首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Effects of parasites on individual hosts can eventually translate to impacts on host communities. In particular, parasitism can differentially affect host fitness among sympatric and interacting host species. We examined whether the impact of shared parasites varied among host species within the same community. Specifically, we looked at the impacts of the acanthocephalan Acanthocephalus galaxii, the trematodes Coitocaecum parvum and Maritrema poulini, and the nematode Hedruris spinigera, on three host species: the amphipods, Paracalliope fluviatilis and Paracorophium excavatum, and the isopod, Austridotea annectens. We assessed parasite infection levels in the three host species and tested for effects on host survival, behavior, probability of pairing, and fecundity. Maritrema poulini and C. parvum were most abundant in P. excavatum but had no effect on its survival, whereas they negatively affected the survival of P. fluviatilis, the other amphipod. Female amphipods carrying young had higher M. poulini and C. parvum abundance than those without, yet the number of young carried was not linked to parasite abundance. Behavior of the isopod A. annectens was affected by M. poulini infection; more heavily infected individuals were more active. Paracorophium excavatum moved longer distances when abundance of C. parvum was lower, yet no relationship existed with respect to infection by both M. poulini and C. parvum. The differential effects of parasites on amphipods and isopods may lead to community‐wide effects. Understanding the consequences of parasitic infection and differences among host species is key to gaining greater insight into the role of parasite mediation in ecosystem dynamics.  相似文献   

2.
3.
Abstract

Populations of four species of thelastomatid nematode in six species of cockroach were regulated by a density- and sex-dependent mechanism. Regulation resulted in an underdispersed (regular) or random distribution of parasites. No cockroach contained more than one adult or juvenile male and rarely more than two adult females, and monogamy was common. Juvenile males were rare whereas juvenile females were relatively common, suggesting that males developed rapidly and were eliminated rapidly from hosts (leaving one). Prevalence of infection varied markedly between cockroach species.  相似文献   

4.
Hosts provide the main environmental traits parasites have to deal with, resulting in covariation between both associates at both micro- and macro-evolutionary scales; phylogenetic analyses of highly host-specific parasites have shown that parasite and host phylogeny might be highly congruent, and adaptation of a host species to new environments may lead to concordant changes of their parasites. Procamallanus (Spirocamallanus) neocaballeroi is a highly host-specific parasitic nematode of the Neotropical freshwater fish genus Astyanax in Mexico. One of the host species of the nematode is the emblematic Mexican tetra, A. mexicanus, which exhibits two contrasting phenotypes, a cave-dwelling morph (with troglomorphic features), and the surface-dwelling morph; other congeneric species inhabit rivers and lakes, and some of them occur in sympatry, displaying trophic specializations. Here, we explored the hypothesis that contrasting environments (surface rivers vs cave rivers), and host morphological divergence (sympatric ecomorphs in a lacustrine environment) might result in the divergence of their parasites, even though the hosts maintain a cohesive genetic structure as the same species. To test the hypothesis, several populations of Astyanax spp. were sampled to search for P. (S.) neocaballeroi. The nematode was found in 10 of the 52 sampled sites; two localities corresponded to cave populations. The phylogenetic analysis based on COI sequences yielded three major lineages for P. (S.) neocaballeroi. We found no concordance between the three lineages and the habitat where they occur in Astyanax mexicanus, even considering those living in drastic environmental conditions (caves), or between these lineages and lacustrine ecomorphs of Astyanax aeneus and A. caballeroi occurring in sympatry. Instead, genetic lineages of the nematode exhibit a clearer pattern of host species association and geographical distribution; our results showed that P. (S.) neocaballeroi is experiencing an incipient divergence although the morphological study of lineages shows no conspicuous differences.  相似文献   

5.
Few studies have been conducted on the host defenses of insects against brood parasitism. We investigated whether the silphid beetle Ptomascopus morio, a brood parasite of related silphid species Nicrophorus concolor, can also parasitize another silphid species Nicrophorus quadripunctatus and the manner in which N. quadripunctatus defends itself against parasitism. Successful brood parasitism under natural conditions was not observed at the time of year when P. morio and N. quadripunctatus are both reproductively active. Follow-up experiments revealed that P. morio attempts to oviposit near N. quadripunctatus nests, but is rarely successful if adult hosts are present. When P. morio larvae were experimentally introduced to N. quadripunctatus broods, some P. morio larvae survived when the host and parasite larvae were at the same stage. We concluded that N. quadripunctatus defends itself against brood parasitism in two ways: (1) potential brood parasites are repelled, thus limiting their access to the resource; and (2) the young of the parasitic species are killed.  相似文献   

