首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants subjected to insect attack usually increase volatile emission which attracts natural enemies and repels further herbivore colonization. Less is known about the capacity of herbivores to suppress volatiles and the multitrophic consequences thereof. In our study, the African forage grass, Brachiaria brizantha, was exposed to ovipositing spotted stemborer, Chilo partellus, moths. A marked reduction in emission of the main volatile, (Z)-3-hexenyl acetate (Z3HA), occurred following oviposition but the ratio of certain other minor component volatiles to Z3HA was increased. While further herbivore colonization was reduced on plants after oviposition, the new volatile profile caused increased attraction of an adapted parasitoid, Cotesia sesamiae. Our results show that insect responses are dependent on the quality of volatile emission rather than merely the quantity in this multitrophic interaction.  相似文献   

2.
Plants can use induced volatiles to detect herbivore‐ and pathogen‐attacked neighbors and prime their defenses. Several individual volatile priming cues have been identified, but whether plants are able to integrate multiple cues from stress‐related volatile blends remains poorly understood. Here, we investigated how maize plants respond to two herbivore‐induced volatile priming cues with complementary information content, the green leaf volatile (Z)‐3‐hexenyl acetate (HAC) and the aromatic volatile indole. In the absence of herbivory, HAC directly induced defence gene expression, whereas indole had no effect. Upon induction by simulated herbivory, both volatiles increased jasmonate signalling, defence gene expression, and defensive secondary metabolite production and increased plant resistance. Plant resistance to caterpillars was more strongly induced in dual volatile‐exposed plants than plants exposed to single volatiles.. Induced defence levels in dual volatile‐exposed plants were significantly higher than predicted from the added effects of the individual volatiles, with the exception of induced plant volatile production, which showed no increase upon dual‐exposure relative to single exposure. Thus, plants can integrate different volatile cues into strong and specific responses that promote herbivore defence induction and resistance. Integrating multiple volatiles may be beneficial, as volatile blends are more reliable indicators of future stress than single cues.  相似文献   

3.
Volatiles play major roles in mediating ecological interactions between soil (micro)organisms and plants. It is well‐established that microbial volatiles can increase root biomass and lateral root formation. To date, however, it is unknown whether microbial volatiles can affect directional root growth. Here, we present a novel method to study belowground volatile‐mediated interactions. As proof‐of‐concept, we designed a root Y‐tube olfactometer, and tested the effects of volatiles from four different soil‐borne fungi on directional growth of Brassica rapa roots in soil. Subsequently, we compared the fungal volatile organic compounds (VOCs) previously profiled with Gas Chromatography–Mass Spectrometry (GC–MS). Using our newly designed setup, we show that directional root growth in soil is differentially affected by fungal volatiles. Roots grew more frequently toward volatiles from the root pathogen Rhizoctonia solani, whereas volatiles from the other three saprophytic fungi did not impact directional root growth. GC–MS profiling showed that six VOCs were exclusively emitted by R. solani. These findings verify that this novel method is suitable to unravel the intriguing chemical cross‐talk between roots and soil‐borne fungi and its impact on root growth.  相似文献   

4.
Plants emit a large variety of volatile organic compounds during infection by pathogenic microbes, including terpenes, aromatics, nitrogen‐containing compounds, and fatty acid derivatives, as well as the volatile plant hormones, methyl jasmonate, and methyl salicylate. Given the general antimicrobial activity of plant volatiles and the timing of emission following infection, these compounds have often been assumed to function in defence against pathogens without much solid evidence. In this review, we critically evaluate current knowledge on the toxicity of volatiles to fungi, bacteria, and viruses and their role in plant resistance as well as how they act to induce systemic resistance in uninfected parts of the plant and in neighbouring plants. We also discuss how microbes can detoxify plant volatiles and exploit them as nutrients, attractants for insect vectors, and inducers of volatile emissions, which stimulate immune responses that make plants more susceptible to infection. Although much more is known about plant volatile–herbivore interactions, knowledge of volatile–microbe interactions is growing and it may eventually be possible to harness plant volatiles to reduce disease in agriculture and forestry. Future research in this field can be facilitated by making use of the analytical and molecular tools generated by the prolific research on plant–herbivore interactions.  相似文献   

