首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Researchers have used whole‐genome sequencing and gene expression profiling to identify genes associated with age, in the hope of understanding the underlying mechanisms of senescence. But there is a substantial gap from variation in gene sequences and expression levels to variation in age or life expectancy. In an attempt to bridge this gap, here we describe the effects of age, sex, genotype, and their interactions on high‐sensitivity metabolomic profiles in the fruit fly, Drosophila melanogaster. Among the 6800 features analyzed, we found that over one‐quarter of all metabolites were significantly associated with age, sex, genotype, or their interactions, and multivariate analysis shows that individual metabolomic profiles are highly predictive of these traits. Using a metabolomic equivalent of gene set enrichment analysis, we identified numerous metabolic pathways that were enriched among metabolites associated with age, sex, and genotype, including pathways involving sugar and glycerophospholipid metabolism, neurotransmitters, amino acids, and the carnitine shuttle. Our results suggest that high‐sensitivity metabolomic studies have excellent potential not only to reveal mechanisms that lead to senescence, but also to help us understand differences in patterns of aging among genotypes and between males and females.  相似文献   

2.
A prominent hypothesis for polyandry says that male–male competitive drivers induce males to coerce already‐mated females to copulate, suggesting that females are more likely to be harassed in the presence of multiple males. This early sociobiological idea of male competitive drive seemed to explain why sperm‐storing females mate multiply. Here, we describe an experiment eliminating all opportunities for male–male behavioral competition, while varying females’ opportunities to mate or not with the same male many times, or with many other males only one time each. We limited each female subject's exposure to no more than one male per day over her entire lifespan starting at the age at which copulations usually commence. We tested a priori predictions about relative lifespan and daily components of RS of female Drosophila melanogaster in experimental social situations producing lifelong virgins, once‐mated females, lifelong monogamous, and lifelong polyandrous females, using a matched‐treatments design. Results included that (1) a single copulation enhanced female survival compared to survival of lifelong virgins, (2) multiple copulations enhanced the number of offspring for both monogamous and polyandrous females, (3) compared to females in lifelong monogamy, polyandrous females paired daily with a novel, age‐matched experienced male produced offspring of enhanced viability, and (4) female survival was unchallenged when monogamous and polyandrous females could re‐mate with age‐ and experienced‐matched males. (5) Polyandrous females daily paired with novel virgin males had significantly reduced lifespans compared to polyandrous females with novel, age‐matched, and experienced males. (6) Polyandrous mating enhanced offspring viability and thereby weakened support for the random mating hypothesis for female multiple mating. Analyzes of nonequivalence of variances revealed opportunities for within‐sex selection among females. Results support the idea that females able to avoid constraints on their behavior from simultaneous exposure to multiple males can affect both RS and survival of females and offspring.  相似文献   

3.
Positive selection leaves characteristic footprints on DNA variation but detecting such patterns is challenging as the age, the intensity and the mode of selection as well as demography and evolutionary parameters (mutation and recombination rates) all play roles and these are difficult to disentangle. We recorded nucleotide variation in a sample of isogenic chromosomes from a western African population of Drosophila melanogaster at a locus (Fbp2) for which a partial selective sweep had previously been reported. We compared this locus to four other genes from the same chromosomes and from a European and an East African population. Then, we assessed Fbp2 variation in a sample of 370 chromosomes covering a comprehensive geographic sampling of 16 African localities. The signature of selection was tested while accounting for the demographic history of the populations. We found a significant signal of selection in two West African localities including Ivory Coast. Variation at Fpb2 would thus represent a case of an ongoing selective sweep in the range of this species. A weaker, nonsignificant, signal of selection was, however, apparent in some other populations, thus leaving open several possibilities: (i) the selective sweep originated in Ivory Coast and has spread to the rest of the continent; (ii) several African populations report the signature of a selective event having occurred in an ancestral population; (iii) this genome region is subject to independent selective events in African populations; and (iv) A neutral scenario with population subdivision and local bottleneck cannot be fully excluded to explain the molecular patterns observed in some populations.  相似文献   

