首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 437 毫秒
1.
叶飞  陈求稳    吴世勇  蔡德所  王洪梅 《生态学报》2008,28(6):2604-2604~2613
岸边带是水-陆之间的过渡和缓冲地带,是河流生态系统的重要组成部分.岸边带对拦截径流中的固体颗粒、吸收营养盐、减少入河污染负荷有重要作用.受河流水位季节性波动的影响,岸边带生态系统的变化非常剧烈,而当水库等水工建筑的运行剧烈改变河流的水文情势时,水库下游的岸边带生态系统将受到长期的累积性影响.因此,研究复式河道岸边带植被动态对于受损河流生态修复以及河流开发运行的生态环境影响规避具有重要意义.通过原位样方观测和室内水槽模拟试验,开发了岸边带植被演替模型,该模型耦合了全局基于连续性模式的水动力模块和局部基于元胞自动机模式的植被演替模块,并以漓江中游的一段复式河道为例,通过模拟水库运行前后长序列的水文情势变化和3种岸边带植物(刺果酸模、水蓼和益母草)的生长演替,分析了为满足旅游航道需求上游水库补水运行对下游岸边带植被的影响.  相似文献   

2.
1. Riparian vegetation in dry regions is influenced by low‐flow and high‐flow components of the surface and groundwater flow regimes. The duration of no‐flow periods in the surface stream controls vegetation structure along the low‐flow channel, while depth, magnitude and rate of groundwater decline influence phreatophytic vegetation in the floodplain. Flood flows influence vegetation along channels and floodplains by increasing water availability and by creating ecosystem disturbance. 2. On reference rivers in Arizona's Sonoran Desert region, the combination of perennial stream flows, shallow groundwater in the riparian (stream) aquifer, and frequent flooding results in high plant species diversity and landscape heterogeneity and an abundance of pioneer wetland plant species in the floodplain. Vegetation changes on hydrologically altered river reaches are varied, given the great extent of flow regime changes ranging from stream and aquifer dewatering on reaches affected by stream diversion and groundwater pumping to altered timing, frequency, and magnitude of flood flows on reaches downstream of flow‐regulating dams. 3. As stream flows become more intermittent, diversity and cover of herbaceous species along the low‐flow channel decline. As groundwater deepens, diversity of riparian plant species (particularly perennial species) and landscape patches are reduced and species composition in the floodplain shifts from wetland pioneer trees (Populus, Salix) to more drought‐tolerant shrub species including Tamarix (introduced) and Bebbia. 4. On impounded rivers, changes in flood timing can simplify landscape patch structure and shift species composition from mixed forests composed of Populus and Salix, which have narrow regeneration windows, to the more reproductively opportunistic Tamarix. If flows are not diverted, suppression of flooding can result in increased density of riparian vegetation, leading in some cases to very high abundance of Tamarix patches. Coarsening of sediments in river reaches below dams, associated with sediment retention in reservoirs, contributes to reduced cover and richness of herbaceous vegetation by reducing water and nutrient‐holding capacity of soils. 5. These changes have implications for river restoration. They suggest that patch diversity, riparian plant species diversity, and abundance of flood‐dependent wetland tree species such as Populus and Salix can be increased by restoring fluvial dynamics on flood‐suppressed rivers and by increasing water availability in rivers subject to water diversion or withdrawal. On impounded rivers, restoration of plant species diversity also may hinge on restoration of sediment transport. 6. Determining the causes of vegetation change is critical for determining riparian restoration strategies. Of the many riparian restoration efforts underway in south‐western United States, some focus on re‐establishing hydrogeomorphic processes by restoring appropriate flows of surface water, groundwater and sediment, while many others focus on manipulating vegetation structure by planting trees (e.g. Populus) or removing trees (e.g. Tamarix). The latter approaches, in and of themselves, may not yield desired restoration outcomes if the tree species are indicators, rather than prime causes, of underlying changes in the physical environment.  相似文献   

