首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
We tested the effects of life‐history traits on genetic variation and conducted a comparative analysis of two plant species with differing life‐history traits co‐occurring in the highly endangered renosterveld of South Africa. We selected eighteen renosterveld remnants with varying degrees of size and isolation where populations of the herbaceous, annual and insect‐pollinated Hemimeris racemosa and the shrubby perennial and both wind‐ and insect‐pollinated Eriocephalus africanus occurred. We postulated a lower genetic variation within populations and increased genetic variation between populations in the annual than in the perennial species. Genetic variation was lower within populations of H. racemosa than within E. africanus, as is typical for annual compared to perennial species. Variation within populations was, however, not correlated with fragment size or distance in either of the two species and genetic variation between populations of the two species was comparable (ΦST = 0.10, 0.09).  相似文献   

2.
Biotrophic fungal pathogens are expected to have adapted to their host plants for phenological synchrony, to optimize the possibility of contacts leading to infections. We investigated the patterns and causes of variation in phenological synchrony in the oak‐powdery mildew pathosystem, a major disease in natural ecosystems. The study was carried out along an altitudinal gradient, representing a wide temperature range, in mature oak stands. Both sporulation (pathogen infective stage) and oak flushing (host susceptible stage) were delayed with increasing elevation, but with a significantly different sensitivity for the two species. This resulted in a variable host–pathogen synchrony along the gradient. A common garden experiment did not give evidence of among‐population genetic differentiation (past adaptation) for fungal phenology. This could be explained by the high phenotypic variation in phenology within host populations, precluding selection on fungal phenology at the population scale, but possibly favouring adaptation at the within‐population scale. Phenotypic plasticity was the major cause of the observed variation in the phenology of the fungal populations.  相似文献   

3.

Premise of the Study

Climate‐driven changes in phenology are substantially affecting ecological relationships and ecosystem processes. The role of variation among species has received particular attention; for example, variation among species’ phenological responses to climate can disrupt trophic interactions and can influence plant performance. Variation within species in phenological responses to climate, however, has received much less attention, despite its potential role in ecological interactions and local adaptation to climate change.

Methods

We constructed three common gardens across an elevation gradient on Cadillac Mountain in Acadia National Park, Maine, to test population‐level responses in leaf‐out phenology in a reciprocal transplant experiment. The experiment included three native species: low bush blueberry (Vaccinium angustifolium), sheep's laurel (Kalmia angustifolia), and three‐toothed cinquefoil (Sibbaldiopsis tridentata).

Key Results

Evidence for local adaptation of phenological response to temperature varied among the species, but was weak for all three. Rather, variation in phenological response to temperature appeared to be driven by local microclimate at each garden site and year‐to‐year variation in temperature.

Conclusions

Population‐level adaptations in leaf‐out phenology appear to be relatively unimportant for these species in Acadia National Park, perhaps a reflection of strong genetic mixing across elevations, or weak differences in selection on phenological response to spring temperatures at different elevations. These results concur with other observational data in Acadia and highlight the utility of experimental approaches to understand the importance of annual and local site variation in affecting phenology both among and within plant species.  相似文献   

4.
Impact of climate change on plant phenology in Mediterranean ecosystems   总被引:1,自引:0,他引:1  
Plant phenology is strongly controlled by climate and has consequently become one of the most reliable bioindicators of ongoing climate change. We used a dataset of more than 200 000 records for six phenological events of 29 perennial plant species monitored from 1943 to 2003 for a comprehensive assessment of plant phenological responses to climate change in the Mediterranean region. Temperature, precipitation and North Atlantic Oscillation (NAO) were studied together during a complete annual cycle before phenological events to determine their relative importance and potential seasonal carry‐over effects. Warm and dry springs under a positive phase of NAO advance flowering, leaf unfolding and fruiting dates and lengthen the growing season. Spatial variability of dates (range among sites) was also reduced during warm and dry years, especially for spring events. Climate during previous weeks to phenophases occurrence had the greatest impact on plants, although all events were also affected by climate conditions several months before. Immediate along with delayed climate effects suggest dual triggers in plant phenology. Climatic models accounted for more than 80% of variability in flowering and leaf unfolding dates, and in length of the growing season, but for lower proportions in fruiting and leaf falling. Most part of year‐to‐year changes in dates was accounted for temperature, while precipitation and NAO accounted for <10% of dates' variability. In the case of flowering, insect‐pollinated species were better modelled by climate than wind‐pollinated species. Differences in temporal responses of plant phenology to recent climate change are due to differences in the sensitivity to climate among events and species. Spring events are changing more than autumn events as they are more sensitive to climate and are also undergoing the greatest alterations of climate relative to other seasons. In conclusion, climate change has shifted plant phenology in the Mediterranean region.  相似文献   