4.
Strict maternal inheritance is considered a hallmark of animal mtDNA. Although recent reports suggest that paternal leakage occurs in a broad range of species, it is still considered an exceptionally rare event. To evaluate the impact of paternal leakage on the evolution of mtDNA, it is essential to reliably estimate the frequency of paternal leakage in natural populations. Using allele‐specific real‐time quantitative PCR (RT‐qPCR), we show that heteroplasmy is common in natural populations with at least 14% of the individuals carrying multiple mitochondrial haplotypes. However, the average frequency of the minor mtDNA haplotype is low (0.8%), which suggests that this pervasive heteroplasmy has not been noticed before due to a lack of power in sequencing surveys. Based on the distribution of mtDNA haplotypes in the offspring of heteroplasmic mothers, we found no evidence for strong selection against one of the haplotypes. We estimated that the rate of paternal leakage is 6% and that at least 100 generations are required for complete sorting of mtDNA haplotypes. Despite the high proportion of heteroplasmic individuals in natural populations, we found no evidence for recombination between mtDNA molecules, suggesting that either recombination is rare or recombinant haplotypes are counter‐selected. Our results indicate that evolutionary studies using mtDNA as a marker might be biased by paternal leakage in this species.  相似文献   

5.
Larvae of Drosophila melanogaster reared at 23°C and switched to 14°C for 1 h are 0.5°C warmer than the surrounding medium. In keeping with dissipation of energy, respiration of Drosophila melanogaster larvae cannot be decreased by the F‐ATPase inhibitor oligomycin or stimulated by protonophore. Silencing of Ucp4C conferred sensitivity of respiration to oligomycin and uncoupler, and prevented larva‐to‐adult progression at 15°C but not 23°C. Uncoupled respiration of larval mitochondria required palmitate, was dependent on Ucp4C and was inhibited by guanosine diphosphate. UCP4C is required for development through the prepupal stages at low temperatures and may be an uncoupling protein.  相似文献   

6.
Chromosomal inversions, structural mutations that reverse a segment of a chromosome, cause suppression of recombination in the heterozygous state. Several studies have shown that inversion polymorphisms can form clines or fluctuate predictably in frequency over seasonal time spans. These observations prompted the hypothesis that chromosomal rearrangements might be subject to spatially and/or temporally varying selection. Here, we review what has been learned about the adaptive significance of inversion polymorphisms in the vinegar fly Drosophila melanogaster, the species in which they were first discovered by Sturtevant in 1917. A large body of work provides compelling evidence that several inversions in this system are adaptive; however, the precise selective mechanisms that maintain them polymorphic in natural populations remain poorly understood. Recent advances in population genomics, modelling and functional genetics promise to greatly improve our understanding of this long‐standing and fundamental problem in the near future.  相似文献   

7.
In many invertebrates, body size shows genetically based clines, with size increasing in colder climates. Large body size is typically associated with prolonged development times. We consider variation in the CNS‐specific gene neurofibromin 1 (Nf1) and its association with body size and development time. We identified two major Nf1 haplotypes in natural populations, Nf1‐insertion‐A and Nf1‐deletion‐G. These haplotypes are characterized by a 45‐base insertion/deletion (INDEL) in Nf1 intron 2 and an A/G synonymous substitution (locus L17277). Linkage disequilibrium (LD) between the INDEL and adjacent sites is high but appears to be restricted within the Nf1 gene interval. In Australia, the frequency of the Nf1‐insertion‐A haplotype increases with latitude where wing size is larger, independent of the chromosomal inversion In(3R)Payne. Unexpectedly, the Nf1‐insertion‐A haplotype is negatively associated with wing size. We found that the Nf1‐insertion‐A haplotype is enriched in females with shorter development time. This suggests that the Nf1 haplotype cline may be driven by selection for development time rather than size; females from southern (higher latitude) D. melanogaster populations maintain a rapid development time despite being relatively larger, and the higher incidence of Nf1‐insertion‐A in Southern Australia may contribute to this pattern, whereas the effects of the Nf1 haplotypes on size may be countered by other loci with antagonistic effects on size and development time. Our results point to the potential complexity involved in identifying selection on genetic variants exhibiting pleiotropic effects when studies are based on spatial patterns or association studies.  相似文献   

