sampled at the 8–26 days after spraying. Selenium content in the blood and liver, glutathione peroxidase activity in blood of rats were significantly enhanced by feeding of an extracted solution of Se-enriched tea leaves and sodium selenite. Glutathione peroxidase activity in liver of rats fed with Se-enriched tea was higher than that fed with sodium selenite, indicating that the selenium in Se-enriched tea leaves is a more effective Se source than sodium selenite. Increasing the Se level in food products through the application of a selenium fertilizer is a safe, effective and feasible means of increasing the selenium intake of human and animals in low selenium areas of China.  相似文献   

7.
The bioavailability of selenium (Se) from veal, chicken, beef, pork, lamb, flounder, tuna, selenomethionine (SeMet), and sodium selenite was assessed in Se-deficient Fischer-344 rats. Se as veal, chicken, beef, pork, lamb, flounder, tuna, SeMet, and sodium selenite was added to torula yeast (TY) basal diets to comprise Se-inadequate (0.05 mg Se/kg) diets. Se as sodium selenite was added to a TY basal diet to comprise a Se-adequate (0.10 mg Se/kg), Se-control diet. The experimental diets were fed to weanling Fischer-344 rats that had been subjected to dietary Se depletion for 6 wk. After 9 wk of the dietary Se repletion, relative activity of liver glutathione peroxidase (GSHPx) from the different dietary groups compared with control rats (100%) was: flounder 106%, tuna 101%, pork 86%, sodium selenite 81%, SeMet 80%, beef 80%, chicken 77%, veal 77%, and lamb 58%. Se from flounder was the most efficient at restoring Se concentrations in the liver and skeletal muscle. Se from sodium selenite, SeMet, beef, veal, chicken, pork, lamb, and tuna was not dietarily sufficient to restore liver and muscle Se after 9 wk of recovery following a 6-wk period of Se depletion.  相似文献   

8.
Toxicity of selenium to Lemna minor in relation to sulfate concentration   总被引:1,自引:0,他引:1  
The aquatic plant Lemna minor L. was treated with sodium selenite or sodium selenate to test the toxicity of these salts in relation to high or low levels of sulfate in the culture medium. Several morphophysiological aspects, such as multiplication rate (MR), ratio of the number of fronds to number of colonies (Nfr/Ncol), frond size, cell ultrastructure, pigment content and guaiacol peroxidase (EC 1.11.1.7) activity were evaluated. Their variations might be an indirect means of evaluating the degree of susceptibility or tolerance of this plant to selenium (Se). Sodium selenite or sodium selenate treatments at concentrations ranging from 1 to 256 μ M generally decreased the investigated parameters. Moreover, the sulfate concentration influenced the toxicity of both Se salts. In general, with treatments in a medium containing a high sulfate (HS) content, sodium selenite appeared more toxic than sodium selenate, whereas in a low sulfate (LS) medium, sodium selenate seemed more toxic. MR was significantly increased at 1–4 μ M selenite and LS or 8 μ M selenate and HS levels, suggesting that Se may be an essential nutrient for this plant.  相似文献   

9.
BACKGROUND: Developmental toxicity of selenium (Se) is a nutritional, environmental and medicinal concern. Here, we investigated Se embryotoxicity by proteomic analysis of cultured rat embryos. METHODS: Rat embryos at day 9.5 or 10.5 of gestation were cultured for 48 or 24 h, respectively, in the presence of sodium selenate (100 or 150 µM) or sodium selenite (20 or 30 µM). Proteins from the embryo proper and yolk sac membrane were analyzed by two‐dimensional electrophoresis for quantitative changes from those in control embryos. Proteins with quantitative changes were identified by mass spectrometric analysis. RESULTS: Growth inhibition and morphological abnormalities of cultured embryos were observed in all the Se treatment groups. By the analysis of the embryo proper, actin‐binding proteins were identified as proteins with quantitative changes by selenate: increased phosphorylated‐cofilin 1, increased phosphorylated‐destrin, decreased drebrin E, and decreased myosin light polypeptide 3. Many proteins showed similar changes between selenate and selenite, including increased ATP‐synthase, decreased acidic ribosomal phosphoprotein P0, and decreased pyrroline‐5‐carboxylate reductase‐like. In the yolk sac membrane, antioxidant proteins were identified for protein spots with quantitative changes by selenite: increased peroxiredoxin 1 and increased glutathione S‐transferase. CONCLUSION: The identified proteins with quantitative changes by selenate or selenite were considered to be candidate proteins involved in Se embryotoxicity: the actin‐binding proteins for selenate embryotoxicity, proteins with the similar changes for the common Se embryotoxicity and antioxidant proteins for modification of Se embryotoxicity by redox‐related treatments. These proteins may also be used as biomarkers in developmental toxicity studies. Birth Defects Res (Part B), 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

