首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Three juvenile narwhals captured during August 1998 in the northeast of Svalbard, Norway, were equipped with satellite-relayed data loggers (SRDLs) that transmitted diving and swim-speed data, in addition to location, for up to 46 days. A total of 1,354 complete dive cycles were recorded. Most of the diving was shallow and of short duration. Maximum recorded dive depth was 546 m, maximum recorded dive duration was 24.8 min, and maximum recorded swim-speed was 4.7 ms−1. Ascent speed, vertical ascent speed, descent speed and vertical descent speed were all significantly higher during deep dives (>200 m) than for shallow dives (<200 m). In addition both ascent and descent angles were much steeper for deep dives than during shallow dives. Most of the shallow diving seemed to be associated with travelling, with the animal shifting between various locations, while the deep diving (often to the bottom) for extended periods in some specific areas might have been associated with foraging. Even though the sample size in this study is small, the data are the first information available for movements and diving behaviour of narwhals near Svalbard.  相似文献   

2.
This study presents bioacoustic recordings in combination with movements and diving behavior of three free‐ranging harbor porpoises (a female and two males) in Danish waters. Each porpoise was equipped with an acoustic data logger (A‐tag), a time‐depth‐recorder, a VHF radio transmitter, and a satellite transmitter. The units were programmed to release after 24 or 72 h. Possible foraging occurred mostly near the surface or at the bottom of a dive. The porpoises showed individual diversity in biosonar activity (<100 to >50,000 clicks per hour) and in dive frequency (6–179 dives per hour). We confirm that wild harbor porpoises use more intense clicks than captive animals. A positive tendency between number of dives and clicks per hour was found for a subadult male, which stayed near shore. It showed a distinct day‐night cycle with low echolocation rates during the day, but five times higher rates and higher dive activity at night. A female traveling in open waters showed no diel rhythm, but its sonar activity was three times higher compared to the males'. Considerable individual differences in dive and echolocation activity could have been influenced by biological and physical factors, but also show behavioral adaptability necessary for survival in a complex coastal environment.  相似文献   

3.
Novel observations collected from video, acoustic and conductivity sensors showed that Antarctic fur seals consistently exhale during the last 50-85% of ascent from all dives (10-160 m, n > 8000 dives from 50 seals). The depth of initial bubble emission was best predicted by maximum dive depth, suggesting an underlying physical mechanism. Bubble sound intensity recorded from one seal followed predictions of a simple model based on venting expanding lung air with decreasing pressure. Comparison of air release between dives, together with lack of variation in intensity of thrusting movement during initial descent regardless of ultimate dive depth, suggested that inhaled diving lung volume was constant for all dives. The thrusting intensity in the final phase of ascent was greater for dives in which ascent exhalation began at a greater depth, suggesting an energetic cost to this behaviour, probably as a result of loss of buoyancy from reduced lung volume. These results suggest that fur seals descend with full lung air stores, and thus face the physiological consequences of pressure at depth. We suggest that these regular and predictable ascent exhalations could function to reduce the potential for a precipitous drop in blood oxygen that would result in shallow-water blackout.  相似文献   

4.
Neutral buoyancy at the stationary depth is advantageous for diving animals. The adjustment of the air inspiration before diving can be a mechanism of buoyancy control for diving animals with lungs. The stationary depth of neutral buoyancy becomes deeper with larger inspiration. Our aim was to examine whether the loggerhead sea turtle,Caretta caretta regulates the buoyancy to be neutral at the stationary depth of the dive. During an internesting period of the breeding season, we recorded the diving pattern of an adult female using a time-depth recorder and a time-swim distance recorder. The dives were classified into four types (Types 1 to 4) based on the time-depth profile. Types-3 and 4 (66% of the total dive duration) have three phases in each dive: (1) first descent, (2) gradual ascent (stationary period), and (3) final ascent. In the gradual ascent phase, the turtle stayed at a certain depth without swimming. This means that the turtle was neutrally buoyant during the gradual ascent phase. The depth of the gradual ascent phase was positively correlated with the dive duration, supporting the hypothesis that neutral buoyancy of the loggerhead turtle is achieved by the air in their lungs.  相似文献   

