共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Kelly F. O. Ribeiro Valria F. Martins Thorsten Wiegand Flavio A. M. Santos 《Ecology and evolution》2021,11(4):1797
The investigation of ecological processes that maintain species coexistence is revealing in naturally disturbed environments such as the white‐sand tropical forest, which is subject to periodic flooding that might pose strong habitat filtering to tree species. Congeneric species are a good model to investigate the relative importance of ecological processes that maintain high species diversity because they tend to exploit the same limiting resources and/or have similar tolerance limits to the same environmental conditions due to their close phylogenetic relationship. We aim to find evidence for the action and relative importance of different processes hypothesized to maintain species coexistence in a white‐sand flooded forest in Brazil, taking advantage of data on the detailed spatial structure of populations of congeneric species. Individuals of three Myrcia species were tagged, mapped, and measured for diameter at soil height in a 1‐ha plot. We also sampled seven environmental variables in the plot. We employed several spatial point process models to investigate the possible action of habitat filtering, interspecific competition, and dispersal limitation. Habitat filtering was the most important process driving the local distribution of the three Myrcia species, as they showed associations, albeit of different strength, to environmental variables related to flooding. We did not detect spatial patterns, such as spatial segregation and smaller size of nearby neighbors, that would be consistent with interspecific competition among the three congeneric species and other co‐occurring species. Even though congeners were spatially independent, they responded to differences in the environment. Last, dispersal limitation only led to spatial associations of different size classes for one of the species. Given that white‐sand flooded forests are highly threatened in Brazil, the preservation of their different habitats is of utmost importance to the maintenance of high species richness, as flooding drives the distribution of species in the community. 相似文献
3.
4.
Marijn Bauters Oscar Vercleyen Bernard Vanlauwe Johan Six Bernard Bonyoma Henri Badjoko Wannes Hubau Alison Hoyt Mathieu Boudin Hans Verbeeck Pascal Boeckx 《Biotropica》2019,51(3):319-329
On the African continent, the population is expected to expand fourfold in the next century, which will increasingly impact the global carbon cycle and biodiversity conservation. Therefore, it is of vital importance to understand how carbon stocks and community assembly recover after slash‐and‐burn events in tropical second growth forests. We inventoried a chronosequence of 15 1‐ha plots in lowland tropical forest of the central Congo Basin and evaluated changes in aboveground and soil organic carbon stocks and in tree species diversity, functional composition, and community‐weighted functional traits with succession. We aimed to track long‐term recovery trajectories of species and carbon stocks in secondary forests, comparing 5 to 200 + year old secondary forest with reference primary forest. Along the successional gradient, the functional composition followed a trajectory from resource acquisition to resource conservation, except for nitrogen‐related leaf traits. Despite a fast, initial recovery of species diversity and functional composition, there were still important structural and carbon stock differences between old growth secondary and pristine forest, which suggests that a full recovery of secondary forests might take much longer than currently shown. As such, the aboveground carbon stocks of 200 + year old forest were only 57% of those in the pristine reference forest, which suggests a slow recovery of aboveground carbon stocks, although more research is needed to confirm this observation. The results of this study highlight the need for more in‐depth studies on forest recovery in Central Africa, to gain insight into the processes that control biodiversity and carbon stock recovery. 相似文献
5.
6.
Open‐cut mining impacts on soil abiotic and bacterial community properties as shown by restoration chronosequence 下载免费PDF全文
Michael R. Ngugi Paul G. Dennis Victor J. Neldner David Doley Nigel Fechner Angus McElnea 《Restoration Ecology》2018,26(5):839-850
Open‐cut mining severely disrupts landforms and soils, preventing or impeding the restoration of preexisting or functional ecosystems because essential properties of the original soils cannot immediately or easily be reinstated. We examined the soil physicochemical and bacterial characteristics of 21 coal‐mined sites in subtropical Queensland, Australia, 3–23 years after establishment of native plant species relative to nonmined analogue sites. Soil disturbance significantly decreased total nitrogen, nitrate nitrogen, and especially total carbon (TC). The TC is projected to take 36 years to recover. Bacterial communities assessed by 16S ribosomal RNA sequencing showed greater species richness and evenness in rehabilitated as compared with nonmined soils, regardless of rehabilitation age. However, bacterial species composition was associated significantly with soil electrical conductivity, the plant density, and total stem cross‐sectional area of woody vegetation. The bacterial communities on rehabilitated sites became progressively more similar to those of nonmined analogue sites over time. This work demonstrates that if topsoils are conserved carefully during mining and supplemented by inorganic fertilizer addition, vigorous plant growth and changes in bacterial community composition can occur soon after plant establishment. This will mitigate the effects of soil disturbance and accelerate the return to the chemical and biological attributes of nonmined analogue soils. 相似文献
7.
