首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The transferrin (TF) gene has recently received increased interest in fish given its fitness relevance as a resistance gene against pathogenic bacteria. In this study, we characterized five TF‐linked microsatellites in brown trout (Salmo trutta) and Atlantic salmon (Salmo salar). Interestingly, each marker amplified duplicated loci and linkage analysis revealed that the TF gene has most likely experienced a tandem duplication during salmonid evolution. In addition, the amplification of all five markers across a wide range of salmonid species suggests that they may be of general interest for the genetic analysis of the TF gene(s) in this teleost family.  相似文献   

2.
The spatial scale and density‐dependent effects of non‐native brown trout Salmo trutta on species richness of fish assemblages were examined at 48 study sites in Mamachi Stream, a tributary of Chitose River, Hokkaido, Japan. The density of age ≥1 year S. trutta was high in the upstream side of the main stem of Mamachi Stream. Fish species richness increased with increasing area of study sites (habitat size), but the increasing magnitude of the species richness with area decreased with increasing age of ≥1 year S. trutta density. The relationships between age ≥1 year S. trutta, however, and presence–absence of each species seemed to be different among species. Species richness was also determined by location and physical environmental variables, i.e. it was high on the downstream side and in structurally complex environments.  相似文献   

3.
4.
Invasive non‐native species (NNS) are internationally recognized as posing a serious threat to global biodiversity, economies and human health. The identification of invasive NNS is already established, those that may arrive in the future, their vectors and pathways of introduction and spread, and hotspots of invasion are important for a targeted approach to managing introductions and impacts at local, regional and global scales. The aim of this study was to identify which marine and brackish NNS are already present in marine systems of the northeastern Arabia area (Arabian Gulf and Sea of Oman) and of these which ones are potentially invasive, and which species have a high likelihood of being introduced in the future and negatively affect biodiversity. Overall, 136 NNS were identified, of which 56 are already present in the region and a further 80 were identified as likely to arrive in the future, including fish, tunicates, invertebrates, plants and protists. The Aquatic Species Invasiveness Screening Kit (AS‐ISK) was used to identify the risk of NNS being (or becoming) invasive within the region. Based on the AS‐ISK basic risk assessment (BRA) thresholds, 36 extant and 37 horizon species (53.7% of all species) were identified as high risk. When the impact of climate change on the overall assessment was considered, the combined risk score (BRA+CCA) increased for 38.2% of all species, suggesting higher risk under warmer conditions, including the highest‐risk horizon NNS the green crab Carcinus maenas, and the extant macro‐alga Hypnea musciformis. This is the first horizon‐scanning exercise for NNS in the region, thus providing a vital baseline for future management. The outcome of this study is the prioritization of NNS to inform decision‐making for the targeted monitoring and management in the region to prevent new bio‐invasions and to control existing species, including their potential for spread.  相似文献   

5.
The anadromous salmon life cycle includes two migratory events, downstream smolt migration and adult homing migration, during which they must navigate with high precision. During homing migration, olfactory cues are used for navigation in coastal and freshwater areas, and studies have suggested that the parr – smolt transformation has a sensitive period for imprinting. Accordingly, we hypothesized that there would be significant changes in gene expression in the olfactory epithelium specifically related to smoltification and sampled olfactory rosettes from hatchery‐reared upper growth modal juvenile Atlantic salmon at 3‐week intervals from January to June, using lower growth modal nonsmolting siblings as controls. A suite of olfactory receptors and receptor‐specific proteins involved in functional aspects of olfaction and peripheral odor memorization was analyzed by qPCR. Gene expression in juveniles was compared with mature adult salmon of the same genetic strain caught in the river Gudenaa. All mRNAs displayed significant variation over time in both modal groups. Furthermore, five receptor genes (olfc13.1, olfc15.1, sorb, ora2, and asor1) and four olfactory‐specific genes (soig, ependymin, gst, and omp2) were differentially regulated between modal groups, suggesting altered olfactory function during smoltification. Several genes were differentially regulated in mature salmon compared with juveniles, suggesting that homing and odor recollection involve a different set of genes than during imprinting. Thyroid hormone receptors thrα and thrβ mRNAs were elevated during smolting, suggesting increased sensitivity to thyroid hormones. Treatment of presmolts with triiodothyronine in vivo and ex vivo had, however, only subtle effects on the investigated olfactory targets, questioning the hypothesis that thyroid hormones directly regulate gene expression in the olfactory epithelium.  相似文献   