5.
Swim velocities at 15-sec intervals and maximum depth per dive were recorded by microprocessor units on two "mixed diver" adult female northern fur seals during summer foraging trips. These records allowed comparison of swim velocities of deep (>75 m) and shallow (<75 m) dives.
Deep dives averaged 120 m depth and 3 min duration; shallow dives averaged 30 m and 1.2 min. Mean swim velocities on deep dives were 1.8 and 1.5 m/sec for the two animals; mean swim velocities on shallow dives were 1.5 and 1.2 m/sec. The number of minutes per hour spent diving during the deep and shallow dive patterns were 11 and 27 min, respectively.
Swim velocity, and hence, relative metabolic rate, did not account for the differences in dive durations between deep and shallow dives. The long surface durations associated with deep dives, and estimates of metabolic rates for the observed swim velocities, suggest that deep dives involve significant anaerobic metabolism.  相似文献   

6.
Diving behaviour was investigated in female subantarctic fur seals (Arctocephalus tropicalis) breeding on Amsterdam Island, Indian Ocean. Data were collected using electronic Time Depth Recorders on 19 seals during their first foraging trip after parturition in December, foraging trips later in summer, and during winter. Subantarctic fur seals at Amsterdam Island are nocturnal, shallow divers. Ninety-nine percent of recorded dives occurred at night. The diel dive pattern and changes in dive parameters throughout the night suggest that fur seals follow the nycthemeral migrations of their main prey. Seasonal changes in diving behaviour amounted to the fur seals performing progressively deeper and longer dives from their first foraging trip through winter. Dive depth and dive duration increased from the first trip after parturition (16.6 ± 0.5 m and 62.1 ± 1.6 s respectively, n=1000) to summer (19.0 ± 0.4 m and 65 ± 1 s, respectively, n=2000) through winter (29.0 ± 1.0 m and 91.2 ± 2.2 s, respectively, n=800). In summer, subantarctic fur seals increased the proportion of time spent at the bottom during dives of between 10 and 20 m, apparently searching for prey when descending to these depths, which corresponded to the oceanic mixed layer. In winter, fur seals behaved similarly when diving between 20 and 50 m, suggesting that the most profitable depths for feeding moved down during the study period. Most of the dives did not exceed the physiological limits of individuals. Although dive frequency did not vary (10 dives/h of night), the vertical travel distance and the time spent diving increased throughout the study period, while the post-dive interval decreased, indicating that subantarctic fur seals showed a greater diving effort in winter, compared to earlier seasons. Accepted: 1 August 1999  相似文献   

7.
In order to monitor the diving behavior of free-ranging cetaceans, microdataloggers, with pre-programmed release mechanisms, were attached to the dorsal fins of two female harbor porpoises ( Phocoena phocoena ) in Funka Bay, Hokkaido, Japan, in 1994. The two loggers were successfully recovered and a total of 141 h of diving data (depth and water temperature in 4,671 dives) was obtained. Both porpoises dived almost continuously, rarely exhibiting long-term rest at the surface. Maximum dive depths were 98.6 m and 70.8 m, respectively, with more than 70% of diving time at 20 m or less. Most shallow dives were V-shaped with no bottom time. The V-shaped dives were significantly shallower in dive depth and shorter in dive duration than U-shaped dives. Descent rate was not constant during a dive. The deeper the dive depths, the faster the mean descent and initial descent rates. This suggests that porpoises have anticipated the depth to which they will dive before initiating the dive itself.  相似文献   

8.
Data from seven data storage tags recovered from Atlantic salmon marked as smolts were analyzed for depth movements and patterns of deep diving during the marine migration. The salmon mostly stayed at the surface and showed diurnal activity especially from autumn until spring. During the first months at sea the salmon stayed at shallower depths (<100 m). The salmon took short deep dives (>100 m), that were rare or absent during the first summer at sea but increased in frequency and duration especially in late winter. The maximum depth of the dives varied from 419 to 1187 m. Most of dives were short, (<5 h) but could last up to 33 h. The duration of dives increased in late winter until spring and the overall depth and maximum depth per dive increased exponentially over time. The initiation of the dives was more common in evenings and at night, suggesting nocturnal diving. We hypothesized that deep diving is related to feeding of salmon as mesopelagic fish can be important food for salmon during winter.  相似文献   