6.
  1. Thermal disturbance of aquatic ecosystems directly and/or indirectly affects interspecific interactions, including parasitism. Both hosts and parasites respond differently to environmental changes, thus, predicting how host–parasite systems behave under the influence of disturbance remains a challenge. The aim of the study was to check how the differences in thermal conditions of lakes affect life-history traits of hosts and the level of parasitism, using a Viviparus contectus–digenean trematodes model.
  2. Overall, we examined 480 individuals of V. contectus collected from a thermally polluted lake (TPL) and a natural lake (NL). Host features, including body size and fecundity, as well as the prevalence and species richness of digenean trematodes in snail populations were investigated.
  3. We found that V. contectus from the TPL were significantly larger, heavier, and females were more fertile than snails collected from the NL. A total of 20.4% of the collected snails were infected with digenean larvae. The species richness of parasites was twice as high in the NL compared to the TPL (six and three species, respectively). A significant difference in the percentage of snails infected with parasites was identified between both types of lakes, with a higher prevalence of V. contectus in the NL (31.3%) compared to the TPL (7.3%).
  4. These results indicate that host–parasite systems follow the environmental changes in lakes due to thermal pollution by increasing fertility and metabolism rate of viviparid hosts and by decreasing the prevalence and diversity of digenean trematodes.
  相似文献   

7.
《Biotropica》2017,49(2):229-238
Estimates of biodiversity and its global patterns are affected by parasite richness and specificity. Despite this, parasite communities are largely neglected in biodiversity estimates, especially in the tropics. We studied the parasites of annual killifish of the genus Nothobranchius that inhabit annually desiccating pools across the African savannah and survive the dry period as developmentally arrested embryos. Their discontinuous, non‐overlapping generations make them a unique organism in which to study natural parasite fauna. We investigated the relationship between global (climate and altitude) and local (pool size, vegetation, host density and diversity, and diversity of potential intermediate hosts) environmental factors and the community structure of killifish parasites. We examined metazoan parasites from 21 populations of four host species (Nothobranchius orthonotus, N. furzeri, N. kadleci, and N. pienaari) across a gradient of aridity in Mozambique. Seventeen parasite taxa were recorded, with trematode larval stages (metacercariae) being the most abundant taxa. The parasites recorded were both allogenic (life cycle includes non‐aquatic host; predominantly trematodes) and autogenic (cycling only in aquatic hosts; nematodes). The parasite abundance was highest in climatic regions with intermediate aridity, while parasite diversity was associated with local environmental characteristics and positively correlated with fish species diversity and the amount of aquatic vegetation. Our results suggest that parasite communities of sympatric Nothobranchius species are similar and dominated by the larval stages of generalist parasites. Therefore, Nothobranchius serve as important intermediate or paratenic hosts of parasites, with piscivorous birds and predatory fish being their most likely definitive hosts.  相似文献   

8.
Our aim was to show how interindividual interactions, based on specific recognition signals that induce aggregation, can lead to the emergence of a segregation pattern between species. Groups including two cockroach species, Periplaneta americana (L.) (P.a.) and Periplaneta fuliginosa (Serville) (Dictyoptera: Blattidae) (P.f.) were tested. Behavioural choice tests between two resting sites demonstrated aggregation behaviour in the two species. Aggregation in both species is based on chemical cues. Periplaneta fuliginosa has a higher aggregation level than P.a. and responds only to its conspecific odour. Periplaneta americana is attracted by the odour of both species presented alone. In the presence of the odours of both species, P.f. selects its own odour, but P.a. neither selects its own odour, nor aggregates under these conditions. This could mean that the perceived chemical signals impair the aggregation process. In mixed groups including larvae of these two species, segregation between species occurs. We assumed that the first species that happened to form an aggregate on one of the resting sites induced the other species to occupy the remaining site. The emergence of a segregation pattern between the two species could be a consequence of the aggregation processes.  相似文献   