8.
Christian Kiffner John Kioko Jack Baylis Camille Beckwith Craig Brunner Christine Burns Vasco Chavez‐Molina Sara Cotton Laura Glazik Ellen Loftis Megan Moran Caitlin O'Neill Ole Theisinger Bernard Kissui 《Ecology and evolution》2020,10(18):10000-10016
Facilitating coexistence between people and wildlife is a major conservation challenge in East Africa. Some conservation models aim to balance the needs of people and wildlife, but the effectiveness of these models is rarely assessed. Using a case‐study approach, we assessed the ecological performance of a pastoral area in northern Tanzania (Manyara Ranch) and established a long‐term wildlife population monitoring program (carried out intermittently from 2003 to 2008 and regularly from 2011 to 2019) embedded in a distance sampling framework. By comparing density estimates of the road transect‐based long‐term monitoring to estimates derived from systematically distributed transects, we found that the bias associated with nonrandom placement of transects was nonsignificant. Overall, cattle and sheep and goat reached the greatest densities and several wildlife species occurred at densities similar (zebra, wildebeest, waterbuck, Kirk's dik‐dik) or possibly even greater (giraffe, eland, lesser kudu, Grant's gazelle, Thomson's gazelle) than in adjacent national parks in the same ecosystem. Generalized linear mixed models suggested that most wildlife species (8 out of 14) reached greatest densities during the dry season, that wildlife population densities either remained constant or increased over the 17‐year period, and that herbivorous livestock species remained constant, while domestic dog population decreased over time. Cross‐species correlations did not provide evidence for interference competition between grazing or mixed livestock species and wildlife species but indicate possible negative relationships between domestic dog and warthog populations. Overall, wildlife and livestock populations in Manyara Ranch appear to coexist over the 17‐year span. Most likely, this is facilitated by existing connectivity to adjacent protected areas, effective anti‐poaching efforts, spatio‐temporal grazing restrictions, favorable environmental conditions of the ranch, and spatial heterogeneity of surface water and habitats. This long‐term case study illustrates the potential of rangelands to simultaneously support wildlife conservation and human livelihood goals if livestock grazing is restricted in space, time, and numbers. 相似文献
9.
Abstract The dry sclerophyll forest community of the Tomago Sandbeds, near Newcastle in New South Wales, has been subject to regular disturbances due to fire, clearing and strip mining for over 18 years. In this study we use chronosequence analysis to examine whether the structure of the ant community varies with the type of disturbance and the time since disturbance. We treat the recovery trajectory after fire as a control trajectory because fire is an endogenous disturbance. The main analyses were based on an ant fauna comprising 72 species sampled from 44 sites surveyed in December 1992. Comparison with samples taken in April and December 1991, and for cumulative records for all sites over this 20 month period, all show quantitatively similar responses. Results suggest that while fire has a minor effect on the composition of the ant community over time, the impact of clearing and mining is much more severe. Ant species richness at cleared and mined sites recovers rapidly, overshoots controls in mid-succession and returns to control levels by 18 years after disturbance. The cumulative number of species recorded over all sites (from the total recorded fauna of 82 species) for each different disturbance type were: burned, 61; cleared, 55; and mined 56. Species composition at cleared or mined sites, after 18 years, approaches but does not match controls. The recovery trend for mined sites lags slightly behind that for cleared sites, which have reached 49% similarity with the oldest burned sites, while mined sites have not exceeded 39% similarity of species composition. The main patterns in the ant community appear to be related to habitat variables. These results provide further evidence that the ant community may be used as a reliable bio-indicator for evaluating the extent of habitat damage and recovery after disturbance in these Australian forests. 相似文献
10.
