首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
郑昊哲  张岩  张涛  樊庆山  侯扶江 《生态学报》2022,42(22):8994-9004
为探究草原植物物种多样性对家畜放牧行为的影响及其机制,在青藏高原高寒草甸开展藏系牧羊轮牧试验,调查植被物种多样性,观察藏系牧羊采食速率、觅食速率和采食时间,并计算藏系牧羊日采食量。结果表明:两年间,植物物种丰富度与藏系牧羊采食速率呈显著正相关关系(P<0.05);觅食速率、采食时间和日采食量对放牧率响应敏感(P<0.05),呈夏秋增冬春减的趋势。植物Shannon-Wiener指数与藏系牧羊的采食时间显著负相关(P<0.05);在暖季或8羊/hm2放牧率下植物Shannon-Wiener指数与藏系牧羊日采食量呈显著正相关(P<0.05)。Pilelou均匀度指数与藏系牧羊采食速率和采食时间显著负相关(P<0.05);在暖季或8羊/hm2放牧率下Pilelou均匀度指数与藏系牧羊日采食量呈显著负相关(P<0.05)。植物物种丰富度对藏系牧羊放牧行为贡献较大,且放牧藏系牧羊的采食速率和采食时间比觅食速率和日采食量对植物物种丰富度响应更敏感,以用植物物种丰富度为自变量可以更好预测藏系牧羊放牧行为。放牧管理通过影响植被物种多样性从而进一步影响了藏系牧羊放牧行为。放牧行为不仅是评价草地营养价值和家畜生产力的关键指标,也是草地健康管理的基础。因此,明确草原植物物种多样性-藏系牧羊放牧行为的互作机制有助于更好的提高藏系牧羊地生产力,维护草原生态健康。  相似文献   

2.
Plant performance is determined by the balance of intra‐ and interspecific neighbors within an individual's zone of influence. If individuals interact over smaller scales than the scales at which communities are measured, then altering neighborhood interactions may fundamentally affect community responses. These interactions can be altered by changing the number (species richness), abundances (species evenness), and positions (species pattern) of the resident plant species, and we aimed to test whether aggregating species at planting would alter effects of species richness and evenness on biomass production at a common scale of observation in grasslands. We varied plant species richness (2, 4, or 8 species and monocultures), evenness (0.64, 0.8, or 1.0), and pattern (planted randomly or aggregated in groups of four individuals) within 1 × 1 m plots established with transplants from a pool of 16 tallgrass prairie species and assessed plot‐scale biomass production and diversity over the first three growing seasons. As expected, more species‐rich plots produced more biomass by the end of the third growing season, an effect associated with a shift from selection to complementarity effects over time. Aggregating conspecifics at a 0.25‐m scale marginally reduced biomass production across all treatments and increased diversity in the most even plots, but did not alter biodiversity effects or richness–productivity relationships. Results support the hypothesis that fine‐scale species aggregation affects diversity by promoting species coexistence in this system. However, results indicate that inherent changes in species neighborhood relationships along grassland diversity gradients may only minimally affect community (meter) – scale responses among similarly designed biodiversity–ecosystem function studies. Given that species varied in their responses to local aggregation, it may be possible to use such species‐specific results to spatially design larger‐scale grassland communities to achieve desired diversity and productivity responses.  相似文献   

