首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Microorganisms in insect guts have been recognized as having a great impact on their hosts' nutrition, health, and behavior. Spiders are important natural enemies of pests, and the composition of the gut microbiota of spiders remains unclear. Will the bacterial taxa in spiders be same as the bacterial taxa in insects, and what are the potential functions of the gut bacteria in spiders? To gain insight into the composition of the gut bacteria in spiders and their potential function, we collected three spider species, Pardosa laura, Pardosa astrigera, and Nurscia albofasciata, in the field, and high‐throughput sequencing of the 16S rRNA V3 and V4 regions was used to investigate the diversity of gut microbiota across the three spider species. A total of 23 phyla and 150 families were identified in these three spider species. The dominant bacterial phylum across all samples was Proteobacteria. Burkholderia, Ralstonia, Ochrobactrum, Providencia, Acinetobacter, Proteus, and Rhodoplanes were the dominant genera in the guts of the three spider species. The relative abundances of Wolbachia and Rickettsiella detected in Nalbofasciata were significantly higher than those in the other two spider species. The relative abundance of Thermus, Amycolatopsis, Lactococcus, Acinetobacter Microbacterium, and Koribacter detected in spider gut was different among the three spider species. Biomolecular interaction networks indicated that the microbiota in the guts had complex interactions. The results of this study also suggested that at the genus level, some of the gut bacteria taxa in the three spider species were the same as the bacteria in insect guts.  相似文献   

2.
Many insects contain diverse gut microbial communities. While several studies have focused on a single or small group of species, comparative studies of phylogenetically diverse hosts can illuminate general patterns of host–microbiota associations. In this study, we tested the hypotheses that (i) host diet and (ii) host taxonomy structure intestinal bacterial community composition among insects. We used published 16S rRNA gene sequence data for 58 insect species in addition to four beetle species sampled from the Sevilleta National Wildlife Refuge to test these hypotheses. Overall, gut bacterial species richness in these insects was low. Decaying wood xylophagous insects harboured the richest bacterial gut flora (102.8 species level operational taxonomic units (OTUs)/sample ± 71.7, 11.8 ± 5.9 phylogenetic diversity (PD)/sample), while bees and wasps harboured the least rich bacterial communities (11.0 species level OTUs/sample ± 5.4, 2.6 ± 0.8 PD/sample). We found evidence to support our hypotheses that host diet and taxonomy structure insect gut bacterial communities (P < 0.001 for both). However, while host taxonomy was important in hymenopteran and termite gut community structure, diet was an important community structuring factor particularly for insect hosts that ingest lignocellulose‐derived substances. Our analysis provides a baseline comparison of insect gut bacterial communities from which to test further hypotheses concerning proximate and ultimate causes of these associations.  相似文献   

3.
High‐throughput sequencing is revealing that most macro‐organisms house diverse microbial communities. Of particular interest are disease vectors whose microbiome could potentially affect pathogen transmission and vector competence. We investigated bacterial community composition and diversity of the ticks Dermacentor variabilis (n = 68) and Ixodes scapularis (n = 15) and blood of their shared rodent host, Peromyscus leucopus (n = 45) to quantify bacterial diversity and concordance. The 16S rRNA gene was amplified from genomic DNA from field‐collected tick and rodent blood samples, and 454 pyrosequencing was used to elucidate their bacterial communities. After quality control, over 300 000 sequences were obtained and classified into 118 operational taxonomic units (OTUs, clustered at 97% similarity). Analysis of rarefied communities revealed that the most abundant OTUs were tick species‐specific endosymbionts, Francisella and Rickettsia, and the commonly flea‐associated bacterium Bartonella in rodent blood. An Arsenophonus and additional Francisella endosymbiont were also present in D. variabilis samples. Rickettsia was found in both tick species but not in rodent blood, suggesting that it is not transmitted during feeding. Bartonella was present in larvae and nymphs of both tick species, even those scored as unengorged. Relatively, few OTUs (e.g. Bartonella, Lactobacillus) were found in all sample types. Overall, bacterial communities from each sample type were significantly different and highly structured, independent of their dominant OTUs. Our results point to complex microbial assemblages inhabiting ticks and host blood including infectious agents, tick‐specific endosymbionts and environmental bacteria that could potentially affect arthropod‐vectored disease dynamics.  相似文献   