3.
River flow is a major driver of morphological structure and community dynamics in riverine-floodplain ecosystems. Flow influences in-stream communities through changes in water velocity, depth, temperature, turbidity and nutrient fluxes, and perturbations in the organisation of lower trophic levels are cascaded through the food web, resulting in shifts in food availability for consumer species. River birds are sensitive to spatial and phenological mismatches with aquatic prey following flow disturbances; however, the role of flow as a determinant of riparian ecological structure remains poorly known. This knowledge is crucial to help to predict if, and how, riparian communities will be influenced by climate-induced changes in river flow characterised by more extreme high (i.e. flood) and/or low (i.e. drought) flow events. Here, we combine national-scale datasets of river bird surveys and river flow archives to understand how hydrological disturbance has affected the distribution of riparian species at higher trophic levels. Data were analysed for 71 river locations using a Generalized Additive Model framework and a model averaging procedure. Species had complex but biologically interpretable associations with hydrological indices, with species’ responses consistent with their ecology, indicating that hydrological-disturbance has implications for higher trophic levels in riparian food webs. Our quantitative analysis of river flow-bird relationships demonstrates the potential vulnerability of riparian species to the impacts of changing flow variability and represents an important contribution in helping to understand how bird communities might respond to a climate change-induced increase in the intensity of floods and droughts. Moreover, the success in relating parameters of river flow variability to species’ distributions highlights the need to include river flow data in climate change impact models of species’ distributions.  相似文献   

4.
5.
1. Flow dynamics is a major determinant of riparian plant communities. Therefore, flow regulation may heavily affect riparian ecosystems. Despite the large number of dams worldwide, little specific information is available on the longitudinal impacts of dams on vegetation, for example how far downstream and at what degree of regulation a dam on a river can influence riparian woodlands. 2. We quantified the long‐term responses of riparian trees and shrubs to flow regulation by identifying their lateral distribution and habitat conditions along a boreal river in northern Sweden that has been regulated by a single dam since 1948. The regulation has reduced annual flow fluctuations, this effect being largest at the dam, downstream from which it progressively decreases following the entrance of free‐flowing tributaries. 3. We related changes in the distribution patterns, composition, abundance and richness of tree and shrub species to the degree of regulation along the river downstream from the dam. Regulation has triggered establishment of trees and shrubs closer to the channel, making it possible to measure ecological impacts of flow regulation as differences in vegetation attributes relative to the positions of tree and shrub communities established before and after regulation. 4. Trees and shrubs had migrated towards the mid‐channel along the entire study reach, but the changes were largest immediately downstream of the dam. Shrubs were most impacted by flow regulation in terms of lateral movement, but the effect on trees extended furthest downstream. 5. The species composition of trees progressively returned to its pre‐regulation state with distance downstream, but entrance of free‐flowing tributaries and variation in channel morphology and substratum caused local deviations. Species richness after regulation increased for trees but decreased for shrubs. The changes in species composition and richness of trees and shrubs showed no clear downstream patterns, suggesting that other factors than the degree of regulation were more important in governing life form.  相似文献   