10.
Selenium (Se) is an essential micronutrient for animal and human nutrition, but whether it is essential to plants remains controversial. However, there are increasing experimental evidences that indicate a protective role of Se against the oxidative stress in higher plants through Se-dependent glutathione peroxidase (GSH-Px) activity. The effects of the Se chemical forms, selenite and selenate, the rate of their application on shoot Se concentration and their influence on the antioxidative system of ryegrass (Lolium perenne cv. Aries), through the measurement of GSH-Px activity and lipid peroxidation, were evaluated in an Andisol of Southern Chile. Moreover, a soil–plant relationship for Se was determined and a simple method to extract available Se from acid soils is proposed. In a 55-day experiment ryegrass seeds were sown in pots and soil was treated with sodium selenite or sodium selenate (0–10 mg Se kg−1). The results showed that the Se concentration in shoots increased with the application of both selenite and selenate. However, the highest shoot Se concentrations were obtained in selenate-treated plants. For both sources of Se, there was a significant positive correlation between the shoot Se concentration and the GSH-Px activity; and the Se-dependence of this enzymatic activity was related especially with the chemical form of applied Se rather than the Se concentration in plant tissues. Furthermore, the lipid peroxidation, as measured by Thiobarbituric Acid Reactive Substances (TBARS), decreased at low levels of shoot Se concentration, reaching the lowest level at approximately 20 mg Se kg−1 in plants and then increased steadily above this level. In addition, the acid extraction method used to evaluate available Se in soil showed a positive good correlation between soil Se and shoot Se concentrations irrespective of chemical form of Se applied.  相似文献   

11.
Keshan disease is a cardiomyopathy restricted to the endemic areas of China and seen in residents having an extremely low selenium (Se) status. Prophylactic administration of sodium selenite has been shown to decrease significantly the incidence of acute and subacute cases. The aim of the study was to assess the relative bioavailability of selenite versus organic Se-yeast in a Se-deficient area in China with a randomized double-blind double-dummy design. Healthy children (n=30) between 14 and 16 yr of age were randomized into three equal groups receiving either 200 μg/d selenite Se or 200 μg/d Se-yeast or placebo for 12 wk. Blood was drawn at baseline, 4, 8, and 12 wk and 4 wk postsupplementation. The plasma Se concentration (mean ± SD) was 0.16±0.03 μmol/L at baseline. Selenite and Se-yeast supplementation increased plasma Se to plateau values, 1.0±0.2 and 1.3±0.2 μmol/L, respectively. In red cells, Se-yeast increased the selenium level sixfold and selenite threefold compared to placebo. The relative bioavailability of Se-yeast versus selenite measured as glutathione peroxidase (GSHPx) activity was similar in plasma, red blood cells, and platelets. GSHPx activity reached maximal levels in plasma and platelets of 300% and 200%, respectively, after 8 wk compared to the placebo group, but continued to increase in red cells for 16 wk. Our study showed that although both forms of Se were equally effective in raising GSHPx activity, Se-yeast provided a longer lasting body pool of Se. Se-yeast may be a better alternative to selenite in the prophylaxis of Keshan disease with respect to building up of body stores.  相似文献   