Johanna Lampainen Timo Kuuluvainen Tuomo H. Wallenius Leena Karjalainen Ilkka Vanha‐Majamaa 《植被学杂志》2004,15(2):245-256
We examined forest structure and regeneration in a 350‐ha forest dominated by Pinus sylvestris 31 yr after a wildfire in the Vienansalo wilderness, Russian Karelia. In most parts of the area, the 1969 fire was not stand replacing but had left larger trees alive so that the area generally remained forest covered. In some localities, however, all trees apparently died and distinct gaps were formed, suggesting that the fire severity varied considerably, contributing to increased variation in stand structure. Living and dead wood volumes were similar, 112 and 96 m3.ha‐1, respectively. The tree species proportions of dead vs living wood indicated that prior to fire disturbance Picea was more common in the area. Regeneration was abundant (saplings, ca. 14 000 ind.ha‐1, height 20 ‐200 cm) and tree seedling recruitment had occurred over a long period of time. Regeneration density was highest on the mesic Vaccinium‐Myrtillus forest site type, decreasing towards nutrient‐poor site types. The most common regeneration microsites were level ground (56% of saplings), immediate surroundings of decayed wood (23%) and depressions (11%). The high proportion of saplings on level ground suggests that after the fire regeneration conditions have been favourable across the whole forest floor. Nevertheless, the areas in the vicinity of decayed wood have been particularly important microsites for seedling establishment. The results provide an example of the effects of wildfire on forest structure in a natural Pinus sylvestris dominated forest, demonstrating the non stand replacing character of fire, high variability in stand structure and the abundance of post‐fire regeneration. 相似文献
11.
12.
Long‐term effects of prairie restoration on plant community structure and native population dynamics 下载免费PDF全文
Charlotte C. Trowbridge Amanda Stanley Thomas N. Kaye Peter W. Dunwiddie Jennifer L. Williams 《Restoration Ecology》2017,25(4):559-568
The key to restoring degraded grassland habitats is identifying feasible and effective techniques to reduce the negative impacts of exotic species and promote self‐sustaining native populations. It is often difficult to extend monitoring of restoration efforts to evaluate long‐term success, but doing so is essential to understanding how initial outcomes change over time. To assess how initial treatment effects persist, we revisited degraded patches of Pacific Northwest prairie habitat 6 years after experimental restoration efforts ceased. We evaluated plant community composition to determine the lasting effects of supplemental native seeding and disturbance treatments (burning, mowing, and herbicide to reduce exotic species). We tracked the persistence of seeded species and measured spread of their populations to evaluate suitability of species for restoration and the ability of the habitat to support native plant populations. We found that plots that received supplemental seeding continued to exhibit higher richness of native species than those left unseeded, and that both seeding and disturbance treatments could positively influence native species abundance over the long term. The initially observed effects of disturbance treatments on reducing exotic grass abundance had diminished, highlighting the importance of long‐term monitoring and ongoing control of exotic species. Nevertheless, these treatments significantly influenced the population trajectories of 4 out of 8 seeded native species. There was evidence of spatial advance of most seeded species. Results from extended monitoring confirm that dispersal limitation of native species and difficulties maintaining the reduction of exotic grasses continue to be major barriers to success in restoration of invaded grasslands. 相似文献
13.
Long‐term population dynamics reveal that survival and recruitment of tropical boobies improve after a hurricane 下载免费PDF全文
Sergio Ancona Hugh Drummond Cristina Rodríguez J. Jaime Zúñiga‐Vega 《Journal of avian biology》2017,48(2):320-332
Variability in population numbers is a central issue in evolutionary ecology and also in biodiversity conservation. However, for most seabirds this information is lacking and tropical populations are virtually unstudied. Long‐term studies are warranted because world's seabird populations exhibit an overall declining trend since 1950. Using data spanning 23 yr, we investigated how adult survival, local recruitment, and their relative contributions to population growth (λ) vary over time in the blue‐footed booby Sula nebouxii, a long‐lived locally foraging seabird that breeds in tropical waters. In addition, we investigated whether booby demographic rates exhibit the same declining trend observed in other seabirds, whether these rates are impacted by hurricanes, and whether these potential impacts differ between sexes. Our analysis of 4608 capture–recapture histories revealed that survival and recruitment were nearly equal between males and females, exhibited a declining trend over the last 23 yr, and in both sexes, these vital rates improved after a hurricane. The declining trend in recruitment was slightly more attenuated in males. These results add to the current evidence for an overall declining trend in world's seabird populations and extend its confirmation to the warm eastern tropical Pacific. Moreover, they provide the first evidence that hurricanes may favor natural populations. As a result of the declining trend and variation in survival and recruitment, λ exhibited a slight decline and substantial variation over the 23 yr. However, most λ values were equal to or higher than 1, and the long‐term average indicates population increase. The ability of blue‐footed boobies to maintain a positive population balance despite of negative trends in their vital rates might result from canalization of adult survival (the vital rate that contributes most to λ and shows lower variation compared to recruitment) against environmental variability. 相似文献
14.