5.
We assessed the level of geographic differentiation of Tilia cordata in Denmark based on tests of 91 trees selected from 12 isolated populations. We used quantitative analysis of spring phenology and population genetic analysis based on SSR markers to infer the likely historical genetic processes within and among populations. High genetic variation within and among populations was observed in spring phenology, which correlated with spring temperatures at the origin of the tested T. cordata trees. The population genetic analysis revealed significant differentiation among the populations, but with no clear sign of isolation by distance. We infer the findings as indications of ongoing fine scale selection in favor of local growth conditions made possible by limited gene flow among the small and fragmented populations. This hypothesis fits well with reports of limited fruiting in the investigated Danish T. cordata populations, while the species is known for its ability to propagate vegetatively by root suckers. Our results suggest that both divergent selection and genetic drift may have played important roles in forming the genetic patterns of T. cordata at its northern distribution limit. However, we also speculate that epigenetic mechanism arising from the original population environment could have created similar patterns in regulating the spring phenology.  相似文献   

6.
Bittersweet (Solanum dulcamara), a European native weed, is widespread across a variety of habitats and often occurs as a coloniser of open, disturbed, ephemeral environments or wetlands, although it is also found in mountain habitats and on forest edges. As recent studies have shown the potential utility of the species in plant breeding programs, we assembled a collection of bittersweet germplasm from natural populations found in Europe. This collection was analysed with conserved DNA‐derived polymorphism (CDDP) and intron‐targeting (IT) markers to assess genetic diversity found within and among the populations. We found that there is limited genetic variability within the collected S. dulcamara accessions, with a greater proportion of allelic variation distributed among populations and considerably greater population structure at higher regional levels. Although bittersweet is an outcrossing species, its population structure might be affected by its perennial self‐compatible nature, reducing genetic diversity within regional populations and enhancing inbreeding leading to high interpopulation or spatial differentiation. We found that populations have been separated by local selection of alleles, resulting in regional differentiation. This has been accompanied by concurrent loss of genetic diversity within populations, although this process has not affected species‐level genetic diversity. Germplasm collecting strategies should be aimed at preserving overall genetic diversity in bittersweet nightshade by expanding sampling to southern Europe and to smaller regional geographic levels in northern and central Europe.  相似文献   

7.
Sharma J  George S  Pandey M  Norcini J  Perez H 《Genetica》2011,139(2):261-271
Aristida stricta Michx. (Poaceae) is a perennial bunchgrass native to the Southeastern Coastal Plain of North America where it is a keystone species in the longleaf pine savannas and slash pine flatwoods from southeastern North Carolina to Florida, and westward to the coast of Mississippi. We examined genetic relationships within and among ten populations of A. stricta by using eight inter-simple sequence repeat (ISSR) markers to generate band frequency data for 32 individuals from each sampled population. An analysis of molecular variance showed that 38% of the variation resided among populations while 62% was attributable to variation within populations. Grouping the populations by habitat or by geographic location did not show significant differentiation between the groups. Overall, pair-wise geographic and genetic distances were not correlated. Data indicate that while individuals within each population are genetically diverse, there seemingly are barriers to gene flow across populations leading to their divergence. Each population contains several exclusive loci suggesting that limited gene flow and/or genetic drift are likely leading to this pattern of localization. Our results, coupled with those of the previous studies that presented evidence for local adaptation and phenotypic differences among populations, suggest that there is sufficient differentiation among populations of this species to warrant: (1) maintenance of the existing genetic diversity at individual sites, and (2) use of local seed and plant sources for conservation projects.  相似文献   