3.
Relationships between avian diversity and habitat area are assumed to be positive; however, often little attention has given to how these relationships can be influenced by the habitat structure or quality. In addition, other components of biodiversity, such as functional diversity, are often overlooked in assessing habitat patch value. In the Sandhills Ecoregion of Georgia, USA, we investigated the relationship between avian species richness and functional diversity, forest basal area, and patch size in pine forests using basal area as a surrogate for overstory structure which in turn impacts vegetation structure and determines habitat quality within a patch. We conducted bird surveys in planted mature pine stands, during breeding season of 2011. We used three classes of stand basal area (BA): OS, overstocked (BA ≥ 23 m2/ha); FS, fully/densely stocked (13.8 m2/ha ≤ BA < 23 m2/ha); and MS, moderately stocked (2.3 m2/ha ≤ BA < 13.8 m2/ha). MS patches showed more structural diversity due to higher herbaceous vegetation cover than other two pine stocking classes of patches. Total species richness and functional richness increased with the size of MS patches, whereas functional divergence decreased with the size of OS patches (< 0.05). Functional richness tended to be lower than expected as the size of OS patches increased. Greater richness of pine–grassland species was also found at MS patches. Percent cover of MS patches within a landscape influenced positively the richness of pine–grassland species (< 0.05). Our results suggest that (a) avian species–habitat area relationship can be affected by habitat quality (structural diversity) and varies depending on diversity indices considered, and (b) it is important to maintain moderate or low levels of pine basal area and to preserve large‐sized patches of the level of basal area to enhance both taxonomic and functional diversity in managed pine forests.  相似文献   

4.
Grasslands being used in sheep farming systems are managed under a variety of agricultural production, recreational and conservational objectives. Although sheep grazing is rarely considered the best method for delivering conservation objectives in seminatural temperate grasslands, the literature does not provide unequivocal evidence on the impact of sheep grazing on pasture biodiversity. Our aim was therefore to review evidence of the impacts of stocking rate, grazing period and soil fertility on plant communities and arthropod populations in both mesotrophic grasslands typical of agriculturally improved areas and in native plant communities. We therefore conducted a literature search of articles published up to the end of the year 2010 using ‘sheep’ and ‘grazing’ as keywords, together with variables describing grassland management, plant community structure or arthropod taxa. The filtering process led to the selection of 48 articles, with 42 included in the stocking rate dataset, 9 in the grazing period dataset and 10 in the soil fertility dataset. The meta-analysis did not reveal any significant trends for plant species richness or plant community evenness along a wide stocking rate gradient. However, we found frequent shifts in functional groups or plant species abundance that could be explained by the functional properties of the plants in the community. The meta-analysis confirmed that increasing soil fertility decreased plant species richness. Despite the very limited dataset, plant species richness was significantly greater in autumn-grazed pastures than in ungrazed areas, which suggests that choosing an appropriate grazing period would be a promising option for preserving biodiversity in sheep farming systems. Qualitative review indicated that low grazing intensity had positive effects on Orthoptera, Hemiptera (especially phytophagous Auchenorrhyncha) and, despite a diverse range of feeding strategies, for the species richness of Coleoptera. Lepidoptera, which were favoured by more abundant flowering plants, also benefited from low grazing intensities. Spider abundance and species richness were higher in ungrazed than in grazed pastures. In contrast, there are insufficient published studies to draw any firm conclusions on the benefits of late grazing or stopping fertilization on insect diversity, and no grounds for including any of this information in decision support tools at this stage.  相似文献   

5.
To evaluate the suitability of wood pastures as a managing tool in subalpine regions it is essential to know more about the influence of grazing on the ground vegetation. This study assessed native plant species selection by cattle at different stocking rates, feeding habits and site preferences of cattle. Based on the results, conclusions concerning the value of silvopastoral systems in the Alps were drawn. A field study on six different wood pasture areas, grazed by cattle at different stocking rates, was accompanied by an experiment on three adjoining areas of 0.51 ha each, stocked with either three, six, or nine heifers. Plant species were recorded in plots of 20 cm × 20 cm before and after grazing, and the intensity of grazing on each species was assessed. At low stocking rates, grasses and tall species were most intensely grazed, while at higher stocking rates the intake of forbs and small species increased. Since no relationship was found between nutritional value and species preference, other factors such as accessibility of a plant seem to be important for the feeding preferences of cattle. The preference for grasses at low and medium stocking rates suggests that an increased growth of forbs might lead to an increase in plant species diversity.  相似文献   