4.
The Cryptocephalus marginellus (Coleoptera: Chrysomelidae) complex is composed by six species that are supposed to have originated by events of allo‐ or parapatric speciation. In the present study we investigated the alternative hypotheses that the bacterial communities associated with six populations of this species complex are shaped by environmental factors, or reflect the proposed pattern of speciation. The microbiota associated with the six populations, from five species of the complex, have been characterized through 16S rRNA pyrotag sequencing. Based on a 97% sequence similarity threshold, data were clustered into 381 OTUs, which were analyzed using a variety of diversity indices. The microbiota of C. acquitanus and C. marginellus (Calanques) were the most diverse (over 100 OTUs), while that from C. zoiai yielded less bacterial diversity (45 OTUs). Taxonomic assignment revealed Proteobacteria, Tenericutes and Firmicutes as the dominant components of these beetles’ microbiota. The most abundant genera were Ralstonia, Sphingomonas, Rickettsia, and Pseudomonas. Different strains of Rickettsia were detected in C. eridani and C. renatae. The analysis of β‐diversity revealed high OTU turnover among the populations of C. marginellus complex, with only few shared species. Hierarchical clustering taking into account relative abundances of OTUs does not match the phylogeny of the beetles, therefore we hypothesize that factors other than phylogenetic constraints play a role in shaping the insects’ microbiota. Environmental factors that could potentially affect the composition of bacterial communities were tested by fitting them on the results of a multi‐dimensional scaling analysis. No significant correlations were observed towards the geographic distances or the host plants, while the composition of the microbiota appeared associated with altitude. The metabolic profiles of the microbiotas associated with each population were inferred from bacterial taxonomy, and interestingly, the obtained clustering pattern was consistent with the host phylogeny.  相似文献   

5.
The bacterial communities inhabiting arthropods are generally dominated by a few endosymbionts that play an important role in the ecology of their hosts. Rather than comparing bacterial species richness across samples, ecological studies on arthropod endosymbionts often seek to identify the main bacterial strains associated with each specimen studied. The filtering out of contaminants from the results and the accurate taxonomic assignment of sequences are therefore crucial in arthropod microbiome studies. We aimed here to validate an Illumina 16S rRNA gene sequencing protocol and analytical pipeline for investigating endosymbiotic bacteria associated with aphids. Using replicate DNA samples from 12 species (Aphididae: Lachninae, Cinara) and several controls, we removed individual sequences not meeting a minimum threshold number of reads in each sample and carried out taxonomic assignment for the remaining sequences. With this approach, we show that (i) contaminants accounted for a negligible proportion of the bacteria identified in our samples; (ii) the taxonomic composition of our samples and the relative abundance of reads assigned to a taxon were very similar across PCR and DNA replicates for each aphid sample; in particular, bacterial DNA concentration had no impact on the results. Furthermore, by analysing the distribution of unique sequences across samples rather than aggregating them into operational taxonomic units (OTUs), we gained insight into the specificity of endosymbionts for their hosts. Our results confirm that Serratia symbiotica is often present in Cinara species, in addition to the primary symbiont, Buchnera aphidicola. Furthermore, our findings reveal new symbiotic associations with Erwinia‐ and Sodalis‐related bacteria. We conclude with suggestions for generating and analysing 16S rRNA gene sequences for arthropod‐endosymbiont studies.  相似文献   

6.
Many arthropods including insects and spiders exploit skylight polarization for navigation. One of the four eye pairs of the spider Drassodes cupreus is dedicated to detect skylight polarization. These eyes are equipped with a tapetum that strongly plane-polarizes reflected light. This effectively enhances the polarization-sensitivity of the photoreceptors, improving orientation performance. With a multidisciplinary approach, we demonstrate that D. cupreus exploits reflective elements also present in non-polarizing tapetal eyes of other species such as Agelena labyrinthica. By approximately orthogonal arrangement of two multilayer reflectors consisting of reflecting guanine platelets, the tapetum uses the mechanism of polarization by reflection for polarizing reflected light.  相似文献   