8.
  • Environmental gradients, and particularly climatic variables, exert a strong influence on plant distribution and, potentially, population genetic diversity and differentiation. Differences in water availability can cause among‐population variation in ecological processes and can thus interrupt populations’ connectivity and isolate them environmentally. The present study examines the effect of environmental heterogeneity on plant populations due to environmental isolation unrelated to geographic distance.
  • Using AFLP markers, we analyzed genetic diversity and differentiation among 12 Salvia spinosa populations and 13 Salvia syriaca populations from three phytogeographical regions (Mediterranean, Irano‐Turanian and Saharo‐Arabian) representing the extent of the species’ geographic range in Jordan. Differences in geographic location and climate were considered in the analyses.
  • For both species, flowering phenology varied among populations and regions. Irano‐Turanian and Saharo‐Arabian populations had higher genetic diversity than Mediterranean populations, and genetic diversity increased significantly with increasing temperature. Genetic diversity in Salvia syriaca was affected by population size, while genetic diversity responded to drought in S. spinosa. For both species, high levels of genetic differentiation were found as well as two well‐supported phytogeographical groups of populations, with Mediterranean populations clustering in one group and the Irano‐Turanian and Saharo‐Arabian populations in another. Genetic distance was significantly correlated to environmental distance, but not to geographic distance.
  • Our data indicate that populations from moist vs. arid environments are environmentally isolated, where environmental gradients affect their flowering phenology, limit gene flow and shape their genetic structure. We conclude that environmental heterogeneity may act as driver for the observed variation in genetic diversity.
  相似文献   

9.
Common ragweed (Ambrosia artemisiifolia L.) is an invasive, wind‐pollinated plant nearly ubiquitous in disturbed sites in its eastern North American native range and present across growing portions of Europe, Africa, Asia, and Australia. Phenotypic divergence between European and native‐range populations has been described as rapid evolution. However, a recent study demonstrated major human‐mediated shifts in ragweed genetic structure before introduction to Europe and suggested that native‐range genetic structure and local adaptation might fully explain accelerated growth and other invasive characteristics of introduced populations. Genomic differentiation that potentially influenced this structure has not yet been investigated, and it remains unclear whether substantial admixture during historical disturbance of the native range contributed to the development of invasiveness in introduced European ragweed populations. To investigate fine‐scale population genetic structure across the species' native range, we characterized diallelic SNP loci via a reduced‐representation genotyping‐by‐sequencing (GBS) approach. We corroborate phylogeographic domains previously discovered using traditional sequencing methods, while demonstrating increased power to resolve weak genetic structure in this highly admixed plant species. By identifying exome polymorphisms underlying genetic differentiation, we suggest that geographic differentiation of this important invasive species has occurred more often within pathways that regulate growth and response to defense and stress, which may be associated with survival in North America's diverse climatic regions.  相似文献   

10.
Most plant species, particularly long-lived plants, harbor a large amount of genetic variation within populations. A central issue in evolutionary ecology is to explore levels of genetic variation and understand the mechanisms that influence them. In this study, our goals were to examine the impact of neutral evolutionary processes on the genetic variance and functional diversity within three populations of a long-lived plant (Quercus suber L.). For this purpose, we genotyped the progeny of 45 open-pollinated mother trees from three populations originating from Spain, Portugal, and Morocco using six microsatellite markers. Seedlings were planted in a common garden trial and were phenotypically characterized by seven leaf functional traits. Molecular analyses revealed weak genetic differences between Iberian and Moroccan populations. Nevertheless, high genetic differentiation was observed among maternal families within populations. Differentiation between particular maternal families from the same population reached values of 29.2 %, which far exceeds the values reported between the most genetically distant populations for this species (11.7 %). Maternal families differed also in phenology, leaf size, and shape traits. In the Moroccan population, there were correlations among matrices of distances for molecular markers, leaf shape traits (e.g., leaf circularity index), and phenology, indicating that maternal families with contrasting phenologies were genetically and functionally distinct. This, together with the moderate heritability for phenology in Moroccan population, suggests that besides selective forces, neutral evolutionary processes have promoted intrapopulation genetic divergence and contribute to maintain high levels of genetic variation within this population. Overall, our results reinforce the importance of intrapopulation studies in long-lived plants under an evolutionary context.  相似文献   