8.
Populations arrayed along broad latitudinal gradients often show patterns of clinal variation in phenotype and genotype. Such population differentiation can be generated and maintained by both historical demographic events and local adaptation. These evolutionary forces are not mutually exclusive and can in some cases produce nearly identical patterns of genetic differentiation among populations. Here, we investigate the evolutionary forces that generated and maintain clinal variation genome‐wide among populations of Drosophila melanogaster sampled in North America and Australia. We contrast patterns of clinal variation in these continents with patterns of differentiation among ancestral European and African populations. Using established and novel methods we derive here, we show that recently derived North America and Australia populations were likely founded by both European and African lineages and that this hybridization event likely contributed to genome‐wide patterns of parallel clinal variation between continents. The pervasive effects of admixture mean that differentiation at only several hundred loci can be attributed to the operation of spatially varying selection using an FST outlier approach. Our results provide novel insight into the well‐studied system of clinal differentiation in D. melanogaster and provide a context for future studies seeking to identify loci contributing to local adaptation in a wide variety of organisms, including other invasive species as well as temperate endemics.  相似文献   

9.
In temperate regions, an organism's ability to rapidly adapt to seasonally varying environments is essential for its survival. In response to seasonal changes in selection pressure caused by variation in temperature, humidity, and food availability, some organisms exhibit plastic changes in phenotype. In other cases, seasonal variation in selection pressure can rapidly increase the frequency of genotypes that offer survival or reproductive advantages under the current conditions. Little is known about the relative influences of plastic and genetic changes in short‐lived organisms experiencing seasonal environmental fluctuations. Cold hardening is a seasonally relevant plastic response in which exposure to cool, but nonlethal, temperatures significantly increases the organism's ability to later survive at freezing temperatures. In the present study, we demonstrate seasonal variation in cold hardening in Drosophila melanogaster and test the extent to which plasticity and adaptive tracking underlie that seasonal variation. We measured the post‐cold hardening freeze tolerance of flies from outdoor mesocosms over the summer, fall, and winter. We bred outdoor mesocosm‐caught flies for two generations in the laboratory and matched each outdoor cohort to an indoor control cohort of similar genetic background. We cold hardened all flies under controlled laboratory conditions and then measured their post‐cold hardening freeze tolerance. Comparing indoor and field‐caught flies and their laboratory‐reared G1 and G2 progeny allowed us to determine the roles of seasonal environmental plasticity, parental effects, and genetic changes on cold hardening. We also tested the relationship between cold hardening and other factors, including age, developmental density, food substrate, presence of antimicrobials, and supplementation with live yeast. We found strong plastic responses to a variety of field‐ and laboratory‐based environmental effects, but no evidence of seasonally varying parental or genetic effects on cold hardening. We therefore conclude that seasonal variation in post‐cold hardening freeze tolerance results from environmental influences and not genetic changes.  相似文献   

10.
Wolbachia pipientis is one of the most widely studied endosymbionts today, yet we know little about its short‐term adaptation and evolution. Here, using a set of 91 inbred Drosophila melanogaster lines from five populations, we explore patterns of diversity and recent evolution in the Wolbachia strain wMel. Within the D. melanogaster lines, we identify six major mitochondrial clades and four wMel clades. Concordant with past studies, the Wolbachia haplotypes contain an overall low level of nucleotide diversity, yet they still display geographic structuring. Using Bayesian analysis informed with demographic estimates of colonization times, we estimate that all extant D. melanogaster mitochondrial haplotypes coalesce to a Wolbachia‐infected ancestor approximately 2200 years ago. Finally, we measure wMel titre within the infected flies and find that titre varies across populations, an effect attributable to host genetic factors. This demonstration of local phenotypic divergence suggests that intraspecific host genetic variation plays a key role in shaping this model symbiotic system.  相似文献   