7.
Facultative bacterial endosymbionts in insects have been under intense study during the last years. Endosymbionts can modify the insect's phenotype, conferring adaptive advantages under environmental stress. This seems particularly relevant for a group of worldwide agricultural aphid pests, because endosymbionts modify key fitness‐related traits, including host plant use, protection against natural enemies and heat tolerance. Aimed to understand the role of facultative endosymbionts on the success of introduced aphid pests, the distribution and abundance of 5 facultative endosymbionts (Hamiltonella defensa, Regiella insecticola, Serratia symbiotica, Rickettsia and Spiroplasma) were studied and compared in 4 cereal aphids (Sitobion avenae, Diuraphis noxia, Metopolophium dirhodum and Schizaphis graminium) and in the pea aphid Acyrthosiphon pisum complex from 2 agroclimatic zones in Chile. Overall, infections with facultative endosymbionts exhibited a highly variable and characteristic pattern depending on the aphid species/host race and geographic zone, which could explain the success of aphid pest populations after their introduction. While S. symbiotica and H. defensa were the most frequent endosymbionts carried by the A. pisum pea‐race and A. pisum alfalfa‐race aphids, respectively, the most frequent facultative endosymbiont carried by all cereal aphids was R. insecticola. Interestingly, a highly variable composition of endosymbionts carried by S. avenae was also observed between agroclimatic zones, suggesting that endosymbionts are responding differentially to abiotic variables (temperature and precipitations). In addition, our findings constitute the first report of bacterial endosymbionts in cereal aphid species not screened before, and also the first report of aphid endosymbionts in Chile.  相似文献   

8.
Bacterial endosymbionts have been detected in some groups of plant‐parasitic nematodes, but few cases have been reported compared to other groups in the phylum Nematoda, such as animal‐parasitic or free‐living nematodes. This study was performed on a wide variety of plant‐parasitic nematode families and species from different host plants and nematode populations. A total of 124 nematode populations (previously identified morphologically and molecularly) were screened for the presence of potential bacterial endosymbionts using the partial 16S rRNA gene and fluorescence in situ hybridization (FISH) and confocal microscopy. Potential bacterial endosymbionts were only detected in nematode species belonging to the genus Xiphinema and specifically in the X. americanum group. Fifty‐seven partial 16S rRNA sequences were obtained from bacterial endosymbionts in this study. One group of sequences was closely related to the genus ‘Candidatus Xiphinematobacter’ (19 bacterial endosymbiont sequences were associated with seven nematode host species, including two that have already been described and three unknown bacterial endosymbionts). The second bacterial endosymbiont group (38 bacterial endosymbiont sequences associated with six nematode species) was related to the family Burkholderiaceae, which includes fungal and soil–plant bacterial endosymbionts. These endosymbionts were reported for the first time in the phylum Nematoda. Our findings suggest that there is a highly specific symbiotic relationship between nematode host and bacterial endosymbionts. Overall, these results were corroborated by a phylogeny of nematode host and bacterial endosymbionts that suggested that there was a high degree of phylogenetic congruence and long‐term evolutionary persistence between hosts and endosymbionts.  相似文献   

9.
Culturable bacterial communities on rice plants were investigated from 2001 to 2003. In total, 1,394 bacterial isolates were obtained from the uppermost leaf sheaths at 1 month before heading time and from leaf sheaths and panicles at heading time. The average culturable bacterial population on the leaf sheaths was larger at heading time than at 1 month previously. Furthermore, the population was significantly larger on panicles than on leaf sheaths, suggesting that the bacterial population is influenced by the organs of rice plants. Larger proportions of bacteria were obtained from the macerates of leaf sheaths after washing with phosphate buffer, and most culturable bacteria were verified to inhabit the inside or inner surface, rather than the outer surface, of the tissues. Verification of the bacterial composition based on 16S rRNA gene sequences revealed that genera of Sphingomonas, Microbacterium, Methylobacterium, and Acidovorax tended to be dominant colonizers on leaf sheaths, whereas Pseudomonas and Pantoea were isolated mainly from the panicles, indicating that leaf sheaths and panicles harbor distinct communities. Furthermore, the richness of bacterial genera was less on both leaf sheaths and panicles at heading time compared with that observed 1 month before heading time. Phylogenetic analyses using bacterial isolates belonging to the four dominant genera inhabiting leaf sheaths at heading time revealed that particular bacterial groups in each genus colonized the leaf sheaths.  相似文献   