9.
A densovirus, named Periplaneta fuliginosa densovirus (PfDNV), affects smoky-brown cockroach (P. fuliginosa), which is a major peridomestic cockroach in China, southeastern United States, Japan, and Southeast Asia. We reported here that PfDNV could be mass-produced using virus rescue technology. Pathology and ultrastructural studies revealed the presence of enlarged and dense nuclei in hindgut cells of infected smoky-brown cockroach nymphs and adults. Laboratory bioassays of the PfDNV against P. fuliginosa showed that it has the potential to be used as a biocontrol agent. High mortality was recorded in adult smoky-brown cockroaches treated with PfDNV baits at the dosage of 6 × 104 virions per gram against P. fuliginosa in both no-choice tests and two-choice tests (LT50’s were 13.37 and 13.50 days, respectively). PfDNV was also effective in large population chamber tests. LT50 was 17.57 days and mortality achieved was 95.6% in 28 observation days.  相似文献   

10.
Identification of the origin of parasites of nonindigenous species (NIS) can be complex. NIS may introduce parasites from their native range and acquire parasites from within their invaded range. Determination of whether parasites are non‐native or native can be complicated when parasite genera occur within both the NIS’ native range and its introduced range. We explored potential for spillover and spillback of lung parasites infecting Burmese pythons (Python bivittatus) in their invasive range (Florida). We collected 498 indigenous snakes of 26 species and 805 Burmese pythons during 2004–2016 and examined them for lung parasites. We used morphology to identify three genera of pentastome parasites, Raillietiella, a cosmopolitan form, and Porocephalus and Kiricephalus, both New World forms. We sequenced these parasites at one mitochondrial and one nuclear locus and showed that each genus is represented by a single species, R. orientalis, P. crotali, and K. coarctatus. Pythons are host to R. orientalis and P. crotali, but not K. coarctatus; native snakes are host to all three species. Sequence data show that pythons introduced R. orientalis to North America, where this parasite now infects native snakes. Additionally, our data suggest that pythons are competent hosts to P. crotali, a widespread parasite native to North and South America that was previously hypothesized to infect only viperid snakes. Our results indicate invasive Burmese pythons have affected parasite‐host dynamics of native snakes in ways that are consistent with parasite spillover and demonstrate the potential for indirect effects during invasions. Additionally, we show that pythons have acquired a parasite native to their introduced range, which is the initial condition necessary for parasite spillback.  相似文献   

11.
The phylogenetic incongruence between insects and their facultative maternally transmitted endosymbionts indicates that these infections are generally short‐lived evolutionarily. Therefore, long‐term persistence of many endosymbionts must depend on their ability to colonize and spread within new host species. At least 17 species of Drosophila are infected with endosymbiotic Spiroplasma that have various phenotypic effects. We transinfected five strains of Spiroplasma from three divergent clades into Drosophila neotestacea to test their capacity to spread in a novel host. A strain that causes male killing in Drosophila melanogaster (its native host) also does so in D. neotestacea, even though these host species diverged 40–60 mya. A strain native to D. neotestacea (designated sNeo) and the two other strains of the poulsonii clade of Spiroplasma confer resistance to wasp parasitism, suggesting that this trait may be ancestral within this clade of Spiroplasma. Conversely, no strain other than sNeo conferred resistance to the sterilizing effects of nematode parasitism, suggesting that nematode resistance is a recently derived condition. The apparent addition of nematode resistance to a Spiroplasma lineage that already confers resistance to wasp parasitism suggests endosymbionts can increase the repertoire of traits conducive to their spread. The capacity of an endosymbiont to undergo maternal transmission and express adaptive phenotypes in novel hosts, without requiring a period of host–symbiont co‐evolution, enables the spread of such symbionts immediately after the colonization of a new host. This could be critical for the macroevolutionary persistence of facultative endosymbionts whose sojourn times within individual host species are relatively brief.  相似文献   