6.
《植物生态学报》2015,39(11):1053
AimsRevealing the spatial pattern of riparian vegetation in hyper-arid regions can improve our understanding on the water relations of riparian vegetation in the desert watershed ecosystem, and also can provide valuable scientific guidance for desertification control and water resources management of watershed of the arid region in northwestern China. This research objective is to show the spatial distribution and structures of typical riparian vegetation in hyper-arid desert watershed from regional and overall perspective.Methods Based on Landsat-8 OLI remote sensing images and a large number of field vegetation surveys, the supervised classification method was used to distinguish three main vegetation categories in the lower Tarim River basin: Tamarix thicket, Populus euphratica woodland, and Phragmites australis grassland. The leaf area index (LAI) of Tamarix thickets and Populus euphratica woodlands were inverted by using the remote-sensed LAI inversion empirical model that we developed.Important findings Supervised classification supporting abundant information of ground objects by remote sensing was an effective method to determine desert riparian vegetation categories in arid desert regions. The area was 336.4 km2 for the Populus euphratica woodlands and 405.3 km2 for the Tamarix thickets, respectively. The Tamarix thickets had a wider distribution range while the Populus euphratica woodlands grew near the river channel. The overall LAI of the riparian vegetation was low. The average LAI value was 0.253 for the Tamarix thickets and 0.252 for the Populus euphratica woodlands. The areas of vegetation with the LAI value of less than 0.5 accounted for 92.4% and 90.1% of the total area of the Tamarix thickets and the Populus euphratica woodlands, respectively. The statistic results showed that large spatial variability of the riparian vegetation LAI existed. The spatial variability of the Populus euphratica woodlands was larger than that of the Tamarix thickets. The LAI values of the riparian vegetation had a significant negative exponential relationship with the distances away from the river channel. The LAI values declined rapidly within the distance of 1 km from the river channel and they were generally lower than 0.1 when the distances beyond 1 km, which indicated that the riparian vegetation was mainly distributed within 1 km from both side of the river. This research indicated three basic characteristics of the spatial pattern in riparian vegetation from hyper-arid desert regions, including overall sparse spatial distribution, high spatial variability and negative exponential relationship between LAI and distance away from the river channel.  相似文献   

7.
塔里木河下游河岸带植被的空间结构特征   总被引:1,自引:0,他引:1       下载免费PDF全文
揭示我国内陆河流域下游河岸带植被的空间结构特征, 对于了解我国西北干旱区荒漠河岸带植被的空间分布规律、指导荒漠化治理和内陆河水资源管理具有重要意义。该研究基于野外大范围植被调查数据支持下的遥感监督分类方法, 利用Landsat-8 OLI遥感数字图像, 辨识了塔里木河下游柽柳(Tamarix spp.)灌丛、胡杨(Populus euphratica)疏林和芦苇(Phragmites australis)草地3类主要的河岸带植被, 并利用建立的叶面积指数(LAI)遥感反演经验模型反演了研究区柽柳灌丛和胡杨疏林的叶面积指数, 旨在从区域尺度和总体趋势上分析荒漠河岸带植被的空间结构和分布特征。结果表明: 在有详细地物资料的基础上, 遥感监督分类可以作为一种干旱区荒漠河岸带植被分类的有效方法; 遥感分类结果显示塔里木河下游胡杨疏林分布面积约336.4 km2, 柽柳灌丛约为405.3 km2, 胡杨疏林总体更靠近河道, 柽柳灌丛分布范围更广; 河岸带植被LAI整体很低, 柽柳灌丛和胡杨疏林平均LAI值分别为0.253和0.252, LAI小于0.5的植被对应面积分别占柽柳灌丛和胡杨疏林总面积的92.4%和90.1%, 表明了塔里木河下游荒漠河岸植被空间上稀疏分布的特征; 统计结果显示, 河岸带植被结构存在巨大的空间变异性, 其中胡杨疏林比柽柳灌丛的空间变异性更大; 河岸带植被LAI随距河道距离呈现显著负指数分布规律, 在离河道1 km范围内LAI随离河道距离快速下降, 而1 km外区域叶面积指数普遍低于0.1, 表明植被主要分布在河道两侧1 km范围内。整体稀疏的空间分布、显著的空间变异性, 以及由LAI体现的植被盖度随距河道距离的负指数下降规律是荒漠河岸带植被空间结构的3个基本特征。  相似文献   