11.
Pupation site choice of Drosophila third‐instar larvae is critical for the survival of individuals, as pupae are exposed to various biotic and abiotic dangers while immobilized during the 3–4 days of metamorphosis. This singular behavioural choice is sensitive to both environmental and genetic factors. Here, we developed a high‐throughput phenotyping approach to assay the variation in pupation height in Drosophila melanogaster, while controlling for possibly confounding factors. We find substantial variation of mean pupation height among sampled natural stocks and we show that the Drosophila Genetic Reference Panel (DGRP) reflects this variation. Using the DGRP stocks for genome‐wide association (GWA) mapping, 16 loci involved in determining pupation height could be resolved. The candidate genes in these loci are enriched for high expression in the larval central nervous system. A genetic network could be constructed from the candidate loci, which places scribble (scrib) at the centre, plus other genes known to be involved in nervous system development, such as Epidermal growth factor receptor (Egfr) and p53. Using gene disruption lines, we could functionally validate several of the initially identified loci, as well as additional loci predicted from network analysis. Our study shows that the combination of high‐throughput phenotyping with a genetic analysis of variation captured from the wild can be used to approach the genetic dissection of an environmentally relevant behavioural phenotype.  相似文献   

12.
Water pollution due to human activities produces sedimentation, excessive nutrients, and toxic chemicals, and this, in turn, has an effect on the normal endocrine functioning of living beings. Overall, water pollution may affect some components of the fitness of organisms (e.g., developmental time and fertility). Some toxic compounds found in polluted waters are known as endocrine disruptors (ED), and among these are nonhalogenated phenolic chemicals such as bisphenol A and nonylphenol. To evaluate the effect of nonhalogenated phenolic chemicals on the endocrine system, we subjected two generations (F0 and F1) of Drosophila melanogaster to different concentrations of ED. Specifically, treatments involved wastewater, which had the highest level of ED (bisphenol A and nonylphenol) and treated wastewater from a constructed Heliconia psittacorum wetland with horizontal subsurface water flow (He); the treated wastewater was the treatment with the lowest level of ED. We evaluated the development time from egg to pupa and from pupa to adult as well as fertility. The results show that for individuals exposed to treated wastewater, the developmental time from egg to pupae was shorter in individuals of the F1 generation than in the F0 generation. Additionally, the time from pupae to adult was longer for flies growing in the H. psittacorum treated wastewater. Furthermore, fertility was lower in the F1 generation than in the F0 generation. Although different concentrations of bisphenol A and nonylphenol had no significant effect on the components of fitness of D. melanogaster (developmental time and fertility), there was a trend across generations, likely as a result of selection imposed on the flies. It is possible that the flies developed different strategies to avoid the effects of the various environmental stressors.  相似文献   

13.
Directional dominance is a prerequisite of inbreeding depression. Directionality arises when selection drives alleles that increase fitness to fixation and eliminates dominant deleterious alleles, while deleterious recessives are hidden from it and maintained at low frequencies. Traits under directional selection (i.e., fitness traits) are expected to show directional dominance and therefore an increased susceptibility to inbreeding depression. In contrast, traits under stabilizing selection or weakly linked to fitness are predicted to exhibit little‐to‐no inbreeding depression. Here, we quantify the extent of inbreeding depression in a range of male reproductive characters and then infer the mode of past selection on them. The use of transgenic populations of Drosophila melanogaster with red or green fluorescent‐tagged sperm heads permitted in vivo discrimination of sperm from competing males and quantification of characteristics of ejaculate composition, performance, and fate. We found that male attractiveness (mating latency) and competitive fertilization success (P2) both show some inbreeding depression, suggesting they may have been under directional selection, whereas sperm length showed no inbreeding depression suggesting a history of stabilizing selection. However, despite having measured several sperm quality and quantity traits, our data did not allow us to discern the mechanism underlying the lowered competitive fertilization success of inbred (f = 0.50) males.  相似文献   