12.
The study of host–parasite coevolution is one of the cornerstones of evolutionary biology. The majority of fish ectoparasites belonging to the genus Dactylogyrus (Monogenea) exhibit a high degree of host specificity. Therefore, it is expected that their evolutionary history is primarily linked with the evolutionary history of their cyprinoid fish hosts and the historical formation of the landmasses. In the present study, we used a cophylogenetic approach to investigate coevolutionary relationships between endemic Cyprinoidea (Cyprinidae and Leuciscidae) from selected regions in southern Europe and their respective Dactylogyrus species. A total of 49 Dactylogyrus species including endemic and non-endemic species were collected from 62 endemic cyprinoid species in the Balkan and Apennine Peninsulas. However, 21 morphologically identified Dactylogyrus species exhibited different genetic variants (ranging from 2 to 28 variants per species) and some of them were recognized as cryptic species on the basis of phylogenetic reconstruction. Phylogenetic analyses revealed several lineages of endemic and non-endemic Dactylogyrus species reflecting some morphological similarities or host affinities. Using distance-based and event-based cophylogenetic methods, we found a significant coevolutionary signal between the phylogenies of parasites and their hosts. In particular, statistically significant links were revealed between Dactylogyrus species of Barbini (Cyprinidae) and their hosts belonging to the genera Aulopyge, Barbus and Luciobarbus. Additionally, a strong coevolutionary link was found between the generalist parasites D. alatus, D. sphyrna, D. vistulae, and their hosts, and between Dactylogyrus species of Pachychilon (Leuciscidae) and their hosts. Cophylogenetic analyses suggest that host switching played an important role in the evolutionary history of Dactylogyrus parasitizing endemic cyprinoids in southern Europe. We propose that the high diversification of phylogenetically related cyprinoid species in the Mediterranean area is a process facilitating the host switching of specific parasites among highly diverse congeneric cyprinoids.  相似文献   

13.
Natural habitat of Romanomermis iyengari, an entomophilic mermithid nematode, is rice field. Parasitism of this nematode on mosquito larvae breeding in rice fields in Pondicherry, India, has been studied in 1979. The present study was to find out its persistence in the same habitat, after many years of agricultural practices. Evaluation of parasitism on mosquito larvae was carried out during two rice cultivation seasons at a schedule of 1 week prior, and 1 and 2 weeks after transplantation of paddy. Larval stages of mosquito species such as Culex tritaeniorhynchus, Culex vishnui, Anopheles vagus, and Anopheles subpictus showed parasitism of R. iyengari. Parasitism was the highest on C. tritaeniorhynchus with a maximum of 15.38% during season I and 17.85% during season II. Followed by this, it was on A. vagus (10.82% and 9.43%), C. vishnui (7.37% and 8.69%), and A. subpictus (3.70% and 6.36%). The overall density of mosquito larvae and level of parasitism of R. iyengari on them during season II was significantly higher than that of season I. The parasitism was maximum at 1 week before transplantation and showed a decreasing trend towards 2 weeks after transplantation, during both the seasons. The level of natural parasitism of R. iyengari during the present investigation was higher than that observed in the same ecosystem almost 35 years ago. This is clearly an indication towards the capability of the nematode to withstand several years of agricultural practices, including pesticide and agrichemical application. Hence, if applied at sufficient level and frequency, this nematode could act as a successful biocontrol agent against mosquitoes breeding in rice fields.  相似文献   

14.
Consumption was measured of three commercially available cockroach gel baits (0.01 and 0.05% fipronil and 0.6% indoxacarb) by two pest blattellid (German cockroach, Blattella germanica L., and brownbanded cockroach, Supella longipalpa Fabricius) and three pest blattid [oriental cockroach, Blatta orientalis L., American cockroach, Periplaneta americana L., and smokybrown cockroach, Periplaneta fuliginosa (Serville)] species (Dictyoptera), and direct and secondary effects were quantified. All three baits were greatly preferred for consumption over dog food; however, virtually all consumption (ca. 98%) by pest blattids was gel baits containing sugar feeding stimulants and water. Pest blattid greater preference for gel baits was probably due to their greater need for nutrients in baits due to their greater cuticular water permeability and higher metabolism than the pest blattellids. Brownbanded cockroaches had lowest percentage gel bait selection. Pest blattellids consumed greater amounts of bait per g body weight than pest blattids. Cockroaches consumed more active ingredient than needed to cause mortality; however, based on bait consumption, a 30‐g tube of gel bait potentially killed from 394 to 6 966 adult cockroaches, depending on species. Mortality for all cockroach species was faster for adults (≥3 days) than for nymphs (≥7 days); however, most brownbanded cockroaches exposed to indoxacarb survived despite consuming 1.5‐ to >3‐fold more than other baits, suggesting low enzyme production by brownbanded cockroaches and consequently lower conversion of indoxacarb into its toxic form. Besides direct mortality, German cockroaches died from indirect effects: exposure to debris from other cockroaches that had direct access to the gel baits or bait contact without ingestion. Although maximization of bait consumption is important, factors that enhance secondary mortality and contact toxicity should also be considered.  相似文献   