5.
1. A tritrophic perspective is fundamental for understanding the drivers of insect–plant interactions. While host plant traits can directly affect insect herbivore performance by either inhibiting or altering the nutritional benefits of consumption, they can also have an indirect effect on herbivores by influencing rates of predation or parasitism. 2. Enhancing soil nutrients available to trees of the genus Eucalyptus consistently modifies plant traits, typically improving the nutritional quality of the foliage for insect herbivores. We hypothesised that resulting increases in volatile essential oils could have an indirect negative effect on eucalypt‐feeding herbivores by providing their natural enemies with stronger host/prey location cues. 3. Eucalyptus tereticornis Smith seedlings were grown under low‐ and high‐nutrient conditions and the consequences for the release of volatile cues from damaged plants were examined. The influence of 1,8‐cineole (the major volatile terpene in many Eucalyptus species) on rates of predation on model caterpillars in the field was then examined. 4. It was found that the emission of cineole increased significantly after damage (artificial or herbivore), but continued only when damage was sustained by herbivore feeding. Importantly, more cineole was emitted from high‐ than low‐nutrient seedlings given an equivalent amount of damage. In the field, predation was significantly greater on model caterpillars baited with cineole than on unbaited models. 5. These findings are consistent with the hypothesis that any performance benefits insect herbivores derive from feeding on high‐nutrient eucalypt foliage could be at least partially offset by an increased risk of predation or parasitism via increased emission of attractive volatiles.  相似文献   

6.
Ecological interactions between plants and insects are of paramount importance for the maintenance of biodiversity and ecosystem functioning. Herbicides have long been considered a threat to plant and insect populations, but global increases in intensive agriculture and availability of herbicide-resistant crops have intensified concerns about their full impact on biodiversity. Here, we argue that exposure to sublethal herbicide doses has the potential to alter plant–insect interactions as a result of disruptions in their chemical communication. This is because herbicides interfere with biosynthetic pathways and phytohormones involved in the production of several classes of plant volatiles that mediate plant–insect chemical communication. Sublethal herbicide doses can modify the morphological and life-history plant traits and affect interactions with insects. However, the potential changes in plant volatiles and their consequences for plant–insect chemical communication have not yet received as much attention. We discuss how target-site (disruptors of primary metabolism) and non-target-site (synthetic auxins) herbicides could alter the production of plant volatiles and disrupt plant–insect chemical communication. We suggest research avenues to fill in the current gap in our knowledge that might derive recommendations and applied solutions to minimize herbicides' impacts on plant–insect interactions and biodiversity.  相似文献   

7.
Yeast volatiles attract insects, which apparently is of mutual benefit, for both yeasts and insects. However, it is unknown whether biosynthesis of metabolites that attract insects is a basic and general trait, or if it is specific for yeasts that live in close association with insects. Our goal was to study chemical insect attractants produced by yeasts that span more than 250 million years of evolutionary history and vastly differ in their metabolism and lifestyle. We bioassayed attraction of the vinegar fly Drosophila melanogaster to odors of phylogenetically and ecologically distinct yeasts grown under controlled conditions. Baker's yeast Saccharomyces cerevisiae, the insect‐associated species Candida californica, Pichia kluyveri and Metschnikowia andauensis, wine yeast Dekkera bruxellensis, milk yeast Kluyveromyces lactis, the vertebrate pathogens Candida albicans and Candida glabrata, and oleophilic Yarrowia lipolytica were screened for fly attraction in a wind tunnel. Yeast headspace was chemically analyzed, and co‐occurrence of insect attractants in yeasts and flowering plants was investigated through a database search. In yeasts with known genomes, we investigated the occurrence of genes involved in the synthesis of key aroma compounds. Flies were attracted to all nine yeasts studied. The behavioral response to baker's yeast was independent of its growth stage. In addition to Drosophila, we tested the basal hexapod Folsomia candida (Collembola) in a Y‐tube assay to the most ancient yeast, Y. lipolytica, which proved that early yeast signals also function on clades older than neopteran insects. Behavioral and chemical data and a search for selected genes of volatile metabolites underline that biosynthesis of chemical signals is found throughout the yeast clade and has been conserved during the evolution of yeast lifestyles. Literature and database reviews corroborate that yeast signals mediate mutualistic interactions between insects and yeasts. Moreover, volatiles emitted by yeasts are commonly found also in flowers and attract many insect species. The collective evidence suggests that the release of volatile signals by yeasts is a widespread and phylogenetically ancient trait, and that insect–yeast communication evolved prior to the emergence of flowering plants. Co‐occurrence of the same attractant signals in yeast and flowers suggests that yeast‐insect communication may have contributed to the evolution of insect‐mediated pollination in flowers.  相似文献   