6.
The experiment was conducted in Inner Mongolia steppe located in 43°26′-44° 08′N, 116°04′-117°05′ E in 1989-1997. The grazing experiment design was 5 stocking rates (0.00, 1.33, 2.67, 4.00, 5.33 and 6.67 sheep·hm-2, but 0.00, 1.33, 2.00, 2.67, 3.33 and 4.00 sheep·hm-2 in 1990) with three 1 hm2 rotational paddocks per treatment. The sheep were Inner Mongolia fine sheep and the experiment was performed during warm seasons every year from May 20 to October 5. The objectives were to research the integrated influence of different stocking rates on plant diversity and to provide knowledge of its mechanism by the method of continuous monitoring of 8 years for the same grazing experiment rather than through spatial gradient.The results showed that using the method of 100 m sample line was suitable for estimating the abundance of plant species. Simpson index and evenness were better parameters to measure the influence of different stocking rates on plant diversity for Artemisia frigida community. The plant species abundance almost remained unchanged, but the plant diversity and evenness decreased as the stocking rate increased, and the community dominance increased with stocking rate during the 8 years' grazing under different stocking rates. The interaction of the preferred ingestion of grazing sheep with heavy stocking rate may be one of the key reasons resulting in the decrease of plant diversity and evenness. Grass proportion decreased with the increase of stocking rates and A. frigida community degraded further into Potentilla acaulis community under heavy grazing or over-grazing. The succession and plant diversity of A. frigia community under different stocking rates mainly depend on the dynamics of A. frigida, Cleistogenes squarrosa, Potentilla acaulis, Agropyron cristatum and Carex duriuscula populations; Cleistogenes squarrosa population is one of the 3 populations of maximum abundance under all stocking rates from 1989 to 1997.  相似文献   

7.
In grazing ecosystems, mature seeds fall directly to the soil to form the soil seed bank (SSB), or are ingested by grazing livestock to become part of the dung seed bank (DSB; i.e., seed circulation). Both the SSB and DSB form the basis for the natural regeneration of vegetation. However, little is known about the relationships between the SSB, DSB, and aboveground vegetation (AGV) community under different stocking rates (SRs). This study investigated the relationships between the SSB, seeds in Tan sheep (Ovis aries) dung, and AGV at different SRs (0, 2.7, 5.3, and 8.7 sheep ha–1) in a semiarid region of the Loess Plateau in China. We found that Tan sheep grazing increased the species richness heterogeneity of grassland vegetation, and negatively influenced the density of AGV. Under natural conditions, 17 species from soil‐borne seeds and 10 species from Tan sheep dung germinated. There was low species similarity between the soil and DSBs and AGV. Sheep SR and the seed banks (soil and dung) were negatively correlated with AGV. Seeds are cycled from herbage to livestock to soil during cold season grazing; the seasonal nature of this seed dispersal is an adaptation to harsh, semiarid environments. Increased seed bank diversity under sheep grazing facilitates grassland regeneration on the Loess Plateau, similarly to other semiarid regions globally.  相似文献   

8.
Question: How is grazing intensity associated with species and morpho‐functional traits (MFTs) composition, productivity and richness of annual dominated grasslands? Have native and exotic species similar associations to this gradient? Location: Anthropogenic grassland in the Espinal vegetation in the sub‐humid area of the mediterranean type climate region of Chile (35°58’ S, 72°17’ W). Methods: Data were obtained from a long‐term (eight years) experiment with six stocking rates (1 to 3.5 sheep/ha). Detrended Correspondence Analysis (DCA) and regression analysis were used to determinate the relationship between grazing intensity and biomass, richness, abundance and traits of the species. Results: The first DCA axis was related to grazing intensity and explained most of the floristic variation (69.3%); the abundance of some non‐native species, e.g. Vulpia megalura were highly correlated with this axis. In the DCA for MFTs the first axis explained 87% of the variance and was also related to grazing intensity; the abundance of small size plants and shallow roots increased with grazing intensity. The relative abundance of grasses and composites, but not of legumes, changed with stocking rate: as grazing intensity increased composites became the predominant species to the detriment of grasses. The above‐ground biomass measured in exclusion cages declined with increasing grazing pressure. The richness of exotic species was greater compared to native ones at low stocking rates, but they converge to similar values at higher stocking rates. However, the relative abundance of exotic species was greater than 75% in all stocking rates. Conclusions: Grazing intensification has large effects in the structure of grassland in central Chile. With grazing intensities greater than 1 sheep/ha species characteristics change; evolving in a few years (6–8) towards a similar community regardless of the stocking rate. The overgrazed community has more native than exotic species richness, possibly due to greater defence traits against herbivory of this group of species.  相似文献   