11.
Abstract The rehabilitation of native plant communities in urban bushland remnants is an increasingly important activity requiring the collection of large amounts of seed. Best practice generally identifies that local seed are best, but how far does the local provenance extend? Using the DNA fingerprinting technique amplified fragment length polymorphism, we assessed genetic differentiation between potential seed source populations and the target population, Bold Park, a large and significant bushland remnant in Perth, Western Australia. For each of 15 species, analysis of molecular variance was used to partition genetic variation within and among populations. Genetic differentiation between Bold Park and potential seed source populations was assessed by non‐metric multidimensional scaling ordination, and statistically by Fisher’s exact tests. The partitioning of variation among populations (ΦST) varied from 0.66 for Santalum acuminatum to 0.04 for Mesomelaena pseudostygia. For eight of 15 species, Bold Park plants were completely or largely non‐overlapping with other populations in ordinations, suggesting genetic differentiation and a narrow provenance. Five species showed overlap between Bold Park and some other, but not all, populations sampled, with geographically closest populations generally undifferentiated. Only two species, Acanthocarpus preissii and Mesomeleana pseudostygia, showed little genetic differentiation between Bold Park and all other populations, suggesting a regional genetic provenance. These species can be classified into three broad provenance classes – narrow, local and regional – to help guide decisions about appropriate seed‐collection zones for the rehabilitation of urban bushland remnants.  相似文献   

12.
Phenotypic plasticity is the primary mechanism of organismal resilience to abiotic and biotic stress, and genetic differentiation in plasticity can evolve if stresses differ among populations. Inducible defence is a common form of adaptive phenotypic plasticity, and long‐standing theory predicts that its evolution is shaped by costs of the defensive traits, costs of plasticity and a trade‐off in allocation to constitutive versus induced traits. We used a common garden to study the evolution of defence in two native populations of wild arugula Eruca sativa (Brassicaceae) from contrasting desert and Mediterranean habitats that differ in attack by caterpillars and aphids. We report genetic differentiation and additive genetic variance for phenology, growth and three defensive traits (toxic glucosinolates, anti‐nutritive protease inhibitors and physical trichome barriers) as well their inducibility in response to the plant hormone jasmonic acid. The two populations were strongly differentiated for plasticity in nearly all traits. There was little evidence for costs of defence or plasticity, but constitutive and induced traits showed a consistent additive genetic trade‐off within each population for the three defensive traits. We conclude that these populations have evolutionarily diverged in inducible defence and retain ample potential for the future evolution of phenotypic plasticity in defence.  相似文献   

13.
Abstract Orchids of the genus Ophrys (Orchidaceae) are pollinated by male bees and wasps through sexual deception. The Ophrys sphegodes group encompasses several closely related species that differ slightly in floral morphology and are pollinated by different solitary bee species. Populations representing different species of the O. sphegodes group often flower simultaneously in sympatry. To test whether gene flow across the species boundaries occurs in these sympatric populations, or whether they are reproductively isolated, we examined the distribution of genetic variation within and among populations and species of this group. We collected at each of five different localities in southern France and Italy two sympatric, co-flowering Ophrys populations, representing six Ophrys species in total. The six microsatellite loci surveyed were highly variable. Genetic differentiation among geographically distant populations of the same species was lower than differentiation among sympatric populations of different species. However, the strength of genetic differentiation among species was among the lowest reported for orchids. Genotype assignment tests and marker-based estimates of gene flow revealed that gene flow across species boundaries occurred and may account for the low observed differentiation among species. These results suggest that sexual deceit pollination in Ophrys may be less specific than thought, or that rare mistakes occur.  相似文献   

14.
Communities of insect herbivores and their natural enemies are rich and ecologically crucial components of terrestrial biodiversity. Understanding the processes that promote their origin and maintenance is thus of considerable interest. One major proposed mechanism is ecological speciation through host‐associated differentiation (HAD), the divergence of a polyphagous species first into ecological host races and eventually into more specialized daughter species. The rich chalcid parasitoid communities attacking cynipid oak gall wasp hosts are structured by multiple host traits, including food plant taxon, host gall phenology, and gall structure. Here, we ask whether the same traits structure genetic diversity within supposedly generalist parasitoid morphospecies. We use mitochondrial DNA sequences and microsatellite genotypes to quantify HAD for Megastigmus (Bootanomyia) dorsalis, a complex of two apparently generalist cryptic parasitoid species attacking oak galls. Ancient Balkan refugial populations showed phenological separation between the cryptic species, one primarily attacking spring galls, and the other mainly attacking autumn galls. The spring species also contained host races specializing on galls developing on different host‐plant lineages (sections Cerris vs. Quercus) within the oak genus Quercus. These results indicate more significant host‐associated structuring within oak gall parasitoid communities than previously thought and support ecological theory predicting the evolution of specialist lineages within generalist parasitoids. In contrast, UK populations of the autumn cryptic species associated with both native and recently invading oak gall wasps showed no evidence of population differentiation, implying rapid recruitment of native parasitoid populations onto invading hosts, and hence potential for natural biological control. This is of significance given recent rapid range expansion of the economically damaging chestnut gall wasp, Dryocosmus kuriphilus, in Europe.  相似文献   