14.
The diversity and infection dynamics of the endosymbiont Wolbachia can be influenced by many factors, such as transmission rate, cytoplasmic incompatibility, environment, selection and genetic drift. The interplay of these factors in natural populations can result in heterogeneous infection patterns with substantial differences between populations and strains. The causes of these heterogeneities are not yet understood, partly due to the complexity of natural environments. We present experimental evolution as a new approach to study Wolbachia infection dynamics in replicate populations exposed to a controlled environment. A natural Drosophila melanogaster population infected with strains of Wolbachia belonging to different clades evolved in two laboratory environments (hot and cold) for 1.5 years. In both treatments, the rate of Wolbachia infection increased until fixation. In the hot environment, the relative frequency of different Wolbachia clades remained stable over 37 generations. In the cold environment, however, we observed marked changes in the composition of the Wolbachia population: within 15 generations, one Wolbachia clade increased more than 50% in frequency, whereas the other two clades decreased in frequency, resulting in the loss of one clade. The frequency change was highly reproducible not only among replicates, but also when flies that evolved for 42 generations in the hot environment were transferred to the cold environment. These results document how environmental factors can affect the composition of Wolbachia in D. melanogaster. The high reproducibility of the pattern suggests that experimental evolution studies can efficiently determine the functional basis of habitat‐specific fitness among Wolbachia strains.  相似文献   

15.
In many species, males have the capacity to directly influence (either positively or negatively) the fitness of their mates and offspring, not only via parental care contributions and/or precopulatory resource provisioning, but also via the post‐copulatory activity of those substances passed on to their mates in their ejaculates. Here, we examine how an individual male's identity may be related to phenotypic variation in short‐term female fecundity in the model species, Drosophila melanogaster. The effect of male identity on short‐term fecundity stimulation of females was repeatable across time and accounted for over a fifth of the total observed phenotypic variation in fecundity in two independent populations. The functional explanations for these results and the implications for our understanding of the factors that contribute to the adaptive significance of mating preferences and/or sexual conflict are discussed.  相似文献   

16.
We considered genome‐wide four‐fold degenerate sites from an African Drosophila melanogaster population and compared them to short introns. To include divergence and to polarize the data, we used its close relatives Drosophila simulans, Drosophila sechellia, Drosophila erecta and Drosophila yakuba as outgroups. In D. melanogaster, the GC content at four‐fold degenerate sites is higher than in short introns; compared to its relatives, more AT than GC is fixed. The former has been explained by codon usage bias (CUB) favouring GC; the latter by decreased intensity of directional selection or by increased mutation bias towards AT. With a biallelic equilibrium model, evidence for directional selection comes mostly from the GC‐rich ancestral base composition. Together with a slight mutation bias, it leads to an asymmetry of the unpolarized allele frequency spectrum, from which directional selection is inferred. Using a quasi‐equilibrium model and polarized spectra, however, only purifying and no directional selection is detected. Furthermore, polarized spectra are proportional to those of the presumably unselected short introns. As we have no evidence for a decrease in effective population size, relaxed CUB must be due to a reduction in the selection coefficient. Going beyond the biallelic model and considering all four bases, signs of directional selection are stronger. In contrast to short introns, complementary bases show strand specificity and allele frequency spectra depend on mutation directions. Hence, the traditional biallelic model to describe the evolution of four‐fold degenerate sites should be replaced by more complex models assuming only quasi‐equilibrium and accounting for all four bases.  相似文献   