9.
United States energy policy mandates increased use of renewable fuels. Restoring grasslands could contribute to a portion of this requirement through biomass harvest for bioenergy use. We investigated which plant community characteristics are associated with differences in biomass yield from a range of realistic native prairie plantings (n = 11; i.e., conservation planting, restoration, and wildlife cover). Our primary goal was to understand whether patterns in plant community composition and the Floristic Quality Index (FQI) were related to productivity as evidenced by dormant season biomass yield. FQI is an objective measure of how closely a plant community represents that of a pre-European settlement community. Our research was conducted in planted fields of native tallgrass prairie species, and provided a gradient in floristic quality index, species richness, species diversity, and species evenness in south-central Wisconsin during 2008 and 2009. We used a network of 15 randomly located 1 m2 plots within each field to characterize the plant community and estimate biomass yield by clipping the plots at the end of each growing season. While plant community composition and diversity varied significantly by planting type, biomass yield did not vary significantly among planting types (ANOVA; P >0.05). Biomass yield was positively correlated with plant community evenness, richness, C4 grass cover, and floristic quality index, but negatively correlated with plant species diversity in our multi-season multiple linear mixed effects models. Concordantly, plots with biomass yield in the lowest quartile (biomass yield < 3500 kh/ha) had 8% lower plant community evenness and 9% lower FQI scores than those in the upper quartile (biomass yield > 5800 kh/ha). Our results suggest that promoting the establishment of fields with high species evenness and floristic quality may increase biomass yield, while simultaneously supporting biodiversity.  相似文献   

10.
Grazing is an important modulator of both plant productivity and biodiversity in grassland community, yet how to determine a suitable grazing intensity in alpine grassland is still controversy. Here, we explore the effects of different grazing intensities on plant biomass and species composition, both at community level and functional group level, and examines the productivity–species richness relationship under four grazing patterns: no grazing (CK), light grazing (LG), moderate grazing, (MG) and heavy grazing (HG), attempt to determine a suitable grazing intensity in alpine grassland. The results were as follows. The total aboveground biomass (AGB) reduced with increasing grazing intensity, and the response of plant functional groups was different. AGB of both sedges and legumes increased from MG to HG, while the AGB of forbs reduced sharply and the grass AGB remained steady. There was a significant positive relationship between productivity and species richness both at community level and functional group level. In contrast, the belowground biomass (BGB) showed a unimodal relationship from CK to HG, peaking in MG (8,297.72 ± 621.29 g/m2). Interestingly, the grassland community tends to allocate more root biomass to the upper soil layer under increasing grazing intensities. Our results suggesting that moderate levels of disturbance may be the optimal grassland management strategy for alpine meadow in terms of root production.  相似文献   