15.
Many species appear to be undergoing shifts in phenology, arising from climate change. To predict the direction and magnitude of future changes requires an understanding of how phenology depends on climatic variation. Species show large‐scale spatial variation in phenology (affected by differentiation among populations) as well as variation in phenology from year‐to‐year at the same site (affected predominantly by local plasticity). Teasing apart spatial and temporal variation in phenology should allow improved predictions of phenology under climate change. This study is the first to quantify large‐scale spatial and temporal variation in the entire emergence pattern of species, and to test the relationships found by predicting future data. We use data from up to 33 years of permanent transect records of butterflies in the United Kingdom to fit and test models for 15 butterfly species. We use generalized additive models to model spatial and temporal variation in the distribution of adult butterflies over the season, allowing us to capture changes in the timing of emergence peaks, relative sizes of peaks and/or number of peaks in a single analysis. We develop these models using data for 1973–2000, and then use them to predict phenologies from 2001 to 2006. For six of our study species, a model with only spatial variation in phenology is the best predictor of the future, implying that these species have limited plasticity. For the remaining nine species, the best predictions come from a model with both spatial and temporal variation in phenology; for four of these, growing degree‐days have similar effects over space and time, implying high levels of plasticity. The results show that statistical phenology models can be used to predict phenology shifts in a second time period, suggesting that it should be feasible to project phenologies under climate change scenarios, at least over modest time scales.  相似文献   

16.
Globally, populations of diverse taxa have altered phenology in response to climate change. However, most research has focused on a single population of a given taxon, which may be unrepresentative for comparative analyses, and few long‐term studies of phenology in ectothermic amniotes have been published. We test for climate‐altered phenology using long‐term studies (10–36 years) of nesting behavior in 14 populations representing six genera of freshwater turtles (Chelydra, Chrysemys, Kinosternon, Malaclemys, Sternotherus, and Trachemys). Nesting season initiation occurs earlier in more recent years, with 11 of the populations advancing phenology. The onset of nesting for nearly all populations correlated well with temperatures during the month preceding nesting. Still, certain populations of some species have not advanced phenology as might be expected from global patterns of climate change. This collection of findings suggests a proximate link between local climate and reproduction that is potentially caused by variation in spring emergence from hibernation, ability to process food, and thermoregulatory opportunities prior to nesting. However, even though all species had populations with at least some evidence of phenological advancement, geographic variation in phenology within and among turtle species underscores the critical importance of representative data for accurate comprehensive assessments of the biotic impacts of climate change.  相似文献   

17.
Adaptation to large‐scale spatial heterogeneity in the environment accounts for a major proportion of genetic diversity within species. Theory predicts the erosion of adaptive genetic variation on a within‐population level, but considerable genetic diversity is often found locally. Genetic diversity could be expected to be maintained within populations in temporally or spatially variable conditions if genotypic rank orders vary across contrasting microenvironmental settings. Taking advantage of fine‐resolution environmental data, we tested the hypothesis that temperature heterogeneity among years could be one factor maintaining quantitative genetic diversity within a natural and genetically diverse plant population. We sampled maternal families of Boechera stricta, an Arabidopsis thaliana relative, at one location in the central Rocky Mountains and grew them in three treatments that, based on records from an adjacent weather station, simulated hourly temperature changes at the native site during three summers with differing mean temperatures. Treatment had a significant effect on all traits, with 2–3‐fold increase in above‐ and belowground biomass and the highest allocation to roots observed in the treatment simulating the warmest summer on record at the site. Treatment affected bivariate associations between traits, with the weakest correlation between above‐ and belowground biomass in the warmest treatment. The magnitude of quantitative genetic variation for all traits differed across treatments: Genetic variance of biomass was 0 in the warmest treatment, while highly significant diversity was found in average conditions, resulting in broad‐sense heritability of 0.31. Significant genotype × environment interactions across all treatments were found only in root‐to‐shoot ratio. Therefore, temperature variation among summers appears unlikely to account for the observed levels of local genetic variation in size in this perennial species, but may influence family rank order in growth allocation. Our results indicate that natural environmental fluctuations can have a large impact on the magnitude of within‐population quantitative genetic variance.  相似文献   