9.
Diving behavior of 2 breeding Chinstrap penguins (Pygoscelis antarctica) was studied focusing first and primarily on dive bouts rather than dives themselves. Analysis of dive bout organization revealed (1) though there are differences between solitary dives and dive bouts in dive duration and dive depth, the first dives of dive bouts do not differ from solitary dives in the dive parameters, (2) mean dive duration during bout correlates positively to both mean dive depth during bout and mean surface interval during bout, while number of dives during bout negatively correlates to both cost (consumed energy) and duration of a dive cycle during bout. These findings suggest the following possibilities on foraging behavior of penguins: (1) their decision to repeat diving depends on the result of the first dive at a site, and the first dives of bouts would tend to be searching or evaluating dives though they would be also successful foraging dives, (2) they repeat diving at a foraging patch until foraging efficiency decrease to a threshold of diminishing returns.  相似文献   

10.
J. P. Croxall    D. R. Briggs    A. Kato    Y. Naito    Y. Watanuki    T. D. Williams 《Journal of Zoology》1993,230(1):31-47
The pattern and characteristics of diving in two female macaroni penguins Eudyptes chrysolophus was studied, during the brooding period, using continuous-recording time-depth recorders, for a total of I8 days (15 consecutive days) during which the depth, duration and timing of 4876 dives were recorded. Diving in the first 11 days was exclusively diurnal, averaging 244 dives on trips lasting 12 hours. Near the end of the brooding period trips were longer and included diving at night. About half of all trips (except those involving continuous night-time diving) was spent in diving and dive rate averaged 14–25 dives per hour (42 per hour at night). The duration of day time dives varied between trips, and averaged 1.4–1.7 min, with a subsequent surface interval of 0.5–0.9 min. Dive duration was significantly directly related to depth, the latter accounting for 53% of the variation. The average depths of daytime dives were 20–35 m (maximum depth 11 5 m). Dives at night were shorter (average duration 0.9 min) and much shallower (maximum 11 m); depth accounted for only 6% of the variation in duration. Estimates of potential prey capture rates (3–5 krill per dive; one krill every 17–20 s) are made. Daily weight changes in chicks were directly related to number of dives, but not to foraging trip duration nor time spent diving. Of the other species at the same site which live by diving to catch krill, gentoo penguins forage exclusively diurnally, making longer. deeper dives; Antarctic fur seals, which dive to similar depths as macaroni penguins, do so mainly at night.  相似文献   

11.
Here, we describe the diving behavior of sperm whales (Physeter macrocephalus) using the Advanced Dive Behavior (ADB) tag, which records depth data at 1‐Hz resolution and GPS‐quality locations for over 1 month, before releasing from the whale for recovery. A total of 27 ADB tags were deployed on sperm whales in the central Gulf of California, Mexico, during spring 2007 and 2008, of which 10 were recovered for data download. Tracking durations of all tags ranged from 0 to 34.5 days (median = 2.3 days), and 0.6 to 26.6 days (median = 5.0 days) for recovered tags. Recovered tags recorded a median of 50.8 GPS‐quality locations and 42.6 dives per day. Dive summary metrics were generated for archived dives and were subsequently classified into six categories using hierarchical cluster analysis. A mean of 77% of archived dives per individual were one of four dive categories with median Maximum Dive Depth >290 m (V‐shaped, Mid‐water, Benthic, or Variable), likely associated with foraging. Median Maximum Dive Depth was <30 m for the other two categories (Short‐ and Long‐duration shallow dives), likely representing socializing or resting behavior. Most tagged whales remained near the tagging area during the tracking period, but one moved north of Isla Tiburón, where it appeared to regularly dive to, and travel along the seafloor. Three whales were tagged on the same day in 2007 and subsequently traveled in close proximity (<1 km) for 2 days. During this period, the depth and timing of their dives were not coordinated, suggesting they were foraging on a vertically heterogeneous prey field. The multiweek dive records produced by ADB tags enabled us to generate a robust characterization of the diving behavior, activity budget, and individual variation for an important predator of the mesopelagos over temporal and spatial scales not previously possible.  相似文献   