11.
青藏高原高寒灌丛植被对长期放牧强度试验的响应特征   总被引:1,自引:1,他引:0  
在青藏高原中国科学院海北高寒草甸生态系统定位研究站对金露梅高寒灌丛草场植被开展了长期不同放牧强度试验,分别在短期(4年)、中期(11年)和长期(18年)放牧阶段研究不同放牧干扰强度对草地植物物种多样性、群落结构、地上生物量和草场质量的影响.研究表明,在不同放牧阶段,随着放牧强度增加植物群落的高度和盖度都降低.在中期放牧干扰阶段,物种多样性数和均匀度指数随着放牧强度增加呈现典型的单峰曲线模式;在长期放牧干扰阶段,随着放牧强度增加,占优势地位的灌木和禾草被典型杂类草替代,其中的重度放牧干扰简化了高寒灌丛植被群落结构,减少了地上现存生物量,特别是可食优良牧草生物量.植被对放牧的响应除了与放牧强度和放牧时间阶段密切相关外,还与该地区水热条件的变化有一定的相关性.针对长期放牧干扰的反应特性可将金露梅灌丛草场中植物划分为增加型、敏感型、忍耐型和无反应型4种类型.除了丰富度指数、多样性指数和均匀度指数外,其它一些特征参数并不支持著名的中度干扰假说.本研究发现,长期重度放牧促进了青藏高原高寒草地退化,适度放牧有利于高寒灌丛草场的生物多样性保护和牧草利用;"取半留半"的放牧原则在青藏高原草场放牧管理实践中值得推荐,它将有利于防止草场退化,提高牧草利用率和维持较高的生物多样性.  相似文献   

12.
Abstract We estimated the below‐ground net plant productivity (BNPP) of different biomass components in an intensively and continuously 45‐ha grazed site and in a neighbouring exclosure ungrazed for 16 years for a natural mountain grassland in central Argentina. We measured approximately twice as much dead below‐ground biomass in the grazed site as in the ungrazed site, with a strong concentration of total below‐ground biomass towards the upper 10 cm of the soil layer in both sites. The main contribution to total live biomass was accounted for by very fine (<0.5 mm) and fine roots (0.5–1.0 mm) both at the grazed (79%) and at the ungrazed (81%) sites. We measured more dead biomass for almost all root components, more live biomass of rhizomes, tap roots and bulbs, and less live biomass of thicker roots (>1 mm) in the grazed site. The seasonal variation of total live below‐ground biomass mainly reflected climate, with the growing season being limited to the warmer and wetter portion of the year, but such variation was higher in the grazed site. Using different methods of estimation of BNPP, we estimated maximum values of 1241 and 723 g m?2 year?1 for the grazed and ungrazed sites, respectively. We estimated that very fine root productivity was almost twice as high at the grazed site as at the ungrazed one, despite the fact that both sites had similar total live biomass, and root turnover rate was twofold at the grazed site.  相似文献   

13.
We conducted a quantitative assessment of forage biomass in Harshin district to determine its annual productive potential, carrying capacity, and stocking rates. The dominant Land Use and Land Cover include woodland (35.5%), shrubs (28.3%), grassland (10.6%), and bare land (25.5%). The region has browse‐rich shrubland that is edible to dromedary and goats, as well as massive grassland plains for sheep and cattle. The interannual rainfall variation is 16.5% which implies that the rangeland is a subsistence equilibrium system. The range of forage production is between 105 and 2,310 kg/ha, whereas the average productivity of the district is 742.6 kg/ha. The result indicates that the average carrying capacity of the district is 0.3 TLU ha?1 year?1 (4.9 ha TLU?1 year?1) while the existing stocking rate is 5.4 TLU ha?1 year?1 (0.18 ha TLU?1 year?1). This implies that the grazing intensity in the district is much higher than its carrying capacity (recommended rate), which has seen overstocking or grazing pressure excesses of 5.1 TLU/ha (7.2 cattle/ha). Thus, it clearly signals the risk of overgrazing in the district. If this trend continues, the grazing will not be sustainable and there will be shortage of forage as well as expansion of land degradation (due to overgrazing) in the near future.  相似文献   