18.
The study of the genetic variation of early height growth traits in seedlings helps to predict the possible outcomes of tree populations in the face of climate change. Second‐year height growth of 10 geographically marginal populations of Patagonian cypress (Austrocedrus chilensis (D. Don) Pic. Ser. et Bizzarri) (Cupressaceae) was characterized under greenhouse conditions. Variation among and within an average of 15 open‐pollinated families (comprising 21 seedlings per family) for each population was analysed for six size and timing traits obtained from fitted Boltzmann growth curves. The among‐family and among‐population variances were 4.03% and 2.74% of the total phenotypic variation, while the residual variance was 84.57% on average. Genetic differentiation among populations was low, except for the maximum growth rate (QST = 0.35) and for growth initiation (QST = 1). For most traits, genetic variation and heritability were variable across populations, except for growth initiation, which showed in general null intra‐population levels of genetic variance. Although no direct associations were found between the additive genetic variation and latitude or altitude, the north range of the distribution was more variable for the pool of the analysed traits. Although most extreme‐marginal populations of A. chilensis would be very limited in their ability to evolve if climate in north‐west Patagonia turns drier and warmer, their long‐term persistence could largely rely on a phenotypic diversification strategy.  相似文献   

19.
Restricted seed dispersal frequently leads to fine‐scale spatial genetic structure (i.e., FSGS) within plant populations. Depending on its spatial extent and the mobility of pollinators, this inflated kinship at the immediate neighbourhood can critically impoverish pollen quality. Despite the common occurrence of positive FSGS within plant populations, our knowledge regarding the role of long‐distance pollination preventing reproductive failure is still limited. Using microsatellite markers, we examined the existence of positive FSGS in two low‐density populations of the tree Pyrus bourgaeana. We also designed controlled crosses among trees differing in their kinship to investigate the effects of increased local kinship on plant reproduction. We used six pollination treatments and fully monitored fruit production, fruit and seed weight, proportion of mature seeds per fruit, and seed germination. Our results revealed positive FSGS in both study populations and lower fruit initiation in flowers pollinated with pollen from highly‐genetically related individuals within the neighbourhood, with this trend intensifying as the fruit development progressed. Besides, open‐pollinated flowers exhibited lower performance compared to those pollinated by distant pollen donors, suggesting intense qualitative pollen limitation in natural populations. We found positive fine‐scale spatial genetic structure is translated into impoverished pollen quality from nearby pollen donors which negatively impacts the reproductive success of trees in low‐density populations. Under this scenario of intrapopulation genetic rescue by distant pollen donors, the relevance of highly‐mobile pollinators for connecting spatially and genetically distant patches of trees may be crucial to safeguarding population recruitment.  相似文献   

20.
Although ecological differences between native and introduced ranges have been considered to drive rapid expansion of invasive species, recent studies suggest that rapid evolutionary responses of invasive species to local environments may also be common. Such expansion across heterogeneous environments by adaptation to local habitats requires genetic variation. In this study, we investigated the source and role of standing variation in successful invasion of heterogeneous abiotic environments in a self-incompatible species, Lotus corniculatus. We compared phenotypic and genetic variation among cultivars, natives, and introduced genotypes, and found substantial genetic variation within both native and introduced populations. Introduced populations possessed genotypes derived from both cultivars and native populations, and had lower population differentiation, indicating multiple sources of introduction and population admixture among the sources in the introduced range. Both cultivars and introduced populations had similarly outperforming phenotypes on average, with increased biomass and earlier flowering compared with native populations, but those phenotypes were within the range of the variation in phenotypes of the native populations. In addition, clinal variation within introduced populations was detected along a climatic gradient. Multiple introductions from different sources, including cultivars, may have contributed to pre-adaptive standing variation in the current introduced populations. We conclude that both introduction of cultivar genotypes and natural selection in local environments contributed to current patterns of genetic and phenotypic variation observed in the introduced populations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号