10.
The influence of diet and host specificity on the fecal microbiome of three adult dragonfly species, Pseudothemis zonata, Orthetrum lineostigma, and Orthetrum melania, was investigated. The fecal bacterial communities were analyzed using 16S rRNA gene sequencing, and stable isotope analysis was used to investigate their food sources. The results showed significant differences in the composition of fecal bacterial communities among the three species, with host specificity potentially playing a more important role than diet. The dominant phyla in the fecal bacterial communities of all three species were Firmicutes, Proteobacteria, and Bacteroidetes. The operational taxonomic units (OTUs), Shannon index, and phylogenetic diversity index were not significantly different among the three species, indicating that there were no major differences in the diversity of the fecal bacterial communities. The stable isotope analysis showed that the food sources were similar among the three species, being primarily small insects found near the aquatic habitats. However, the fecal bacterial communities of two closely related species, O. lineostigma and O. melania, were different despite their similar food sources. In contrast, the fecal bacterial communities of O. lineostigma and P. zonata were similar, despite the different food sources of these two species. Our findings suggest that host specificity and diet can influence the composition of the intestinal microbiome in these insects, but the degree of influence may depend on the specific host and environmental conditions.  相似文献   

11.
Biofilms cause runnability problems in paper machines and are therefore controlled with biocides. Peracetic acid is usually effective in preventing bulky biofilms. This study investigated the microbiological status of a paper machine where low concentrations (≤15 ppm active ingredient) of peracetic acid had been used for several years. The paper machine contained a low amount of biofilms. Biofilm-forming bacteria from this environment were isolated and characterized by 16S rRNA gene sequencing, whole-cell fatty acid analysis, biochemical tests, and DNA fingerprinting. Seventy-five percent of the isolates were identified as members of the subclades Sphingomonas trueperi and S. aquatilis, and the others as species of the genera Burkholderia (B. cepacia complex), Methylobacterium, and Rhizobium. Although the isolation media were suitable for the common paper machine biofoulers Deinococcus, Meiothermus, and Pseudoxanthomonas, none of these were found, indicating that peracetic acid had prevented their growth. Spontaneous, irreversible loss of the ability to form biofilm was observed during subculturing of certain isolates of the subclade S. trueperi. The Sphingomonas isolates formed monoculture biofilms that tolerated peracetic acid at concentrations (10 ppm active ingredient) used for antifouling in paper machines. High pH and low conductivity of the process waters favored the peracetic acid tolerance of Sphingomonas sp. biofilms. This appears to be the first report on sphingomonads as biofilm formers in warm water using industries.  相似文献   

12.
Background

Weevils of the genus Otiorhynchus are regarded as devastating pests in a wide variety of horticultural crops worldwide. So far, little is known on the presence of endosymbionts in Otiorhynchus spp.. Investigation of endosymbiosis in this genus may help to understand the evolution of different reproductive strategies in these weevils (parthenogenesis or sexual reproduction), host-symbiont interactions, and may provide a future basis for novel pest management strategy development. Here, we used a multitag 454 pyrosequencing approach to assess the bacterial endosymbiont diversity in larvae of four economically important Otiorhynchus species.

Results

High-throughput tag-encoded FLX amplicon pyrosequencing of a bacterial 16S rDNA fragment was used to characterise bacterial communities associated with different Otiorhynchus spp. larvae. By sequencing a total of ~48,000 PCR amplicons, we identified 49 different operational taxonomic units (OTUs) as bacterial endosymbionts in the four studied Otiorhynchus species. More than 90% of all sequence reads belonged either to the genus Rickettsia or showed homology to the phylogenetic group of “Candidatus Blochmannia” and to endosymbionts of the lice Pedicinus obtusus and P. badii. By using specific primers for the genera Rickettsia and “Candidatus Blochmannia”, we identified a new phylogenetic clade of Rickettsia as well as “Candidatus Nardonella” endosymbionts in Otiorhynchus spp. which are closely related to “Candidatus Blochmannia” bacteria.

Conclusions

Here, we used multitag 454 pyrosequencing for assessment of insect endosymbiotic communities in weevils. As 454 pyrosequencing generates only quite short sequences, results of such studies can be regarded as a first step towards identifying respective endosymbiotic species in insects. In the second step of our study, we analysed sequences of specific gene regions for a more detailed phylogeny of selected endosymbiont genera. As a result we identified the presence of Rickettsia and “Candidatus Nardonella endosymbionts in Otiorhynchus spp.. This knowledge is an important step in exploring bacteria-insect associations for potential use in insect pest control.