8.
Aim: Developing a methodology to map the distribution of riparian forests to entire river networks and determining the main environmental factors controlling their spatial patterns. Location: Cantabrian region, northern Spain. Methods: We mapped the riparian forests at a physiognomic and phytosociological level by delimiting riparian zones and generating vegetation distribution models based on remote sensing data (Landsat 8 OLI and LiDAR PNOA). We built virtual watersheds to define a spatial framework where the catchment environmental information can be specified for each river reach, in combination with the vegetation map. In order to determine the drivers that play a significant role in the observed spatial patterns in riparian forests, based on our data sets we modelled interactions between environmental information and riparian vegetation by using the Random Forest algorithm. Results: The modelling results obtained reliably reproduced the variation of riparian forest structure and composition across Cantabrian watersheds. The produced maps were highly accurate, with a more than 70% overall accuracy for forest occurrence. A clear differentiation between Eurosiberian (habitats 91E0 and 9160) and Mediterranean (92E0) riparian forests was shown on both sides of the mountain range. Topography and land use were the main drivers defining the distribution of riparian forest as a physiognomic unit. In turn, altitude, climate and percentage of pasture were the most relevant factors determining their composition (phytosociological approach). Conclusions: Our study confirms that anthropic control ultimately defines the distribution of vegetation in the riparian area at a regional to local scale. Human disturbances constrain the extension of forest patches across their potential distribution defined by topoclimatic boundaries, which establish a clear limit between Mediterranean and Eurosiberian biogeographical regions.  相似文献   

9.
Disturbance has long been recognized as an important determinant of community characteristics in aquatic systems. The aims of our study were to evaluate the impact of different disturbances on the macrophyte diversity and on river quality. To this end, we investigated the floristic composition for different stretches impacted by disturbances and we tested both diversity indices and the trophic index (IBMR) “Biological Index Macrophytes in Rivers” in the Moselle river (NE of France). The river was divided into four sections of different lengths based on uniformity of morphological characteristics, substrate conditions and flowing velocity: the upper, the wild, the resectioned and the downstream Moselle. Floristic composition and water chemical parameters were analysed from 1999 to 2001. The man‐made increase of nutrient concentration favoured the floristic richness in the last sites of the upper Moselle, whereas river dynamics and floods did not allow the development of vegetation in the wild Moselle. Disturbances caused by industrial sewage and eutrophication allowed the spreading of pollu‐tolerant and riparian alien species. The aquatic macrophyte approach is a useful means to detect impact of disturbances on diversity and on river quality. However, it was not effective in assessing disturbances such as flood overflow or chemical pollution. (© 2006 WILEY‐VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

10.
黄河干流河岸带植物群落特征及其影响因子分析   总被引:2,自引:0,他引:2  
作为河岸带生态系统的关键组成部分,河岸带植被为许多动植物提供了栖息地以及迁徙或扩散的廊道,并对非点源污染物有着缓冲和过滤作用。黄河是我国湿地的重要组成部分,也是生物多样性分布的关键地带。但是,目前黄河水资源的过度利用如农业灌溉和干流拦河水利工程的兴建在很大程度上改变了原有的水文情势,对河岸带植被发育带来了不利影响。另外,黄河两岸的加固硬化进一步破坏了河岸带植物的生存环境。然而,过去对于黄河河岸带植被仅有对个别河段的调查。为了解目前黄河河岸带植被现状,于2008年4-6月及2008年9-10月对黄河干流河岸带植被进行了两次系统调查,以期为黄河河岸带植被多样性的保护、河岸带的开发管理提供理论支持。对群落的物种组成、多样性进行了分析,并采用双向指示种分析法对黄河干流河岸带植被进行了数量分类。共采集到木本和草本植物169种,隶属于37科124属。区系分析表明黄河干流河岸带植被区系地理成分多样。空间分布方面,中游河段草本植物无论在种类数、密度、生物量上都较上游和下游河段丰富。TWINSPAN将植被划分为17个群落,论述了各群落的特征。环境分析表明,影响黄河干流河岸带植被空间分布的主要生态因子是海拔、年均气温、年均降雨量、年均径流量和平均最大流速。    相似文献   