12.
1. Time-depth data recorders (TDRs) have been widely used to explore the behaviour of relatively large, deep divers. However, little is known about the dive behaviour of small, shallow divers such as semi-aquatic mammals. 2. We used high-resolution TDRs to record the diving behaviour of American mink Mustela vison (weight of individuals 580-1275 g) in rivers in Oxfordshire (UK) between December 2005 and March 2006. 3. Dives to > 0.2 m were measured in all individuals (n = 6). Modal dive depth and duration were 0.3 m and 10 s, respectively, although dives up to 3 m and 60 s in duration were recorded. Dive duration increased with dive depth. 4. Temperature data recorded by TDRs covaried with diving behaviour: they were relatively cold (modal temperature 4-6 degrees C across individuals) when mink were diving and relatively warm (modal temperature 24-36 degrees C across individuals) when mink were not diving. 5. Individuals differed hugely in their use of rivers, reflecting foraging plasticity across both terrestrial and aquatic environments. For some individuals there was < 1 dive per day while for others there was > 100 dives per day. 6. We have shown it is now possible to record the diving behaviour of small free-living animals that only dive a few tens of centimetres, opening up the way for a new range of TDR studies on shallow diving species.  相似文献   

13.
We investigated the diving behaviour, the time allocation of the dive cycle and the behavioural aerobic dive limit (ADL) of platypuses (Ornithorhynchus anatinus) living at a sub-alpine Tasmanian lake. Individual platypuses were equipped with combined data logger-transmitter packages measuring dive depth. Mean dive duration was 31.3 s with 72% of all dives lasting between 18 and 40 s. Mean surface duration was 10.1 s. Mean dive depth was 1.28 m with a maximum of 8.77 m. Platypuses performed up to 1600 dives per foraging trip with a mean of 75 dives per hour. ADL was estimated by consideration of post-dive surface intervals vs. dive durations. Only 15% of all dives were found to exceed the estimated ADL of 40 s, indicating mainly aerobic diving in the species. Foraging platypuses followed a model of optimised recovery time, the optimal breathing theory. Total bottom duration or total foraging duration per day is proposed as a useful indicator of foraging efficiency and hence habitat quality in the species.  相似文献   

14.
The development of high‐resolution archival tag technologies has revolutionized our understanding of diving behavior in marine taxa such as sharks, turtles, and seals during their wide‐ranging movements. However, similar applications for large whales have lagged behind due to the difficulty of keeping tags on the animals for extended periods of time. Here, we present a novel configuration of a transdermally attached biologging device called the Advanced Dive Behavior (ADB) tag. The ADB tag contains sensors that record hydrostatic pressure, three‐axis accelerometers, magnetometers, water temperature, and light level, all sampled at 1 Hz. The ADB tag also collects Fastloc GPS locations and can send dive summary data through Service Argos, while staying attached to a whale for typical periods of 3–7 weeks before releasing for recovery and subsequent data download. ADB tags were deployed on sperm whales (Physeter macrocephalus; N = 46), blue whales (Balaenoptera musculus; N = 8), and fin whales (B. physalus; N = 5) from 2007 to 2015, resulting in attachment durations from 0 to 49.6 days, and recording 31 to 2,539 GPS locations and 27 to 2,918 dives per deployment. Archived dive profiles matched well with published dive shapes of each species from short‐term records. For blue and fin whales, feeding lunges were detected using peaks in accelerometer data and matched corresponding vertical excursions in the depth record. In sperm whales, rapid orientation changes in the accelerometer data, often during the bottom phase of dives, were likely related to prey pursuit, representing a relative measure of foraging effort. Sperm whales were documented repeatedly diving to, and likely foraging along, the seafloor. Data from the temperature sensor described the vertical structure of the water column in all three species, extending from the surface to depths >1,600 m. In addition to providing information needed to construct multiweek time budgets, the ADB tag is well suited to studying the effects of anthropogenic sound on whales by allowing for pre‐ and post‐exposure monitoring of the whale's dive behavior. This tag begins to bridge the gap between existing long‐duration but low‐data throughput tags, and short‐duration, high‐resolution data loggers.  相似文献   