14.
放牧和异常降水对荒漠草原生态系统产生了显著的影响,群落物种组成及多样性因降水和载畜率的改变而变化。然而不同载畜率下荒漠草原植物群落物种组成及多样性对异常降水的响应尚不明晰。本研究以内蒙古短花针茅(Stipa breviflora)荒漠草原为研究对象,调查并分析不同载畜率(绵羊,CK:不放牧、LG:0.93、MG:1.82和HG:2.71羊单位hm-2半年-1)放牧区植物群落物种组成及其数量特征。结果表明:降水增加对群落数量特征和物种多样性促进作用显著,但对群落物种优势度指数有显著抑制作用;降水增加使得不同功能属性物种数目增多,引起建群种物种综合优势度降低,从而改变群落物种组成及多样性;不同功能属性物种对载畜率的响应存在差异,群落物种组成及多样性在响应异常降水变化时,降水与载畜率之间协同变化和相互制约,但直根系C3植物和群落总密度的变化主要受载畜率影响。异常降水可影响长期过度放牧引起的生态系统过程,对草地生态系统恢复有积极作用。  相似文献   

15.
Most of our knowledge of the effect of grazing on grassland structure is based on grazed–ungrazed contrasts. The effects of grazing in the most common scenario, where grazing intensity varies from low to high grazing intensity, are less known. The objectives of this paper were to 1) quantify the effect of stocking rates on species richness and diversity of grasslands world‐wide, and 2) evaluate the response under different environmental and experimental conditions. We conducted a meta‐analysis of experiments with at least two levels of controlled stocking rates and evaluated their effect on species richness and diversity. The results showed that the response of richness and diversity to either reducing or increasing stocking rate from a moderate level mostly fell within the range  25% or  5 species. Mean response of species richness and diversity to increasing stocking rate from moderate to high levels was negative. Mean response to lowering stocking rate from moderate levels was not different from zero. However, overall, species richness significantly decreased as stocking rate increased. The response of richness and diversity to stocking rate was not related to mean precipitation, productivity or aridity. However, the most negative responses of richness to stocking rate were larger in arid, low productivity systems than in subhumid and humid systems. The effects of grazing on richness and diversity found in this review were smaller than the effects on species composition shown by the literature. Thus, grazing drastically changes species composition, but the net change of species and diversity is much smaller.  相似文献   

16.
相似性似说通过物种构成的相似性来解释物种丧失是如何影响生物量的变异性的,但还没有得到检验。本研究通过设置在青藏高原东部地区的高寒草甸植物群落中的74个永久样方.采集3年(1999~2001)植物生长高峰期的群落数据,试图检验物种构成的相似性是如何解释物种多样性对地上生物量年际变异性的影响。结果表明:随着物种丰富度增加,生物量变异性降低;而随着均匀度的增加,生物量的变异性尽管在均匀度中等程度时似乎保持在同一水平,但总体上呈下降趋势;物种构成上的相似性解释了地上生物量变异性的大部分,而且随着物种构成上的相似性的增加,生物量的变异性降低;物种丰富度和均匀度均与物种构成上的相似性没有显著相关关系。这些结果表明:尽管生物多样性的丧失可能不必导致物种丰富群落中物种构成上的相似性,但相似性与地上生物量的变异性的因果联系可能是稳健的.由于本研究是在自然群落中进行的,对物种构成的相似性没有进行直接控制,因此,要深入理解相似性是如何影响生物多样性对生态系统功能变异性的效应的机制,可能还需要直接对物种构成的相似性进行控制的实验研究。  相似文献   

17.
Question: Does increasing Festuca canopy cover reduce plant species richness and, therefore, alter plant community composition and the relationship of litter to species richness in old‐field grassland? Location: Southeastern Oklahoma, USA. Methods: Canopy cover by species, species richness, and litter mass were collected within an old‐field grassland site on 16, 40 m × 40 m plots. Our study was conducted during the first three years of a long‐term study that investigated the effects of low‐level nitrogen enrichment and small mammal herbivory manipulations. Results: Succession was altered by an increase in abundance of Festuca over the 3‐yr study period. Species richness did not decline with litter accumulation. Instead, Festuca increased most on species‐poor plots, and Festuca abundance remained low on species‐rich plots. Conclusions: Festuca may act as an invasive transformer‐species in warm‐season dominated old‐field grasslands, a phenomenon associated more with invasions of cool‐season grasses at higher latitudes in North America.  相似文献   