17.
Drosophila melanogaster is postulated to have colonized North America in the past several 100 years in two waves. Flies from Europe colonized the east coast United States while flies from Africa inhabited the Caribbean, which if true, make the south‐east US and Caribbean Islands a secondary contact zone for African and European D. melanogaster. This scenario has been proposed based on phenotypes and limited genetic data. In our study, we have sequenced individual whole genomes of flies from populations in the south‐east US and Caribbean Islands and examined these populations in conjunction with population sequences from the west coast US, Africa, and Europe. We find that west coast US populations are closely related to the European population, likely reflecting a rapid westward expansion upon first settlements into North America. We also find genomic evidence of African and European admixture in south‐east US and Caribbean populations, with a clinal pattern of decreasing proportions of African ancestry with higher latitude. Our genomic analysis of D. melanogaster populations from the south‐east US and Caribbean Islands provides more evidence for the Caribbean Islands as the source of previously reported novel African alleles found in other east coast US populations. We also find the border between the south‐east US and the Caribbean island to be the admixture hot zone where distinctly African‐like Caribbean flies become genomically more similar to European‐like south‐east US flies. Our findings have important implications for previous studies examining the generation of east coast US clines via selection.  相似文献   

18.
Competition between individuals belonging to the same species is a universal feature of natural populations and is the process underpinning organismal adaptation. Despite its importance, still comparatively little is known about the genetic variation responsible for competitive traits. Here, we measured the phenotypic variation and quantitative genetics parameters for two fitness‐related traits—egg‐to‐adult viability and development time—across a panel of Drosophila strains under varying larval densities. Both traits exhibited substantial genetic variation at all larval densities, as well as significant genotype‐by‐environment interactions (GEIs). GEI was attributable to changes in the rank order of reaction norms for both traits, and additionally to differences in the between‐line variance for development time. The coefficient of genetic variation increased under stress conditions for development time, while it was higher at both high and low densities for viability. While development time also correlated negatively with fitness at high larval densities—meaning that fast developers have high fitness—there was no correlation with fitness at low density. This result suggests that GEI may be a common feature of fitness‐related genetic variation and, further, that trait values under noncompetitive conditions could be poor indicators of individual fitness. The latter point could have significant implications for animal and plant breeding programs, as well as for conservation genetics.  相似文献   

19.
A long‐standing goal for biologists and social scientists is to understand the factors that lead to the evolution and maintenance of co‐operative behaviour between conspecifics. To that end, the fruit fly, Drosophila melanogaster, is becoming an increasingly popular model species to study sociality; however, most of the research to date has focused on adult behaviours. In this study, we set out to examine group‐feeding behaviour by larvae and to determine whether the degree of relatedness between individuals mediates the expression co‐operation. In a series of assays, we manipulated the average degree of relatedness in groups of third‐instar larvae that were faced with resource scarcity, and measured the size, frequency and composition of feeding clusters, as well as the fitness benefits associated with co‐operation. Our results suggest that larval D. melanogaster are capable of kin recognition (something that has not been previously described in this species), as clusters were more numerous, larger and involved more larvae, when more closely related kin were present in the social environment. These findings are discussed in the context of the correlated fitness‐associated benefits of co‐operation, the potential mechanisms by which individuals may recognize kin, and how that kinship may play an important role in facilitating the manifestation of this co‐operative behaviour.  相似文献   

20.
The inability to properly balance energy intake and expenditure with nutrient supply forms the basis for some of today's most pressing health issues, including diabetes and obesity. Mechanisms of nutrient homeostasis may also lie at the root of dietary restriction, a manipulation whereby reduced nutrient availability extends lifespan and ameliorates age-related deteriorations in many species. The traditional belief that the most important aspect of the diet is its energetic (i.e. caloric) content is currently under scrutiny. Hypotheses that focus on diet composition and highlight more subtle characteristics are beginning to emerge. Using Drosophila melanogaster , we asked whether diet composition alone, independent of its caloric content, was sufficient to impact behavior, physiology, and lifespan. We found that providing flies with a yeast-rich diet produced lean, reproductively competent animals with reduced feeding rates. Excess dietary sugar, on the other hand, promoted obesity, which was magnified during aging. Addition of dietary yeast often limited or reversed the phenotypic changes associated with increased dietary sugar and vice versa, and dietary imbalance was associated with reduced lifespan. Our data reveal that diet composition, alone and in combination with overall caloric intake, modulates lifespan, consumption, and fat deposition in flies, and they provide a useful foundation for dissecting the underlying genetic mechanisms that link specific nutrients with important aspects of general health and longevity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号