15.
Within the nematode class Chromadorea, the suborder Tylenchina is an ecologically and morphologically diverse assemblage of nematodes that includes free‐living microbivores, fungivores and various types of plant parasites. A recent nematode classification system based largely on SSU rDNA phylogenetic trees classified suborder Tylenchina to include four infraorders: Panagrolaimomorpha, Cephalobomorpha, Tylenchomorpha and Drilonematomorpha, and phylogenetic relationships among species of these infraorders have not always been robustly supported. In this study, we determined the complete mitochondrial genome sequences of three Tylenchina species (Aphelenchus avenae [Aphelenchidae, Tylenchomorpha], Halicephalobus gingivalis, Panagrellus redivivus [Panagrolaimomorpha]) and the partial genome sequence of Acrobeles complexus (Cephalobomorpha) and used these sequences to infer phylogenetic relationships among representatives of the Tylenchina and other nematodes. Phylogenetic analysis of amino acid sequences for 12 protein‐coding genes of 100 nematode species supports monophyly of: Chromadorea, Spiruromorpha, Oxyuridomorpha, Ascarididae + Toxocaridae + Anisakidae, Meloidogynidae + Pratylenchidae + Heteroderidae and Aphelenchoidea. Bayesian and maximum‐likelihood analyses also show the nested position of Diplogasteromorpha within Rhabditomorpha, and Rhigonematomorpha within Ascaridomorpha. These analyses also show non‐monophyly of: clade III, Ancylostomatidae, Panagrolaimomorpha, Tylenchina and Tylenchomorpha. Reconstructed mitochondrial genome phylogeny also revealed that among two main Tylenchomorpha groups, the monophyletic group representing Aphelenchoidea species was sister to the large clade consisting of Ascaridomorpha, Diplogasteromorpha, Rhabditomorpha and Rhigonematomorpha and some Panagrolaimomorpha species, whereas Tylenchoidea species were sister to the most inclusive assemblage containing all infraordinal groups of Chromadorea, except for P. redivivus (Panagrolaimomorpha) and Acrobeles complexus (Cephalobomorpha). The monophyly of Aphelenchoidea (i.e. sister relationship between Aphelenchidae and Aphelenchoididae) recovered in this study indicates that similarity in certain aspects of pharyngeal structure between these two families appears best explained by common ancestry, rather than convergent evolution.  相似文献   

16.
This study provides a comprehensive checklist of parasites reported for native and non-native populations of seven Ponto-Caspian goby species, i.e. Babka gymnotrachelus, Neogobius fluviatilis, N. melanostomus, Ponticola gorlap, P. kessleri, Proterorhinus semilunaris and P. semipellucidus, all of which have recently expanded their natural range, either by transoceanic translocation or along the three main European intracontinental invasion corridors. In some cases, invasion success is facilitated by loss of natural enemies, such as predators and parasites; thus, knowledge of a species natural parasite fauna is essential for assessments of enemy release in the host's non-native range. The study is based on published literature and personal unpublished data related to parasites of Ponto-Caspian gobiids. A total of 249 parasite taxa have been reported during 1931—2019, with higher numbers reported from native (214) than non-native (151) ranges. This checklist indicates apparent reduction in native parasites in non-native ranges in all goby species, although parasite colonisation in non-native ranges differs between fish species and invasion corridors. Interestingly, the cumulative number of species reported is still gradually increasing in both ranges. Acquisition of high number of local parasite species also indicates competence of Ponto-Caspian gobies to a wide range of generalist parasites.  相似文献   

17.
The present study reports the occurrence of Contracaecum multipapillatum (Nematoda: Anisakidae) in an indigenous small killifish, Aphanius hormuzensis Teimori, Esmaeili, Hamidan, Reichenbacher, 2018 from Southern Iran and shows its histopathology. A total of 110 A. hormuzensis specimens were collected from Shur (Naband) River, Hormuzgan basin in Southern Iran and examined for their possible parasitic infections. Third‐stage larva of C. multipapillatum was extracted for the first time from the body cavity of 19 fish specimens (one male and 18 female) and identified by molecular and morphological methods. In comparison with non‐infected fishes, the melanomacrophage centers were detected in the tissue sections from liver, kidney and spleen of all the parasite infected fishes. To date, 16 parasites belong to nine families have been recorded from six Aphanius species (out of 15 known species) in Iran. Among them, eight and four parasites have been identified from A. vladykovi, and A. hormuzensis respectively. Since Aphanius species are living in different environments, therefore, they seem to be good hosts for the different types of parasites, and more new parasites are expected to be found in these fishes.  相似文献   

18.