8.
Plants live in association with microorganisms, which are well known as a rich source of specialized metabolites, including volatile compounds. The increasing numbers of described plant microbiomes allowed manifold phylogenetic tree deductions, but less emphasis is presently put on the metabolic capacities of plant‐associated microorganisms. With the focus on small volatile metabolites we summarize (i) the knowledge of prominent bacteria of plant microbiomes; (ii) present the state‐of‐the‐art of individual (discrete) microbial organic and inorganic volatiles affecting plants and fungi; and (iii) emphasize the high potential of microbial volatiles in mediating microbe–plant interactions. So far, 94 discrete organic and five inorganic compounds were investigated, most of them trigger alterations of the growth, physiology and defence responses in plants and fungi but little is known about the specific molecular and cellular targets. Large overlaps in emission profiles of the emitters and receivers render specific volatile organic compound‐mediated interactions highly unlikely for most bioactive mVOCs identified so far.  相似文献   

9.
Eight-carbon volatiles are characteristic of the odour profile of many filamentous fungi. They derive from enzymatic or non-enzymatic lipid oxidation and are thus termed volatile oxylipins. Collectively, non-volatile and volatile fungal oxylipins are important hormone-like factors that regulate the phenotypic status of a fungus, i.e. growth, morphological differentiation and secondary metabolite production. Given this intimate link between oxylipin formation and phenotypic change, we propose that the release of volatile oxylipins is an important means by which fungi may influence the course and outcome of interactions with animals. Such invertebrate – fungus interactions are intricate inter–kingdom relationships where either one depends on the other, or both on each other, where one is to the others benefit or detriment – eventually having even consequences on third parties and thus influencing whole foodwebs. In this review, we first highlight the connections between oxylipin formation and fungal phenotypic changes, how they affect invertebrate interactions and vice versa. We then expand this by implementing eight-carbon volatiles as infochemicals. Infochemicals are cues or signals perceived by the invertebrates' chemical senses, that are to the invertebrates' or the fungus’ benefit or detriment, through the behavioural responses they elicit. We point out, with various examples, that there is a strong analogy between fungus-invertebrate interactions mediated by fungal eight-carbon volatiles and plant-herbivore interactions mediated by six-carbon green-leaf volatiles released from wounded or stressed plants.  相似文献   

10.
Many natural enemies of herbivorous arthropods use herbivore‐induced plant volatiles to locate their prey. These foraging cues consist of mixtures of compounds that show a considerable variation within and among plant–herbivore combinations, a situation that favours a flexible approach in the foraging behaviour of the natural enemies. In this paper, we address the flexibility in behavioural responses of the predatory mite Phytoseiulus persimilis Athias‐Henriot (Acari: Phytoseiidae) to herbivore‐induced plant volatiles. In particular, we investigated the effect of experience with one component of a herbivore‐induced volatile blend: methyl salicylate (MeSA). We compared the responses of three groups of predatory mites: (1) those reared from egg to adult on Tetranychus urticae Koch (Acari: Tetranychidae) on lima bean plants (Phaseolus lunatus L. that produces MeSA), (2) those reared on T. urticae on cucumber (Cucumus sativus L. that does not produce MeSA), and (3) those reared on T. urticae on cucumber in the presence of synthetic MeSA. Exposure to MeSA during the rearing period (groups 1 and 3) resulted in an attraction to the single compound MeSA in a Y‐tube olfactometer. Moreover, exposure to MeSA affected the choice of predatory mites between two volatile blends that were similar, except for the presence of MeSA. Predators reared on lima bean plants preferred the volatile blend from T. urticae‐induced lima bean (including MeSA) to the volatile blend from jasmonic‐acid induced lima bean (lacking MeSA), but predators reared on cucumber preferred the volatile blend from the latter. Predatory mites reared on cucumber in the presence of synthetic MeSA did not discriminate between these two blends. Exposure to MeSA for 3 days in the adult phase, after rearing on cucumber, also resulted in attraction to the single compound MeSA. We conclude that a minor difference in the composition of the volatile blend to which a predatory mite is exposed can explain its preferences between two odour sources.  相似文献   