6.
7.
Using Atlantic salmon (Salmo salar) as a model system, we investigated whether 18 microsatellites tightly linked to immune‐relevant genes have experienced different selection pressures than 76 loci with no obvious association with immune function. Immune‐relevant loci were identified as outliers by two outlier tests significantly more often than nonimmune linked loci (22% vs. 1.6%). In addition, the allele frequencies of immune relevant markers were more often correlated with latitude and temperature. Combined, these results support the hypothesis that immune‐relevant loci more frequently exhibit footprints of selection than other loci. They also indicate that the correlation between immune‐relevant loci and latitude may be due to temperature‐induced differences in pathogen‐driven selection or some other environmental factor correlated with latitude.  相似文献   

8.
After resolution of habitat fragmentation by an erosion‐control dam, non‐native brown trout Salmo trutta invaded the upstream side of the dam and displaced native white‐spotted charr Salvelinus leucomaenis in Monbetsu stream, Hokkaido, northern Japan.  相似文献   

9.
10.
11.
12.
Invasive plants that displace native floral communities can cause changes to associated invertebrate species assemblages. Using a mini‐review of the literature and our own data we add to the still considerable debate about the most effective methods for testing community‐level impacts by invasive species. In endangered saltmarshes of southeast Australia, the non‐native rush Juncus acutus L. is displacing its native congener J. kraussii Hochst., with concurrent changes to floral and faunal assemblages. In two coastal saltmarshes, we tested the hypothesis that the ability to detect differences in the invertebrate assemblage associated with these congeneric rushes depends on the microhabitat of the plant sampled. We used three sampling methods, each targeting specific microhabitats: sweep netting of the plant stems, vacuum sampling of the plant tussock, and vacuum sampling of the ground directly below the plants. Over 3800 individuals and 92 morphospecies were collected across four main taxa: gastropods, crustaceans, hexapods and arachnids. Detection of differences in invertebrate density, richness and composition associated with native compared with non‐native rushes was dependent on the microhabitat sampled and these differences were spatially variable. For example, at one saltmarsh the stems and tussock of J. acutus had a lower density and richness of total invertebrates and hexapods than those of the native J. kraussii. In contrast, crustaceans on the ground were in greater abundance below J. acutus than J. kraussii. This study demonstrates that on occasions where overall differences in the assemblage are not detected between species, differences may become apparent when targeting different microhabitats of the plant. In addition, separately targeting multiple microhabitats likely leads to a greater probability of detecting impacts of invasion. Comparing the invertebrate assemblage without differentiating between or sampling an array of microhabitats can fail to determine the impact of invasive species. These results highlight that a combination of methods targeting different microhabitats is important for detecting differences within the invertebrate community, even for phylogenetically related species.  相似文献   

13.
The river‐resident Salmo salar (“småblank”) has been isolated from other Atlantic salmon populations for 9,500 years in upper River Namsen, Norway. This is the only European Atlantic salmon population accomplishing its entire life cycle in a river. Hydropower development during the last six decades has introduced movement barriers and changed more than 50% of the river habitat to lentic conditions. Based on microsatellites and SNPs, genetic variation within småblank was only about 50% of that in the anadromous Atlantic salmon within the same river. The genetic differentiation (FST) between småblank and the anadromous population was 0.24. This is similar to the differentiation between anadromous Atlantic salmon in Europe and North America. Microsatellite analyses identified three genetic subpopulations within småblank, each with an effective population size Ne of a few hundred individuals. There was no evidence of reduced heterozygosity and allelic richness in contemporary samples (2005–2008) compared with historical samples (1955–56 and 1978–79). However, there was a reduction in genetic differentiation between sampling localities over time. SNP data supported the differentiation of småblank into subpopulations and revealed downstream asymmetric gene flow between subpopulations. In spite of this, genetic variation was not higher in the lower than in the upper areas. The meta‐population structure of småblank probably maintains genetic variation better than one panmictic population would do, as long as gene flow among subpopulations is maintained. Småblank is a unique endemic island population of Atlantic salmon. It is in a precarious situation due to a variety of anthropogenic impacts on its restricted habitat area. Thus, maintaining population size and avoiding further habitat fragmentation are important.  相似文献   