Background  

Malaria kills more people worldwide than all inherited human genetic disorders combined. To characterize how the parasites causing this disease adapt to different host environments, we compared the evolutionary genomics of two distinct groups of malaria pathogens in order to identify critical properties associated with infection of different hosts: those parasites infecting hominids (Plasmodium falciparum and P. reichenowi) versus parasites infecting rodent hosts (P. yoelii yoelii, P. berghei, and P. chabaudi). Adaptation by the parasite to its host is likely highly critical to the evolution of these species.  相似文献   

19.
The parasite fauna of five goby species (Gobiidae, Teleostei) was investigated in the Baltic Sea during the period 1987 to 1990. 13 parasite species were found in samples from the Lübeck Bight:Bothriocephalus scorpii, Schistocephalus sp. (Cestoda);Cryptocotyle concavum, Cryptocotyle lingua, Podocotyle atomon, Derogenes varicus (Digenea);Hysterothylacium sp. (cf.auctum),Contracaecum sp.,Anisakis simplex (Nematoda);Corynosoma sp.,Echinorhynchus gadi, Neoechinorhynchus rutili, Pomphorhynchus laevis (Acanthocephala). The number of parasite species were: 10 in the sand gobyPomatoschistus minutus, 8 in the black gobyGobius niger, 7 in the two-spotted gobyGobiusculus flavescens, 6 in the common gobyPomatoschistus microps, and 5 in the painted gobyPomatoschistus pictus. Neoechinorhynchus rutili occurred only inP. minutus, andCorynosoma sp. only inG. niger. The extent to which the gobies were parasitized clearly depended on the respective ways of life and, moreover, on the kind of prey ingested by the hosts. Additionally, the age of the hosts might be important. The highest rate of parasitism, more than 60%, was reached byHysterothylacium sp. inG. niger and byCryptocotyle concavum inP. microps. Infestation incidence lay mostly below 40% which means a satellite species status (Holmes, 1991). The number of parasite species was highest in summer; the highest intensities of single parasites occurred in spring (Podocotyle atomon) or autumn (Crytocotyle concavum).Bothriocephalus scorpii, Hysterothylacium sp. andPodocotyle infested their juvenile hosts very early, but onlyHysterothylacium was accumulated byG. niger during its whole life span, whereasBothriocephalus persisted also in older gobies in low intensities. The cercariae ofCryptocotyle spp. penetrate actively into their hosts; all the other parasites named were transmitted in larval form by prey organisms which consisted mainly of planktonic and benthic crustaceans. The gobies were final hosts for only 5 parasites; but two species may be transmitted to larger fish, and 6 species to sea birds or mammals. The parasite community of the five gobies may possibly be taken to characterize the ecological quality of the environment of the Lübeck Bight.  相似文献   

20.
Koinobiont parasitoids develop in hosts that continue feeding and growing during the course of parasitism. Here, we compared development of a solitary koinobiont endoparasitoid, Meteorus pulchricornis Westmael (Hymenoptera: Braconidae), in second (L2) and fourth (L4) instars of three host species that are closely related (Lepidoptera: Noctuidae) but which exhibit large variation in growth potential. Two hosts, Mamestra brassicae L. and Spodoptera littoralis Boisduval, may reach 1 g or more when the caterpillars are fully mature, whereas Spodoptera exigua Hübner is much smaller with mature caterpillars rarely exceeding 200 mg. Parasitoid survival (to pupation) in the two host instars was much higher on the larger hosts than on S. exigua. However, other fitness correlates in M. pulchricornis were very similar in the three host species. Development time was fairly uniform in L2 and L4 hosts of the three host species, whereas wasps were larger in L4 than in L2 hosts. However, M. pulchricornis developmentally arrested each of the hosts differently. The mass of dying L2 and L4 hosts after parasitoid larval egression (i.e., when they emerge from the dying caterpillar) varied significantly, with S. littoralis being by far the largest and S. exigua the smallest. These results reveal that M. pulchricornis is able to adjust its own development in response to species‐specific differences in host resources.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号