11.
Pioneer herbivorous insects may find their host plants through a combination of visual and constitutive host‐plant volatile cues, but once a site has been colonized, feeding damage changes the quantity and quality of plant volatiles released, potentially altering the behavior of conspecifics who detect them. Previous work on the pepper weevil, Anthonomus eugenii Cano (Coleoptera: Curculionidae), demonstrated that this insect can detect and orient to constitutive host plant volatiles released from pepper [Capsicum annuum L. (Solanaceae)]. Here we investigated the response of the weevil to whole plants and headspace collections of plants damaged by conspecifics. Mated weevils preferred damaged flowering as well as damaged fruiting plants over undamaged plants in a Y‐tube olfactometer. They also preferred volatiles from flowering and fruiting plants with actively feeding weevils over plants with old feeding damage. Both sexes preferred volatiles from fruiting plants with actively feeding weevils over flowering plants with actively feeding weevils. Females preferred plants with 48 h of prior feeding damage over plants subjected to weevil feeding for only 1 h, whereas males showed no preference. When attraction to male‐ and female‐inflicted feeding damage was compared in the Y‐tube, males and females showed no significant preference. Wind tunnel plant assays and four‐choice olfactometer assays using headspace volatiles confirmed the attraction of weevils to active feeding damage on fruiting plants. In a final four‐choice olfactometer assay using headspace collections, we tested the attraction of mated males and virgin and mated females to male and female feeding damage. In these headspace volatile assays, mated females again showed no preference for male feeding; however, virgin females and males preferred the headspace volatiles of plants fed on by males, which contained the male aggregation pheromone in addition to plant volatiles. The potential for using plant volatile lures to improve pepper weevil monitoring and management is discussed.  相似文献   

12.
Fungal volatile compounds can mediate fungal-insect interactions. Whether fungi can emit insect pheromones and how volatile chemicals change in response to chemicals the fungi naturally encounter is poorly understood. We analyzed volatiles emitted by Grosmannia clavigera (symbiont of the mountain pine beetle) and Ophiostoma ips (symbiont of the pine engraver beetle) growing in liquid media amended with compounds that the fungi naturally encounter: (−)-α-pinene, (+)-α-pinene, (−)-trans-verbenol, verbenone, or ipsdienol. Nine volatile compounds were identified among the fungal and amendment treatments. Volatiles qualitatively and quantitatively differed between fungal species and among amendment treatments. The bark beetle anti-aggregation pheromone (−)-verbenone was detected from both fungi growing in (−)-trans-verbenol-amended media. G. clavigera and O. ips can emit beetle pheromones and other beetle semiochemicals, suggesting that ophiostomatoid fungi could contribute to the chemical ecology of bark beetles. However, such contributions could be modulated by the presence of other environmental chemicals.  相似文献   

13.
1. Plant–plant communication has been found to affect interactions between herbivores and plants in several model systems. In these systems, herbivore‐induced volatile chemical cues are emitted and perceived by other plants (receivers), which subsequently change their defensive phenotypes. Most studies have focused on how the effects of volatile cues affect plant damage, whereas herbivore performance has rarely been examined. 2. In this study, it is shown that plant–plant communication between willows reduced the growth rate, feeding rate, and conversion efficiency of some individuals but not others of a generalist caterpillar, Orgyia vetusta. 3. Using a paired, no‐choice trial design, there was substantial variation between caterpillar individuals in their response to willows that had been induced with a volatile plant–plant cue. This variation was explained by feeding parameters of the individual herbivores. Individuals behaved similarly when fed induced and non‐induced willow leaves. Specifically, growth rates of caterpillars that grew rapidly on non‐induced willow leaves were negatively affected by plant–plant cues, but growth rates of caterpillars that grew slowly on non‐induced willow leaves were not affected by the responses to volatiles from neighbouring willows. 4. Induction by volatile plant–plant cues reduced the growth rates of those individual herbivores that caused the greatest damage to willow, but had little effect on weak growers.  相似文献   