14.
High competitive ability has often been invoked as a key determinant of invasion success and ecological impacts of non‐native plants. Yet our understanding of the strategies that non‐natives use to gain competitive dominance remains limited. Particularly, it remains unknown whether the two non‐mutually exclusive competitive strategies, neighbour suppression and neighbour tolerance, are equally important for the competitive advantage of non‐native plants. Here, we analyse data from 192 peer‐reviewed studies on pairwise plant competition within a Bayesian multilevel meta‐analytic framework and show that non‐native plants outperform their native counterparts due to high tolerance of competition, as opposed to strong suppressive ability. Competitive tolerance ability of non‐native plants was driven by neighbour's origin and was expressed in response to a heterospecific native but not heterospecific non‐native neighbour. In contrast to natives, non‐native species were not more suppressed by hetero‐ vs. conspecific neighbours, which was partially due to higher intensity of intraspecific competition among non‐natives. Heterogeneity in the data was primarily associated with methodological differences among studies and not with phylogenetic relatedness among species. Altogether, our synthesis demonstrates that non‐native plants are competitively distinct from native plants and challenges the common notion that neighbour suppression is the primary strategy for plant invasion success.  相似文献   

15.
This study investigated the development of hypo‐osmoregulatory capacity and timing of downstream migration in wild Atlantic salmon Salmo salar smolts from the River Stjørdalselva and stocked young‐of‐the‐year (YOY), derived S. salar smolts from the tributary River Dalåa. Both wild and stocked S. salar smolts developed seawater (SW) tolerance in early May, persisting through June, measured as their ability to regulate plasma osmolality and chloride following 24 h SW (salinity = 35) exposure. Although the majority of downstream migration among the stocked S. salar smolts occurred later than observed in their wild counterparts, the development of SW tolerance occurred concurrently. The wild S. salar from Stjørdalselva and stocked YOY smolts from the River Dalåa started to migrate on the same cumulative day‐degrees (D°). The study revealed no downstream migration before development of SW tolerance. This emphasizes the importance of incorporating physiological status when studying environmental triggers for downstream migration of S. salar smolts. Overall, these findings suggest that the onset of smolt migration in stocked S. salar smolts was within the smolt window from an osmoregulatory point of view.  相似文献   

16.

Aim

To test whether native and non‐native species have similar diversity–area relationships (species–area relationships [SARs] and phylogenetic diversity–area relationships [PDARs]) and whether they respond similarly to environmental variables.

Location

United States.

Methods

Using lists of native and non‐native species as well as environmental variables for >250 US national parks, we compared SARs and PDARs of native and non‐native species to test whether they respond similarly to environmental conditions. We then used multiple regressions involving climate, land cover and anthropogenic variables to further explore underlying predictors of diversity for plants and birds in US national parks.

Results

Native and non‐native species had different slopes for SARs and PDARs, with significantly higher slopes for native species. Corroborating this pattern, multiple regressions showed that native and non‐native diversity of plants and birds responded differently to a greater number of environmental variables than expected by chance. For native species richness, park area and longitude were the most important variables while the number of park visitors, temperature and the percentage of natural area were among the most important ones for non‐native species richness. Interestingly, the most important predictor of native and non‐native plant phylogenetic diversity, temperature, had positive effects on non‐native plants but negative effects on natives.

Main conclusions

SARs, PDARs and multiple regressions all suggest that native and non‐native plants and birds responded differently to environmental factors that influence their diversity. The agreement between diversity–area relationships and multiple regressions with environmental variables suggests that SARs and PDARs can be both used as quick proxies of overall responses of species to environmental conditions. However, more importantly, our results suggest that global change will have different effects on native and non‐native species, making it inappropriate to apply the large body of knowledge on native species to understand patterns of community assembly of non‐native species.
  相似文献   

17.
Interactions between birds and fish are often overlooked in aquatic ecosystems. We studied the influence of Atlantic salmon and brown trout on the breeding population size and reproductive output of the white‐throated dipper in a Norwegian river. Acidic precipitation led to the extinction of salmon, but salmon recolonized after liming was initiated in 1991. We compared the dipper population size and reproductive output before (1978–1992) and after (1993–2014) salmon recolonization. Despite a rapid and substantial increase in juvenile salmon, the breeding dipper population size and reproductive output were not influenced by juvenile salmon, trout, or total salmonid density. This might be due to different feeding strategies in salmonids and dippers, where salmonids are mainly feeding on drift, while the dipper is a benthic feeder. The correlation between the size of the dipper population upstream and downstream of a salmonid migratory barrier was similar before and after recolonization, indicating that the downstream territories were not less attractive after the recolonization of salmon. Upstream dipper breeding success rates declined before the recolonization event and increased after, indicating improved water quality due to liming, and increasing invertebrate prey abundances and biodiversity. Surprisingly, upstream the migratory barrier, juvenile trout had a weak positive effect on the dipper population size, indicating that dippers may prey upon small trout. It is possible that wider downstream reaches might have higher abundances of alternative food, rending juvenile trout unimportant as prey. Abiotic factors such as winter temperatures and acidic precipitation with subsequent liming, potentially mediated by prey abundance, seem to play the most important role in the life history of the dipper.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号