不同更新方式对林地植物群落特种多样性的影响 总被引:1,自引:0,他引:1
本文就人工林经营中的三种更新方式对植物群落中物种多样性的影响进行研究。结果表明,1200m^2样地物种丰富度为:天然更新159种,人促更新130种,人工造林94种;多样性指数(Dsh)分别为4.3004、3.9283、3.5048;多样性均匀度指数(Jsh)分别为0.8484、0.8070、0.7714。人工造林的营林干扰是物种丧失和林分物种多样性下降的主要原因。 相似文献
15.
Long‐term monitoring of an amphibian community after a climate change‐ and infectious disease‐driven species extirpation 下载免费PDF全文
《Global Change Biology》2018,24(6):2622-2632
Infectious disease and climate change are considered major threats to biodiversity and act as drivers behind the global amphibian decline. This is, to a large extent, based on short‐term studies that are designed to detect the immediate and strongest biodiversity responses to a threatening process. What few long‐term studies are available, although typically focused on single species, report outcomes that often diverge significantly from the short‐term species responses. Here, we report the results of an 18‐year survey of an amphibian community exposed to both climate warming and the emergence of lethal chytridiomycosis. Our study shows that the impacts of infectious disease are ongoing but restricted to two out of nine species that form the community, despite the fact all species can become infected with the fungus. Climate warming appears to be affecting four out of the nine species, but the response of three of these is an increase in abundance. Our study supports a decreasing role of infectious disease on the community, and an increasing and currently positive effect of climate warming. We caution that if the warming trends continue, the net positive effect will turn negative as amphibian breeding habitat becomes unavailable as water bodies dry, a pattern that already may be underway. 相似文献
16.
17.
Letícia F. Ramos Ricardo R. C. Solar Henrique T. Santos Marcilio Fagundes 《Ecology and evolution》2019,9(24):13919-13930
Environmental factors act as drivers of species coexistence or competition. Mesic environments favor the action of parasites and predators on gall communities, while the factors that determine the structure of gall communities in xeric environments remain unknown. We evaluated the structure of gall communities along an environmental gradient defined by intrinsic plant characteristics, soil fertility, and aridity, and investigated the role of competition as a structuring force of gall communities in xeric environments. We created null models to compare observed and simulated patterns of co‐occurrence of galls and used the C‐score index to assess community aggregation or segregation. We used the NES C‐score (standardized C‐score) to compare patterns of co‐occurrence with parameters of environmental quality. Xeric environments had poorer and more arid soils and more sclerophyllous plants than mesic environments, which was reflected in the distribution patterns of gall communities. Values of the C‐score index revealed a segregated distribution of gall morphospecies in xeric environments, but a random distribution in mesic environments. The low availability of resources for oviposition and the high density of gallers in xeric environments reinforce interspecific competition as an important structuring force for gall communities in these environments. 相似文献
18.