14.
Silicon (Si) is one of the most abundant elements in the earth's crust, although its essentiality in plant growth is not clearly established. However, the importance of Si as an element that is particularly beneficial for plants under a range of abiotic and biotic stresses is now beyond doubt. This paper reviews progress in exploring the benefits at two‐ and three‐trophic levels and the underlying mechanism of Si in enhancing the resistance of host plants to herbivorous insects. Numerous studies have shown an enhanced resistance of plants to insect herbivores including folivores, borers, and phloem and xylem feeders. Silicon may act directly on insect herbivores leading to a reduction in insect performance and plant damage. Various indirect effects may also be caused, for example, by delaying herbivore establishment and thus an increased chance of exposure to natural enemies, adverse weather events or control measures that target exposed insects. A further indirect effect of Si may be to increase tolerance of plants to abiotic stresses, notably water stress, which can in turn lead to a reduction in insect numbers and plant damage. There are two mechanisms by which Si is likely to increase resistance to herbivore feeding. Increased physical resistance (constitutive), based on solid amorphous silica, has long been considered the major mechanism of Si‐mediated defences of plants, although there is recent evidence for induced physical defence. Physical resistance involves reduced digestibility and/or increased hardness and abrasiveness of plant tissues because of silica deposition, mainly as opaline phytoliths, in various tissues, including epidermal silica cells. Further, there is now evidence that soluble Si is involved in induced chemical defences to insect herbivore attack through the enhanced production of defensive enzymes or possibly the enhanced release of plant volatiles. However, only two studies have tested for the effect of Si on an insect herbivore and third trophic level effects on the herbivore's predators and parasitoids. One study showed no effect of Si on natural enemies, but the methods used were not favourable for the detection of semiochemical‐mediated effects. Work recently commenced in Australia is methodologically and conceptually more advanced and an effect of Si on the plants' ability to generate an induced response by acting at the third trophic level was observed. This paper provides the first overview of Si in insect herbivore resistance studies, and highlights novel, recent hypotheses and findings in this area of research. Finally, we make suggestions for future research efforts in the use of Si to enhance plant resistance to insect herbivores.  相似文献   

15.
Defense priming is defined as increased readiness of defense induction. A growing body of literature indicates that plants (or intact parts of a plant) are primed in anticipation of impending environmental stresses, both biotic and abiotic, and upon the following stimulus, induce defenses more quickly and strongly. For instance, some plants previously exposed to herbivore‐inducible plant volatiles (HIPVs) from neighboring plants under herbivore attack show faster or stronger defense activation and enhanced insect resistance when challenged with secondary insect feeding. Research on priming of antiherbivore defense has been limited to the HIPV‐mediated mechanism until recently, but significant advances were made in the past three years, including non‐HIPV‐mediated defense priming, epigenetic modifications as the molecular mechanism of priming, and others. It is timely to consider the advances in research on defense priming in the plant–insect interactions.  相似文献   

16.
Brassicales release volatile glucosinolate breakdown products upon tissue mechanical damage, but it is unclear how the release of glucosinolate volatiles responds to abiotic stresses such as heat stress. We used three different heat treatments, simulating different dynamic temperature conditions in the field to gain insight into stress‐dependent changes in volatile blends and photosynthetic characteristics in the annual herb Brassica nigra (L.) Koch. Heat stress was applied by either heating leaves through temperature response curve measurements from 20 to 40 °C (mild stress), exposing plants for 4 h to temperatures 25–44 °C (long‐term stress) or shock‐heating leaves to 45–50 °C. Photosynthetic reduction through temperature response curves was associated with decreased stomatal conductance, while the reduction due to long‐term stress and collapse of photosynthetic activity after heat shock stress were associated with non‐stomatal processes. Mild stress decreased constitutive monoterpene emissions, while long‐term stress and shock stress resulted in emissions of the lipoxygenase pathway and glucosinolate volatiles. Glucosinolate volatile release was more strongly elicited by long‐term stress and lipoxygenase product released by heat shock. These results demonstrate that glucosinolate volatiles constitute a major part of emission blend in heat‐stressed B. nigra plants, especially upon chronic stress that leads to induction responses.  相似文献   

17.
The diamondback moth (DBM), Plutella xylostella (L.) (Lepidoptera: Plutellidae), is a notorious insect pest of cruciferous crops worldwide. Attract-and-kill strategies to manage the DBM based on insect pheromone and plant volatile semiochemicals have been explored and partially applied in the field. However, little is known about whether the attractant effects of insect pheromone and host plant volatile semiochemicals on insects are affected by insect age or volatile concentrations. Therefore, we examined the electroantennogram (EAG) responses of both DBM males and females varying in age and body size to a range of concentrations of seven host plant volatiles and two main female sex pheromone components. Our results showed that DBM age had no influence on EAG responses to trans-2-Hexenal, trans-2-Hexenol, Heptanal, cis-3-Hexen-1-ol and Z11-16:Ald and significantly influenced the EAG responses to Z11-16:Ac and three isothiocyanates. Age and sex had interaction effects on EAG responses of DBMs to some tested semiochemicals. DBM females had significantly stronger responses than males to all tested plant volatiles, and values were enhanced with increasing concentrations. Moreover, the degree of enhancement of EAG responses in females was larger than that in males for trans-2-Hexenal, trans-2-Hexenol, cis-3-Hexen-1-ol, 2-Phenylethyl isothiocyanate and Methyl isothiocyanate treatments. Body size seemed to have no influence on EAG responses. Our results might provide a theoretical basis for optimizing attract-and-kill strategies for insect pests.  相似文献   