18.
Livestock grazing is a common management practise in semi-natural grasslands in Central Europe. Different types of livestock (horses, cattle, sheep) and grazing intensity are known to affect the richness and composition of plant species. However, knowledge of grazing-dependent effects on invertebrates is limited. We examined the influence of horse, cattle and sheep grazing on the richness, abundance and composition of land snail species in 21 calcareous nutrient-poor grassland areas in the northwestern Jura Mountains, Switzerland. Grazing by different livestock species did not affect the species richness, abundance and species composition of land snails. Furthermore, the number of open-land species and the ratio of large- to small-sized snail species or individuals did not differ among the three pasture types. However, independent of livestock species, grazing intensity negatively influenced the snail fauna. Snail species richness, abundance and number of Red list species decreased with increasing grazing intensity. Grazing intensity also affected the occurrence of individual snail species (Truncatellina cylindrica, Cecilioides acicula, Candidula unifasciata and Trichia plebeia). To preserve the snail fauna in nutrient-poor grasslands, pastures can be stocked with horses, cattle or sheep. However, both maximum stocking rate (number of livestock units per hectare) and grazing duration (number of grazing days per year) must be carefully defined for the proper management of the pastures.  相似文献   

19.
杨晨  王炜  汪诗平  梁存柱  王立新 《生态学报》2013,33(10):3092-3102
内蒙古典型草原,由于过度放牧利用,绝大部分草原处于退化状态.为了使退化草原得到较好的恢复,以锡林郭勒盟白音锡勒牧场典型草原为研究对象,比较分析了在不同起始状态下的草原群落,经过6a的自然恢复,其各自的群落组成,地上生物量及共有种的植株高度、节间长、叶长、叶宽,土壤紧实度和容重.结果表明:1)不同放牧率的植物群落,经过6a的禁牧恢复,群落类型发生了变化且群落趋于一致.2)当放牧率SR≤5.33羊/hm2(SR4)时,演替起始状态对草原群落地上生物量的恢复没有影响;当放牧率SR>5.33羊/hm2时,演替起始状态对草原群落地上生物量的恢复产生影响,其结果是导致当前生物量降低,不利于草原的恢复.3)不同放牧率植物群落的植物个体特征趋于一致,“个体小型化”现象消失.同时,也说明群落恢复演替的起点不同,正常化的时间没有太大的变化.4)不同放牧率植物群落的土壤紧实度和容重经过6a的禁牧恢复,没有得到完全恢复,但均达到一致的水平.  相似文献   

20.
1. The Qilian Mountains represent one of the key livestock‐raising grasslands in China. The two main herbivore species raised in this area – yaks and sheep – are of critical economical value. Grasshoppers compete with these animals for available nutrients, creating multifaceted relationships between livestock, grasshoppers and plants. A clear understanding of such relationships is lacking and is urgently needed to guide conservation efforts. 2. This study aims to document the effects of yak and sheep grazing on grasshopper assemblages and to elucidate the underlying mechanisms of such effects. 3. It is shown here that yaks and sheep impact grasshopper assemblages differently. Grasshopper assemblages exhibited lower density, biodiversity, richness, and evenness of distribution in yak‐grazed pastures than in grazing‐free grasslands. Sheep‐grazed pastures exhibited a dramatically divergent picture, with elevated density, biodiversity and richness, and a slightly decreased evenness of distribution. Grasshoppers were generally larger in grazed pastures than in grazing‐free grasslands, especially in yak‐grazed plots. 4. The present study suggests that differences between yak and sheep pastures in plant assemblage structure and plant traits are probably the underlying forces driving the differences in grasshopper assemblage structure and grasshopper traits, respectively. 5. The study shows that the grasshopper habitat indicator species differ between yak and sheep pastures, raising the possibility that such indicators can be used to monitor grassland usage and degradation in the Qilian Mountains. 6. These results provide novel insights into the dynamic interactions of common domesticated herbivore species, grasshoppers and plants in Qilian Mountains, which augment current knowledge and may ultimately lead to better conservation practices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号