12.
The bioavailability of selenium (Se) was determined in bacterial strains that reduce selenite to red elemental Se (Seo). A laboratory strain ofBacillus subtilis and a bacterial rod isolated from soil in the vicinity of the Kesterson Reservoir, San Joaquin Valley, CA, (Microbacterium arborescens) were cultured in the presence of 1 mM sodium selenite (Na2SeO3). After harvest, the washed, lyophilizedB. subtilis andM. arborescens samples contained 2.62 and 4.23% total Se, respectively, which was shown to consist, within error, entirely of Seo. These preparations were fed to chicks as supplements to a low-Se, vitamin E-free diet. Three experiments showed that the Se in both bacteria had bioavailabilities of approx 2% that of selenite. A fourth experiment revealed that gray Seo had a bioavailability of 2% of selenite, but that the bioavailability of red Seo depended on the way it was prepared (by reduction of selenite). When glutathione was the reductant, bioavailability resembled that of gray Seo and bacterial Se; when ascorbate was the reductant, bioavailability was twice that level (3–4%). These findings suggest that aerobic bacteria such asB. subtilis andM. arborescens may be useful for the bioremediation of Se-contaminated sites, i.e., by converting selenite to a form of Se with very low bioavailability.  相似文献   

13.
We estimated the nutritional availability of selenium (Se) in Se-enriched Kaiware radish sprouts (SeRS) by the tissue Se deposition and glutathione peroxidase (GPX) activity of rats administered the sprouts, and examined the effect of SeRS on the formation of aberrant crypt foci (ACF) in the colon of mice administered 1,2-dimethylhydrazine (DMH) to evaluate anti-tumor activity. Male weanling Wistar rats were divided into seven groups and fed a Se-deficient basal diet or the basal diet supplemented with 0.05, 0.10, or 0.15 μg/g of Se as sodium selenite or SeRS for 28 d. Supplementation with Se dose-dependently increased serum and liver Se concentrations and GPX activities, and the selenite-supplemented groups showed a higher increase than the SeRS-supplemented groups. The nutritional availability of Se in SeRS was estimated to be 33 or 64% by slope ratio analysis. Male 4-week-old A/J mice were divided into seven groups and fed a low Se basal diet or the basal diet supplemented with selenite, SeRS, or selenite + non-Se-enriched radish sprouts (NonSeRS) at a level of 0.1 or 2.0 μg Se/g for 9 weeks. After 1 week of feeding, all mice were given six subcutaneous injections of DMH (20 mg/kg) at 1-week intervals. The average number of ACF formed in the colon of mice fed the basal diet was 4.3. At a supplementation level of 0.1 μg Se/g, only SeRS significantly inhibited ACF formation. At a supplementation level of 2.0 μg Se/g, both selenite and SeRS significantly inhibited ACF formation. The addition of NonSeRS to the selenite-supplemented diets tended to inhibit ACF formation, but this was not statistically significant. These results indicate that SeRS shows lower nutritional availability but higher anti-tumor activity than selenite.  相似文献   

14.
Intestinal metabolism of the subtoxic level of selenite in rats was investigated using a double-perfusion system, which is an in situ, in vitro preparation in which the intestinal lumen and its vasculature are perfused simultaneously. The toxicity of sodium selenite was determined by inhibition of 3-O-methyl glucose (3MG) absorption and by histological examination. Levels of 1.2 mM selenite were required to significantly (p<0.05) reduce 3MG intestinal absorption (58±11%, mean±SD). Cation-exchange chromatography was used to determine the chemical forms of Se from selenite after using luminal concentrations of 1–200 μM in vascular perfusates. The chemical forms were selenite, selenodiglutathione (GS-Se-SG), mixed selenoglutathione plus cysteine (GS-Se-CYS), selenodicysteine (CYS-Se-CYS), protein-bound Se, and unidentified selenocompounds. Selenite was the predominant selenocompound found in vascular perfusate, but protein-bound Se was the predominant metabolite from selenite present in the vascular effuents. There was a corresponding increase of all metabolites with increased levels of selenite with time of absorption, but not with increased concentration of luminal selenite.  相似文献   