11.
The red river hog (Potamochoerus porcus, Linnaeus) is a species of Suidae with populations ranging from western to central Africa. Little is known about the population status of red river hog, and few studies have investigated habitat characteristics associated with their occupancy which is critical in determining possible reasons behind suspected population declines. We used camera traps and site occupancy models to examine the effects of habitat covariates on occupancy of red river hog on Tiwai Island and in surrounding forests of Sierra Leone during two field seasons, 2008–2011. We also estimated group size and composition and growth patterns of juveniles. In both sampling periods, understory vegetation strongly influenced red river hog occupancy with greatest association with riparian and swamp vegetation types. Red river hogs seemed to avoid habitats of high human impact such as farmbush and secondary growth forests. Average group size was 2.46 ± 0.28 (SE) hogs per group. Growth patterns of juveniles suggested the majority of piglets were born during the middle of dry season (January–February). Our research suggests landscape use by red river hog is influenced by presence of riparian habitats with dense vegetation.  相似文献   

12.
河岸带是河流与陆地生态系统的交错带, 孕育了丰富的生物多样性。河流的冲刷与地势的作用使得河岸带往往形成弯道, 弯道内外两侧水流速度、泥沙性质与植物繁殖体聚集程度不同, 影响到植物生长与种群动态, 可能导致河岸带弯道凸岸、凹岸两侧植物空间分布格局和种群结构存在较大差异。该研究以中国特有、狭域分布的海南杜鹃(Rhododendron hainanense)为例, 揭示溪流弯道对其两侧海南杜鹃种群空间分布格局与种群动态的影响。在海南岛3个国家级自然保护区内各设置2个河岸弯道样带, 用方差/平均值法对弯道凸岸、凹岸两侧海南杜鹃的空间分布格局和种群动态进行对比研究。结果显示: (1)海南杜鹃弯道凸岸的种群结构呈增长型, 凹岸基本呈衰退型; (2)凸岸一侧上下游的海南杜鹃种群基本呈增长型, 凹岸一侧上下游的海南杜鹃则出现断龄现象; (3)距离弯顶位置或河岸越远, 各龄级海南杜鹃种群个体数量基本呈下降趋势; (4)在2 m × 2 m尺度下, 弯道凸岸及其下游的海南杜鹃主要呈聚集分布, 上游近似随机分布, 凹岸及其上下游则均呈随机分布。海南杜鹃分布的山区河岸带水流较快、坡度较大, 可能是导致弯道凹岸个体较少、种群结构呈衰退型的主要原因。因此, 河岸弯道内外两侧可能存在个体生长与群体差异, 在开展河岸带植物种群动态与物种保育研究中需给予重视。  相似文献   

13.
1. Naturally variable river flows are considered to be important for structuring riparian vegetation. However, while the importance of floods for the ecology of riparian vegetation is well recognised, much less is known about the importance of small fluctuations in river flows. 2. We investigated the effect of water supply diversion weirs on the riparian vegetation of upland streams. These weirs remove within‐channel fluctuations in flow but do not prevent large floods downstream. We surveyed the in‐channel and banktop vegetation of five streams, three of which were regulated by weirs and two of which acted as controls. 3. Unexpectedly, we observed greater species richness within the channel downstream of the weirs. This was because of increased numbers of exotic and terrestrial (‘dry’) plant species. Grass cover was also greater downstream of the weirs. There were no significant differences in the banktop vegetation between the upstream and downstream sites of the regulated streams. 4. Our results highlight the role of within‐channel flow variability in maintaining the composition of vegetation within the stream channel. We suggest that greater species richness does not necessarily indicate a less‐disturbed environment. Rather, a greater number of ‘dry’ species is indicative of the impacts of flow regulation. 5. Small fluctuations in river flows are probably necessary to protect the ecosystem structure and function of regulated streams. It is recommended that variable within‐channel flows be provided in regulated streams.  相似文献   