15.
An aquatic lifestyle poses serious restriction to air-breathing animals in terms of time and energy spent during a dive cycle. The diving frequency increases with water temperature, therefore an ectotherm's time budget greatly depends on the thermal characteristics of the aquatic environment. Available data suggests that time costs caused by temperature-dependent dive frequency can be partially compensated for by adjusting the swimming speed and diving angle during dive cycle. We tested this prediction by examining the influence of temperature on the diving behaviour of the alpine newt, Triturus alpestris. The ascending speed and angle showed disparate patterns of temperature dependency, with a minor influence on travel duration. Surprisingly, at higher temperatures, the diving newts saved most of their time by restricting swimming activity in the water column during their return to the bottom and not by adjusting their ascending duration. Hence, aquatic newts have the capacity to reduce temperature-dependent time costs of aerial breathing primarily by behavioural modifications during the descending phase of the dive cycle.  相似文献   

16.
Phocid seal pups must learn successful survival strategies, largely independently, following their abrupt weaning at a relatively young age. To explore the ontogeny of aquatic skills, space use and first‐year habitat choices made by harbor seals, pups (n = 30) were instrumented with satellite relay data loggers (SRDLs) in Svalbard, Norway in 2009 and 2010. Initially, the pups had small home ranges and showed rapid changes in their activity budgets and diving capabilities, displaying steep linear increases in diving depth and duration and in the amount of time spent diving. Most pups underwent an abrupt shift in movement patterns at ca. 50 d of age, which likely marked the end of the postweaning fast. Around this same time, the steep progression in diving performance slowed, though longer, deeper dives gradually became the norm. However, bottom time, ascent and descent rates, and postdive recovery times remained stable after the postweaning fast, suggesting that most aquatic skill acquisition was completed during the first months of life. Few clear effects of environmental variables such as upwelling phenomenon, which are known to influence the diving behavior of adults from the same population, were detected in the diving patterns of pups.  相似文献   

17.
Leopard seals are conspicuous apex predators in Antarctic coastal ecosystems, yet their foraging ecology is poorly understood. Historically, the ecology of diving vertebrates has been studied using high‐resolution time‐depth records; however, to date such data have not been available for leopard seals. Twenty‐one time‐depth recorders were deployed on seasonally resident adult females in January and February between 2008 and 2014. The average deployment length was 13.65 ± 11.45 d and 40,308 postfilter dives were recorded on 229 foraging trips. Dive durations averaged 2.20 ± 1.23 min. Dives were shallow with 90.1% measuring 30 m or less, and a mean maximum dive depth of 16.60 ± 10.99 m. Four dive types were classified using a k‐means cluster analysis and compared with corresponding animal‐borne video data. Dive activity (number of dives/hour) was concentrated at night, including crepuscular periods. Haul‐out probabilities were highest near midday and were positively correlated with available daylight. Visual observations and comparisons of diving activity between and within years suggest individual‐based differences of foraging effort by time of day. Finally, dive and video data indicate that in addition to at‐surface hunting, benthic searching and facultative scavenging are important foraging strategies for leopard seals near coastal mesopredator breeding colonies.  相似文献   