15.
Selenium (Se) is a chemo-preventive agent that has been shown to have a protective role against cancer. The inorganic form of Se, sodium selenite (Na2SeO3), has frequently been included in various chemo-prevention studies, and this commercially available form of Se is used as dietary supplement by the public. Because high doses of this Se compound can be toxic, the underlying molecular mechanisms of sodium selenite toxicity need to be elucidated. Recently, we have reported that sodium selenite is acting as an oxidizing agent in the budding yeast Saccharomyces cerevisiae, producing oxidative damage to DNA. This pro-oxidative activity of sodium selenite likely accounted for the observed DNA double-strand breaks (DSB) and yeast cell death. In this study we determine the genetic factors that are responsible for repair of sodium selenite-induced DSB. We report that the Rad52 protein is indispensable for repairing sodium selenite-induced DSB, suggesting a fundamental role of homologous recombination (HR) in this repair process. These results provide the first evidence that HR may have a fundamental role in the repair of sodium selenite-induced toxic DNA lesions.  相似文献   

16.
We estimated the nutritional availability of selenium (Se) in Se-enriched Kaiware radish sprouts (SeRS) by the tissue Se deposition and glutathione peroxidase (GPX) activity of rats administered the sprouts, and examined the effect of SeRS on the formation of aberrant crypt foci (ACF) in the colon of mice administered 1,2-dimethylhydrazine (DMH) to evaluate anti-tumor activity. Male weanling Wistar rats were divided into seven groups and fed a Se-deficient basal diet or the basal diet supplemented with 0.05, 0.10, or 0.15 microg/g of Se as sodium selenite or SeRS for 28 d. Supplementation with Se dose-dependently increased serum and liver Se concentrations and GPX activities, and the selenite-supplemented groups showed a higher increase than the SeRS-supplemented groups. The nutritional availability of Se in SeRS was estimated to be 33 or 64% by slope ratio analysis. Male 4-week-old A/J mice were divided into seven groups and fed a low Se basal diet or the basal diet supplemented with selenite, SeRS, or selenite + non-Se-enriched radish sprouts (NonSeRS) at a level of 0.1 or 2.0 microg Se/g for 9 weeks. After 1 week of feeding, all mice were given six subcutaneous injections of DMH (20 mg/kg) at 1-week intervals. The average number of ACF formed in the colon of mice fed the basal diet was 4.3. At a supplementation level of 0.1 mug Se/g, only SeRS significantly inhibited ACF formation. At a supplementation level of 2.0 microg Se/g, both selenite and SeRS significantly inhibited ACF formation. The addition of NonSeRS to the selenite-supplemented diets tended to inhibit ACF formation, but this was not statistically significant. These results indicate that SeRS shows lower nutritional availability but higher anti-tumor activity than selenite.  相似文献   

17.
Ralstonia metallidurans CH34, a soil bacterium resistant to a variety of metals, is known to reduce selenite to intracellular granules of elemental selenium (Se(0)). We have studied the kinetics of selenite (Se(IV)) and selenate (Se(VI)) accumulation and used X-ray absorption spectroscopy to identify the accumulated form of selenate, as well as possible chemical intermediates during the transformation of these two oxyanions. When introduced during the lag phase, the presence of selenite increased the duration of this phase, as previously observed. Selenite introduction was followed by a period of slow uptake, during which the bacteria contained Se(0) and alkyl selenide in equivalent proportions. This suggests that two reactions with similar kinetics take place: an assimilatory pathway leading to alkyl selenide and a slow detoxification pathway leading to Se(0). Subsequently, selenite uptake strongly increased (up to 340 mg Se per g of proteins) and Se(0) was the predominant transformation product, suggesting an activation of selenite transport and reduction systems after several hours of contact. Exposure to selenate did not induce an increase in the lag phase duration, and the bacteria accumulated approximately 25-fold less Se than when exposed to selenite. Se(IV) was detected as a transient species in the first 12 h after selenate introduction, Se(0) also occurred as a minor species, and the major accumulated form was alkyl selenide. Thus, in the present experimental conditions, selenate mostly follows an assimilatory pathway and the reduction pathway is not activated upon selenate exposure. These results show that R. metallidurans CH34 may be suitable for the remediation of selenite-, but not selenate-, contaminated environments.  相似文献   