14.
The vegetation within the riparian zone performs animportant ecological function for in-stream processes.In Australia, riparian zones are regarded as the mostdegraded natural resource zone due to disturbancessuch as river regulation and livestock grazing. Thisstudy looks at factors influencing vegetation dynamicsof riparian tree species on two contrasting riversystems in Western Australia. The Blackwood River insouth-western Australia is influenced by aMediterranean type climate with regular seasonalwinter flows. The Ord River in north-western Australiais characterized by low winter base flows andepisodic, extreme flows influenced by monsoon rains inthe summer. For both rivers, reproductive phenology ofstudied overstory species is timed to coincide withseasonal river hydrology and rainfall. An evendistribution of size classes of trees on the BlackwoodRiver indicated recruitment into the population iscontinual and related to the regular predictableseasonal river flows and rainfall. In contrast, on theOrd River tree size class distribution was clustered,indicating episodic recruitment. On both rivers treeestablishment is also influenced by elevation abovethe river, microtopography, moisture status and soiltype. In terms of vegetation dynamics riparianvegetation on the Ord River consists of long periodsof transition with short lived stable states incontrast to the Blackwood river where tree populationstructure is characterized by long periods of stablestates with short transitions.  相似文献   

15.
《植物生态学报》2018,42(8):841
河岸带是河流与陆地生态系统的交错带, 孕育了丰富的生物多样性。河流的冲刷与地势的作用使得河岸带往往形成弯道, 弯道内外两侧水流速度、泥沙性质与植物繁殖体聚集程度不同, 影响到植物生长与种群动态, 可能导致河岸带弯道凸岸、凹岸两侧植物空间分布格局和种群结构存在较大差异。该研究以中国特有、狭域分布的海南杜鹃(Rhododendron hainanense)为例, 揭示溪流弯道对其两侧海南杜鹃种群空间分布格局与种群动态的影响。在海南岛3个国家级自然保护区内各设置2个河岸弯道样带, 用方差/平均值法对弯道凸岸、凹岸两侧海南杜鹃的空间分布格局和种群动态进行对比研究。结果显示: (1)海南杜鹃弯道凸岸的种群结构呈增长型, 凹岸基本呈衰退型; (2)凸岸一侧上下游的海南杜鹃种群基本呈增长型, 凹岸一侧上下游的海南杜鹃则出现断龄现象; (3)距离弯顶位置或河岸越远, 各龄级海南杜鹃种群个体数量基本呈下降趋势; (4)在2 m × 2 m尺度下, 弯道凸岸及其下游的海南杜鹃主要呈聚集分布, 上游近似随机分布, 凹岸及其上下游则均呈随机分布。海南杜鹃分布的山区河岸带水流较快、坡度较大, 可能是导致弯道凹岸个体较少、种群结构呈衰退型的主要原因。因此, 河岸弯道内外两侧可能存在个体生长与群体差异, 在开展河岸带植物种群动态与物种保育研究中需给予重视。  相似文献   

16.
17.
Global circulation models forecasts indicate a future temperature and rainfall pattern modification worldwide. Such phenomena will become particularly evident in Europe where climate modifications could be more severe than the average change at the global level. As such, river flow regimes are expected to change, with resultant impacts on aquatic and riparian ecosystems. Riparian woodlands are among the most endangered ecosystems on earth and provide vital services to interconnected ecosystems and human societies. However, they have not been the object of many studies designed to spatially and temporally quantify how these ecosystems will react to climate change-induced flow regimes. Our goal was to assess the effects of climate-changed flow regimes on the existing riparian vegetation of three different European flow regimes. Cases studies were selected in the light of the most common watershed alimentation modes occurring across European regions, with the objective of appraising expected alterations in the riparian elements of fluvial systems due to climate change. Riparian vegetation modeling was performed using the CASiMiR-vegetation model, which bases its computation on the fluvial disturbance of the riparian patch mosaic. Modeling results show that riparian woodlands may undergo not only at least moderate changes for all flow regimes, but also some dramatic adjustments in specific areas of particular vegetation development stages. There are circumstances in which complete annihilation is feasible. Pluvial flow regimes, like the ones in southern European rivers, are those likely to experience more pronounced changes. Furthermore, regardless of the flow regime, younger and more water-dependent individuals are expected to be the most affected by climate change.  相似文献   