  相似文献   

13.
It is well known that spiders are present in high numbers in orchards and may contribute to biocontrol. Some recent studies in central Europe further showed that some spiders are active year-round and consume pests even in winter. Using cardboard traps laid every two weeks, we carried out a survey to determine which spider and earwig species are active from September to May in an experimental, pesticide-free, apple orchard under a Mediterranean climate. We observed that spider activity was never completely absent. The structure of the spider communities showed a marked seasonality in three periods (so-called ‘autumn’, ‘winter’ and ‘spring’). Only two spider genera, Philodromus and Trachelas, were highly active in winter (percentage of catches during this season above 40%) and six others (Lathys, Clubiona, Gnaphosa, Theridion, Phrurolithus) had moderate activity (between 20 and 40%). The two earwig species had different patterns of winter activity with Forficula auricularia almost absent whereas F. pubescens was moderately active on trees. Spider community abundance, diversity and evenness significantly decreased between autumn and winter and remained low in the following spring probably because the attractiveness of the traps is much lower at this time of year due to mild temperatures and the presence of leaves on the trees. Winter-active spiders could contribute to pest biocontrol during the cold season and we advocate that the use of broad-spectrum pesticides at the end of winter, as classically applied in orchards, may be counter-productive for pest control.  相似文献   

14.
Cytoplasmic incompatibility (CI) is a reproductive phenotype induced by bacterial endosymbionts in arthropods. Measured as a reduction in egg hatchability resulting from the crossing of uninfected females with bacteria-infected males, CI increases the frequency of bacteria-infected hosts by restricting the fertilization opportunities of uninfected hosts in populations. Wolbachia, a type of alpha-proteobacteria, is well known as a CI inducer in a wide range of arthropod species, while Cardinium, a member of the phylum Bacteroidetes, is known to cause CI in one wasp and three spider mite species. In this study, dual infection with Cardinium and Wolbachia induced strong CI in a single host, Sogatella furcifera (Horváth), a planthopper species that is naturally infected with both bacteria. Specifically, infection with Cardinium alone was found to cause a 76 % reduction in egg development, and dual infection with Cardinium and Wolbachia a 96 % reduction, indicating that Cardinium induces CI and the dual infection raises the CI level. This study was the first to document reproductive alteration by Cardinium in a diploid host species.  相似文献   

15.
Ground dwelling spiders are important predators in the detrital food web, which plays important roles in nutrient cycling and energy flow in forest ecosystems. The cursorial spider assemblage in a Beech-Maple forest in southwestern Michigan at sites where and invasive plant, Vinca minor, has invaded was compared to a native site within the same forest and to the forest prior to invasion by the plant. Pitfall traps were used to sample cursorial spiders over the course of a summer. Vinca minor substantially altered the forest floor spider assemblage. The invasive plant reduced the total activity-abundance of spiders by nearly 49% and depressed species diversity and evenness; in contrast, species richness was not affected. We found that V. minor changed the guild and family structure with wolf spiders being common at sites where the plant had invaded. Vinca minor reduced the abundance of vagrant web building and crab spiders. Similarity indices revealed that the spider communities between the two sites were quite dissimilar (Bray-Curtis = 0.506; Jaccard’s = 0.520). Importantly, comparison to a study conducted in the same forest 28 years earlier showed that the cursorial spider assemblage in the forest prior to Vinca invasion was very different than it was after Vinca invaded but was similar to the current native site in species and guild composition. We conclude that invasion by Vinca has caused the striking changes we observed in community organization of this important group of forest floor predators. We suggest that changes in the physical structure of the litter/soil microhabitat with the invasion of V. minor are likely the cause of the substantial impacts of the plant on the spider assemblage.  相似文献   

16.
Spider mites are severe pests of several annual and perennial crops worldwide, often causing important economic damages. As rapid evolution of pesticide resistance in this group hampers the efficiency of chemical control, alternative control strategies, such as the use of entomopathogenic fungi, are being developed. However, while several studies have focused on the evaluation of the control potential of different fungal species and/or isolates as well as their compatibility with other control methods (e.g., predators or chemical pesticides), knowledge on the extent of inter‐ and intraspecific variation in spider mite susceptibility to fungal infection is as yet incipient. Here, we measured the mortality induced by two generalist fungi, Beauveria bassiana and Metarhizium brunneum, in 12 spider mite populations belonging to different Tetranychus species: T. evansi, T. ludeni, and T. urticae (green and red form), within a full factorial experiment. We found that spider mite species differed in their susceptibility to infection by both fungal species. Moreover, we also found important intraspecific variation for this trait. These results draw caution on the development of single strains as biocontrol agents. Indeed, the high level of intraspecific variation suggests that (a) the one‐size‐fits‐all strategy may fail to control spider mite populations and (b) hosts resistance to infection may evolve at a rapid pace. Finally, we propose future directions to better understand this system and improve the long‐term success of spider mite control strategies based on entomopathogenic fungi.  相似文献   