18.
The antibacterial activity of the probiotic bacterium Enterococcus faecium M-74 was assessed on De Man–Rogosa–Sharpe (MRS), Todd–Hewitt (T–H), M17 (M-17) and brain heart infusion (BHI) media with sodium selenite pentahydrate (+Se) and without sodium selenite pentahydrate (–Se) under aerobic or anaerobic conditions against nine bacterial pathogens. The highest antibacterial activity was found to be in the MRS medium under anaerobic conditions. There were no differences in the antibacterial activity between MRS(+Se) and MRS(–Se) media. The antimutagenic activity of MRS(+Se) and MRS(–Se) extracts after culture with E. faecium M-74 as well as of live and killed cells of E. faecium M-74 grown in the presence or absence of Se against the genotoxicity of ofloxacin (OFL) and acridine orange (AO) was determined in the Euglena gracilis assay. The MRS(+Se) extracts showed a significantly higher activity in reducing the genotoxicity of OFL and AO than MRS(–Se) extracts. The live cells of the probiotic strain M-74 exhibited higher antimutagenic activity than the killed bacterial cells, but differed depending on the mutagen used. However, the live bacterial cells grown in the presence of Se showed significantly higher antimutagenic activity. These results suggest a potential benefit for the future development of new Se-enriched probiotics exhibiting higher antimutagenic properties.  相似文献   

19.

Background and aims

Selenium is an essential micro-nutrient for animals, humans and microorganisms; it mainly enters food chains through plants. This study proposes to explore effect of inorganic Se forms on its uptake and accumulation in Zea mays.

Methods

Zea mays was grown in a controlled-atmosphere chamber for 2 weeks in a hydroponic solution of low-concentration selenium (10 μg/L (i.e.0.12 μM) or 50 μg/L (i.e. 0.63 μM) of Se). For each concentration, four treatments were defined: control (without selenium), selenite alone, selenate alone and selenite and selenate mixed.

Results

At low concentrations, selenium did not affect the biomass production of Zea mays. However, for both concentrations, Se accumulation following a selenite-only treatment was always higher than with selenate-only. Moreover, in the selenate-only treatment, Se mainly accumulated in shoots whereas in the selenite-only treatment, Se was stocked more in the roots. Interactions between selenate and selenite were observed only at the higher concentration (0.63 μM of selenium in the nutrient solution).

Conclusions

Se form and concentration in the nutrient solution strongly influenced the absorption, allocation and metabolism of Se in Zea mays. Selenate seems to inhibit selenite absorption by the roots.  相似文献   

20.
Selenium (Se) is a chemo-preventive agent that has been shown to have a protective role against cancer. The inorganic form of Se, sodium selenite (Na2SeO3), has frequently been included in various chemo-prevention studies, and this commercially available form of Se is used as dietary supplement by the public. Because high doses of this Se compound can be toxic, the underlying molecular mechanisms of sodium selenite toxicity need to be elucidated. Recently, we have reported that sodium selenite is acting as an oxidizing agent in the budding yeast Saccharomyces cerevisiae, producing oxidative damage to DNA. This pro-oxidative activity of sodium selenite likely accounted for the observed DNA double-strand breaks (DSB) and yeast cell death. In this study we determine the genetic factors that are responsible for repair of sodium selenite-induced DSB. We report that the Rad52 protein is indispensable for repairing sodium selenite-induced DSB, suggesting a fundamental role of homologous recombination (HR) in this repair process. These results provide the first evidence that HR may have a fundamental role in the repair of sodium selenite-induced toxic DNA lesions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号