18.
Abstract: Herbivore insects use a broad range of chemical cues to locate their host to feed or to oviposit. Whether several plant volatiles are effective allelochemicals for insects, the latter also emit molecules which have infochemical role. The (E)‐β‐farnesene (EBF) is a well‐known aphid alarm pheromone commonly found in all previously tested species. Analysis of the released molecules from 23 aphid species, mainly collected on their natural host plant from May to July, was performed by gas chromatography–mass spectrometry. While EBF was identified as the main volatile substance in 16 species, alone or associated with other molecules, the alarm pheromone was only a minor component of the volatile molecule pattern of five other species. Moreover, two species, Euceraphis punctipennis and Drepanosiphum platanoides, did not release EBF at all but other terpenes were identified. This original observation raised the question on the utility and the source of the non‐EBF volatiles. Are these potential infochemical substances produced by the aphid or only absorbed from the host plant? Here we determined that terpenes released by insects were not only provided by the host plants. Indeed, Megoura viciae emitted additional molecules than the ones from several aphid species reared on the same host plant. Moreover, no systematic relation between the feeding behaviour of the aphid species and the volatile releases was observed. Aphid terpene composition and proportion would provide reliable cues to identify the emitting organism, plant or insect. The next step of this work will be to determine the infochemical role of terpenes found in the range of tested aphid samples to better understand the relations between the different tritrophic levels.  相似文献   

19.
Larvae of Ostrinia nubilalis (Hübner) cause significant damage to maize ears and reduce market value of fresh sweet corn. Females rely on volatile cues to locate and oviposit preferentially on maize plants. In addition, oviposition behavior of females is influenced by soil management practices as they usually lay more eggs on maize plants grown on conventional soil than on organic soils that harbor rich microbial diversity. Since some plant growth‐promoting rhizobacteria (PGPR) are known to mediate plant health via suppression of soil pathogens and enhanced uptake of nutrients; we hypothesized that inoculation of maize seeds with PGPR will alter emission of maize volatile and reduce the attractiveness of plants to ovipositing O. nubilalis. Plants treated with the single PGPR strain Bacillus pumilus INR‐7, two PGPR mixtures (Blend‐8 or Blend‐9) or untreated plants were presented to O. nubilalis females in oviposition choice bioassays. Headspace volatile organic compounds (VOCs) from the plants were analyzed by gas chromatography–mass spectrometry (GC–MS). Ostrinia nubilalis laid significantly fewer eggs on PGPR‐treated plants compared to untreated plants. In two‐choice oviposition experiments, significantly higher numbers of eggs were laid on untreated plants compared to PGPR‐treated plants. PGPR‐treated plants emitted fewer VOCs than untreated plants which, in part, explains the relatively fewer eggs on PGPR‐treated plants. These results indicate that selected PGPR treatments can alter maize plant volatiles with important ramifications for plant‐insect interactions. The implication of this finding is discussed in the context of integrated management of soil health to improve crop resistance to biotic stressors.  相似文献   

20.
Although considerable evidence has accumulated on the defensive activity of plant volatile organic compounds against pathogens and insect herbivores, less is known about the significance of volatile organic compounds emitted by plants under abiotic stress. Here, we report that green leaf volatiles (GLVs), which were previously shown to prime plant defences against insect herbivore attack, also protect plants against cold stress (4 °C). We show that the expression levels of several cold stress‐related genes are significantly up‐regulated in maize (Zea mays) seedlings treated with physiological concentrations of the GLV, (Z)‐3‐hexen‐1‐yl acetate (Z‐3‐HAC), and that seedlings primed with Z‐3‐HAC exhibit increased growth and reduced damage after cold stress relative to unprimed seedlings. Together, these data demonstrate the protective and priming effect of GLVs against cold stress and suggest an activity of GLVs beyond the activation of typical plant defence responses against herbivores and pathogens.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号