17.
通过传统微生物培养方法,对处于灌浆期的杂交水稻亲本"深08S"、"和620S"及"16A007"种子内生细菌群落结构多样性进行研究。实验表明,处于灌浆期的杂交水稻亲本种子仍然存在内生细菌群落结构的多样性。"深08S"种子内生细菌含6个OTU,第一优势菌属为Pantoea,丰度为52.04%,第二和第三优势菌属分别为Pseudomonas和Rhizobium;"和620S"种子内生细菌含10个OTU,第一优势菌属为Pantoea,丰度为69.02%,第二优势菌属为Pseudomonas,并列第三优势菌属为Rhizobium和Sphingomonas;"16A007"种子内生细菌含11个OTU,第一优势菌属为Pseudomonas,丰度为45.12%,第二优势菌属和第三优势菌属分别为Pantoea和Sphingomonas。由研究结果可见,具有遗传相关性的水稻种子"深08S"和"和620S"内生细菌的第一和第二优势菌属相同,同时,三种水稻亲本种子优势菌属都有Pantoea和Pseudomonas,表明水稻种子基因型对其内生细菌结构多样性具有一定的影响。  相似文献   

18.
1. The spillover of exotic predators from managed ecosystems into natural habitats may exacerbate the biodiversity losses caused by land‐use intensification. 2. In the present study, the impacts of the exotic wandering spider Cheiracanthium mildei L. Koch in an oak woodland ecosystem adjacent to an intensively‐managed agricultural system were examined. 3. Abundance and species richness of resident spiders and insects in oak branches were reduced in the presence of C. mildei. Contrary to expectations, C. mildei did not disproportionately affect other wandering spider species, but appeared to impact spiders from all tested functional groups. Numbers of herbivorous and predatory insects were also lower in the presence of C. mildei. 4. Although the apparent effects of this spider extend to multiple trophic levels in oak woodland, its voracity and relatively large size may ultimately strengthen herbivore suppression in the vineyard–oak woodland landscape.  相似文献   

19.
Predators of dangerous prey risk being injured or killed in counter-attacks and hence may use risk-reducing predatory tactics. Spiders are often dangerous predators to insects, but for a few, including Stenolemus bituberus assassin bugs, web-building spiders are prey. Despite the dangers of counter-attack when hunting spiders, there has been surprisingly little investigation of the predatory tactics used by araneophagic (spider-eating) insects. Here, we compare the pursuit tendency, outcome and predatory tactics of S. bituberus against five species of web-building spider. We found that S. bituberus were most likely to hunt and capture spiders from the genus Achaearanea, a particularly common prey in nature. Capture of Achaearanea sp. was more likely if the prey spider was relatively small, or if S. bituberus was in poor condition. S. bituberus used two distinct predatory tactics, ‘stalking’, in which they slowly approached the prey, and ‘luring’, in which they attracted spiders by manipulating the web to generate vibrations. Tactics were tailored to the prey species, with luring used more often against spiders from the genus Achaearanea, and stalking used more often against Pholcus phalangioides. The choice of hunting tactic used by S. bituberus may reduce the risk posed by the prey spider.  相似文献   

20.
Summary Prey capture rate, food consumption, and diet composition of all developmental stages of the funnelweb spider Agelena limbata were estimated in woody and open habitats by a sight-count method. Prey availability was evaluated on the basis of two indices, i.e. the ratios of daily food consumption to dry weight of predator and to daily standard metabolic rate. These indices varied seasonally and between instars in this spider. Comparison of these indices between arthropod predators suggests that A. limbata live under conditions of relatively limited food supply. In the open habitat, the spiders reduced foraging activities to avoid heat stress at midday in summer because the sheet web was exposed to the direct rays of the sun and its temperature exceeded 40°C. The daily food consumption of adult spiders in the open habitat was about half of that in the woody habitat. The lower rate of energy intake of spiders in the open habitat may cause the observed smaller size of adults and lower fecundity. A. limbata captured a great range of prey comprising ten orders of arthropods and ate chemically defended insects, e.g. stink bugs, lady beetles, and ants which were rejected by many spiders. This generalistic foraging may be associated with limited and heterogeneous food supply in this spider.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号