18.
Population reduction and disturbances may alter dispersal, mating patterns and gene flow. Rather than taking the common approach of comparing different populations or sites, here we studied gene flow via wind‐mediated effective pollen dispersal on the same plant individuals before and after a fire‐induced population drop, in a natural stand of Pinus halepensis. The fire killed 96% of the pine trees in the stand and cleared the vegetation in the area. Thirteen trees survived in two groups separated by ~80 m, and seven of these trees had serotinous (closed) prefire cones that did not open despite the fire. We analysed pollen from closed pre and postfire cones using microsatellites. The two groups of surviving trees were highly genetically differentiated, and the pollen they produced also showed strong among‐group differentiation and very high kinship both before and after the fire, indicating limited and very local pollen dispersal. The pollen not produced by the survivors also showed significant prefire spatial genetic structure and high kinship, indicating mainly within‐population origin and limited gene flow from outside, but became spatially homogeneous with random kinship after the fire. We suggest that postfire gene flow via wind‐mediated pollen dispersal increased by two putative mechanisms: (i) a drastic reduction in local pollen production due to population thinning, effectively increasing pollen immigration through reduced dilution effect; (ii) an increase in wind speeds in the vegetation‐free postfire landscape. This research shows that dispersal can alleviate negative genetic effects of population size reduction and that disturbances might enhance gene flow, rather than reduce it.  相似文献   

19.
Vulnerable wildlife populations can face a suite of anthropogenic activities that may threaten their persistence. However, human‐mediated disturbances are likely to be coincident with natural disturbances that also influence a population. This synergism is often neglected in population projection models. Here I evaluate the effects of natural (rainfall fluctuation) and human disturbances (habitat loss and unregulated hunting) using a multi‐matrix environmental state population model for the common hippopotamus (Hippopotamus amphibius). By evaluating each disturbance type (natural and human) alone and then together, I explicitly consider the importance of incorporating realistic environmental variability into population projection models. The model population was most strongly affected by moderate habitat loss, which yielded the highest probability of crossing the risk thresholds over the 60 year time period, although these probabilities were relatively low (≤0.31). However, the likelihood of crossing the risk thresholds were two to five times as high when human‐mediated and natural disturbances were considered together. When these probabilities were calculated per year of the simulation, the results suggested that even relatively mild human disturbances, when considered in conjunction with realistic natural disturbance, resulted in a high probability (>0.50) of substantial declines within decades. The model highlights the importance of integrating realistic natural disturbances into population models, and suggests that, despite locally abundant populations, protected hippopotamus populations may decline over the next 60 years in response to a combination of environmental fluctuations and human‐mediated threats.  相似文献   

20.
The riparian zone and instream habitat integrity of the Luvuvhu River were assessed based on a qualitative rating of the impacts of major disturbance factors such as water abstraction, flow regulation, bed and channel modification, etc. A system was devised to assess the impact of these factors on the relative frequency and variability of habitats on a spatial and temporal scale gauged against habitat characteristics that could have been expected to occur under conditions not anthropogenically influenced. It was found that deterioration of habitat integrity can be ascribed primarily to water abstraction. This has resulted in the cessation of surface flow in a naturally perennial river during the dry season and during droughts with consequent tree deaths and a loss of fast flowing instream habitat types in the main stem of the river. The relatively small high rainfall area in the catchment, the highly variable rainfall pattern and the occurrence of sporadic severe droughts exacerbate the impact of water abstraction on the instream and riparian habitats with expected detrimental consequences for the associated biota. The effect of water abstraction is particularly severe in the lower part of the river which flows through the Kruger National Park as no perennial tributaries join the Luvuvhu River in this section. Other factors which affect the habitat integrity of the river are the removal of indigenous riparian vegetation in some river sections, encroachment by exotic vegetation, bank erosion and stream bed modification.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号