18.
J. P. Croxall    Y. Naito    A. Kato    P. Rothery    D. R. Briggs 《Journal of Zoology》1991,225(2):177-199
The pattern and characteristics of diving of two male blue-eyed shags Phalacrocorax atriceps were studied, using continuous-recording time-depth recorders, for a total of 15 consecutive days during which the depth, duration, bottom time, ascent and descent rates and surface intervals of 674 dives were recorded. Deep dives (> 35 m, averages80–90 m, max. 116 m) were twice as common (64% versus 34%) as shallow dives (< 21 m and 90% < 10 m). Deep dives were long (averages 2.7-4.1 min, max. 5.2 min) with half the time spent near maximum depth and fast travel speeds (averages 1.0-2.4 m s−1). Shallow dives were short (average 0.5 min, max. 1.3 min), without bottom time and with slow travel speeds (0.1–0.6 m s−1). The time spent at depth and the diet (mainly benthic fish and octopus) is consistent with benthic foraging; the function of shallow dives is uncertain. Male shags forage mainly in the afternoon in3–5 distinct bouts of diving. Within bouts (and shorter homogeneous sequences of diving) surface intervals are consistently2–3 times the preceding dive duration; in other shags the reverse is the case. Blue-eyed shag diving depth, duration and pattern is extreme amongst shags; and the relationship between dives and surface intervals suggests that they may regularly exceed their aerobic dive limit.  相似文献   

19.
SUMMER DIVING BEHAVIOR OF MALE WALRUSES IN BRISTOL BAY, ALASKA   总被引:1,自引:0,他引:1  
Pacific walruses ( Odobenus rosmarus divergens ) make trips from ice or land haul-out sites to forage for benthic prey. We describe dive and trip characteristics from time-depth-recorder data collected over a one-month period during summer from four male Pacific walruses in Bristol Bay, Alaska. Dives were classified into four types. Shallow (4 m), short (2.7 min), square-shaped dives accounted for 11% of trip time, and many were probably associated with traveling. Shallow (2 m) and very short (0.5 min) dives composed only 1% of trip time. Deep (41 m), long (7.2 min), square-shaped dives accounted for 46% of trip time and were undoubtedly associated with benthic foraging. V-shaped dives ranged widely in depth, were of moderate duration (4.7 min), and composed 3% of trip time. These dives may have been associated with navigation or exploration of the seafloor for potential prey habitat. Surface intervals between dives were similar among dive types, and generally lasted 1–2 min. Total foraging time was strongly correlated with trip duration and there was no apparent diel pattern of diving in any dive type among animals. We found no correlation between dive duration and postdive surface interval within dive types, suggesting that diving occurred within aerobic dive limits. Trip duration varied considerably within and among walruses (0.3–9.4 d), and there was evidence that some of the very short trips were unrelated to foraging. Overall, walruses were in the water for 76.6% of the time, of which 60.3% was spent diving.  相似文献   

20.
We present data on diving pattern and performance (dive depth, duration, frequency and organization during the foraging trip) in gentoo penguins Pygoscelis papua , obtained using time-depth recorders ( n = 9 birds, 99 foraging trips). These data are used to estimate various parameters of foraging activity, e.g. foraging range, prey capture rates, and are compared in relation to breeding chronology. Foraging trip duration was 6 h and 10 h, and trip frequency 1.0/day and 0.96/day, during the brooding and creche periods, respectively. Birds spent on average 52%of each foraging trip diving. Dive depth and duration were highly bimodal: shallow dives (< 21 m) averaged 4 m and 0.23 min, and deep dives (> 30 m) 80 m and 2.5 min, respectively. Birds spent on average 71%and 25%of total diving time in deep and shallow dives, respectively. For deep dives, dive duration exceeded the subsequent surface interval, but shallow dives were followed by surface intervals 2–3 times dive duration. We suggest that most shallow dives are searching/exploratory dives and most deep dives are feeding dives. Deep dives showed clear diel patterns averaging 40 m at dawn and dusk and 80–90 m at midday. Estimated foraging ranges were 2.3 km and 4.1 km during the brood and creche period, respectively. Foraging trip duration increased by 4 h between the brood and creche periods but total time spent in deep dives (i.e. time spent feeding) was the same (3 h). Of 99 foraging trips, 56%consisted of only one dive bout and 44%of 2–4 bouts delimited by extended surface intervals > 10 min. We suggest that this pattern of diving activity reflects variation in spatial distribution of prey rather than the effect of physiological constraints on diving ability.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号