Jordan Guiz Helmut Hillebrand Elizabeth T. Borer Maike Abbas Anne Ebeling Alexandra Weigelt Yvonne Oelmann Dario Fornara Wolfgang Wilcke Vicky M. Temperton Wolfgang W. Weisser 《Oikos》2016,125(5):613-621
Plant elemental composition can indicate resource limitation, and changes in key elemental ratios (e.g. plant C:N ratios) can influence rates including herbivory, nutrient recycling, and pathogen infection. Although plant stoichiometry can influence ecosystem‐level processes, very few studies have addressed whether and how plant C:N stoichiometry changes with plant diversity and composition. Here, using two long‐term experimental manipulations of plant diversity (Jena and Cedar Creek), we test whether plant richness (species and functional groups) or composition (functional group proportions) affects temporal trends and variability of community‐wide C:N stoichiometry. Site fertility determined the initial community‐scale C:N ratio. Communities growing on N‐poor soil (Cedar Creek) began with higher C:N ratios than communities growing on N‐rich soil (Jena). However, site‐level plant C:N ratios converged through time, most rapidly in high diversity plots. In Jena, plant community C:N ratios increased. This temporal trend was stronger with increasing richness. However, temporal variability of C:N decreased as plant richness increased. In contrast, C:N decreased over time at Cedar Creek, most strongly at high species and functional richness, whereas the temporal variability of C:N increased with both measures of diversity at this site. Thus, temporal trends in the mean and variability of C:N were underlain by concordant changes among sites in functional group proportions. In particular, the convergence of community‐scale C:N over time at these very different sites was mainly due to increasing proportions of forbs at both sites, replacing high mean C:N (C4 grasses, Cedar Creek) or low C:N (legumes, Jena) species. Diversity amplified this convergence; although temporal trends differed in sign between the sites, these trends increased in magnitude with increasing species richness. Our results suggest a predictive mechanistic link between trends in plant diversity and functional group composition and trends in the many ecosystem rates that depend on aboveground community C:N. Synthesis We compared the effect of plant diversity on the temporal dynamics of community stoichiometry in two long‐term grassland diversity experiments: the Cedar Creek and Jena Experiments. Changes in community C:N ratios were accelerated by increasing diversity at both sites, but in opposite directions depending on soil fertility. Stoichiometry changes were driven by shifts of functional group composition differing in their elemental compositions, the identity of the functional groups depending on the site. Thus, we highlighted that community turnover constrained the effect of diversity on plant stoichiometry at both sites 相似文献
19.
NICO SALMASO 《Freshwater Biology》2010,55(4):825-846
1. In natural lakes, modifications in the species composition and abundance of phytoplankton communities may ultimately be responses to changes in nutrient availability and climatic fluctuations. Phytoplankton and associated environmental factors were collected at monthly intervals from the beginning of the 1990s to 2007 in the large subalpine Lake Garda (zmax = 350 m, V = 49 × 109 m3). In this study period, the lake showed a slight and continuous increase of total phosphorus (TP) in the water column, up to concentrations of 18–20 μg P L?1. This increase represented the last stage of a long‐term process of enrichment documented since the 1970s, when concentrations of TP were below or around 10 μg P L?1. 2. At the community level, annual phytoplankton cycles underwent a unidirectional and slow shift mainly due to changes in the species more affected by the nutrient enrichment of the lake. After a first and long period of dominance by conjugatophytes (Mougeotia) and diatoms (Fragilaria), phytoplankton biomass in recent years was sustained by cyanobacteria (Planktothrix). Other important modifications in the development of phytoplankton were superimposed on this pattern due to the effects of annual climate fluctuations principally mediated by the deep mixing events at spring overturn and, secondarily, by temperature and thermal stability of the water column during the growing season. 3. Interannual variations in the stability and temperature of the water column appeared to influence the development of a few subdominant flagellates (dinophytes and cryptophytes). Nevertheless, the major impact of climate on phytoplankton was indirect, and mediated through the effects of winter climatic conditions on deep mixing dynamics. Winter climatic fluctuations proved to be a key element in a linked chain of causal factors including cooling of hypolimnetic waters, deep vertical mixing and epilimnetic nutrient replenishment. The process of fertilisation was measurable both for TP and dissolved inorganic nitrogen, although only the first had a large effect, reinforcing the seasonal growth of a few dominant groups. The degree of nutrient replenishment further increased the spring development of large diatoms and the increase of Planktothrix in summer and autumn. 4. Currently, changes in nutrient concentrations have the greatest effect on the phytoplankton community, while direct effects due to the interannual variations in the thermal regime are of secondary importance compared with the indirect effects mediated through deep water mixing and spring fertilisation. Overall, the results demonstrate that the consequences of climatic fluctuations and climate warming on phytoplankton communities need to be studied at different levels of complexity and integration, from the direct effects of temperature and thermal regime, to the indirect effects mediated by the physiographic characteristics of water bodies. 相似文献