首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
    
Kenaf (Hibiscus cannabinus) is an annual fiber crop grown mainly in India and China. This crop is becoming a new bio‐based energy source because of its fast growth rate, excellent CO2 absorption ability, and large productivity per unit area. In this study, we evaluated 10 different cultivars of kenaf for their potential as biomass for cellulosic ethanol production. First, kenaf samples were hydrolyzed using dilute sulfuric acid, which is the most simple and cost‐effective pretreatment method. Next, simultaneous saccharification and fermentation (SSF) of the hydrolysates were performed by wild‐type and engineered xylose‐fermenting yeast strains. The results of compositional analysis of the biomass, the hydrolysates, and the fermented products suggested that ethanol yield and productivity were significantly affected by a type of kenaf cultivars, which was not predictable based on the biomass compositions. Also, the ethanol production was maximized when the xylose fraction was utilized by engineered yeast under the control of pH to avoid acetate inhibition. Considering the sugar compositions and their fermentability, kenaf can be a promising energy‐dedicated crop for cellulosic ethanol production.  相似文献   

2.
3.
4.
    
The performance of hybrids relative to their parents is an important factor in speciation research. We measured the growth of 46 Saccharomyces yeast F1 interspecific and intraspecific hybrids, relative to the growth of each of their parents, in pairwise competition assays. We found that the growth of a hybrid relative to the average of its parents, a measure of mid‐parent heterosis, correlated with the difference in parental growth relative to their hybrid, a measure of phenotypic divergence, which is consistent with simple complementation of low fitness alleles in one parent by high fitness alleles in the other. Interspecific hybrids showed stronger heterosis than intraspecific hybrids. To manipulate parental phenotypic divergence independently of genotype, we also measured the competitive growth of a single interspecific hybrid relative to its parents in 12 different environments. In these assays, we not only identified a strong relationship between parental phenotypic divergence and mid‐parent heterosis as before, but, more tentatively, a weak relationship between phenotypic divergence and best‐parent heterosis, suggesting that complementation of deleterious mutations was not the sole cause of interspecific heterosis. Our results show that mating between different species can be beneficial, and demonstrate that competition assays between parents and offspring are a useful way to study the evolutionary consequences of hybridization.  相似文献   

5.
The highly conserved eukaryotic Elongator complex performs specific chemical modifications on wobble base uridines of tRNAs, which are essential for proteome stability and homeostasis. The complex is formed by six individual subunits (Elp1‐6) that are all equally important for its tRNA modification activity. However, its overall architecture and the detailed reaction mechanism remain elusive. Here, we report the structures of the fully assembled yeast Elongator and the Elp123 sub‐complex solved by an integrative structure determination approach showing that two copies of the Elp1, Elp2, and Elp3 subunits form a two‐lobed scaffold, which binds Elp456 asymmetrically. Our topological models are consistent with previous studies on individual subunits and further validated by complementary biochemical analyses. Our study provides a structural framework on how the tRNA modification activity is carried out by Elongator.  相似文献   

6.
7.
    
Glucose controls the phosphorylation of silent information regulator 2 (Sir2), a NAD+‐dependent protein deacetylase, which regulates the expression of the ATP‐dependent proton pump Pma1 and replicative lifespan (RLS) in yeast. TORC1 signaling, which is a central regulator of cell growth and lifespan, is regulated by glucose as well as nitrogen sources. In this study, we demonstrate that TORC1 signaling controls Sir2 phosphorylation through casein kinase 2 (CK2) to regulate PMA1 expression and cytoplasmic pH (pHc) in yeast. Inhibition of TORC1 signaling by either TOR1 deletion or rapamycin treatment decreased PMA1 expression, pHc, and vacuolar pH, whereas activation of TORC1 signaling by expressing constitutively active GTR1 (GTR1Q65L) resulted in the opposite phenotypes. Deletion of SIR2 or expression of a phospho‐mutant form of SIR2 increased PMA1 expression, pHc, and vacuolar pH in the tor1Δ mutant, suggesting a functional interaction between Sir2 and TORC1 signaling. Furthermore, deletion of TOR1 or KNS1 encoding a LAMMER kinase decreased the phosphorylation level of Sir2, suggesting that TORC1 signaling controls Sir2 phosphorylation. It was also found that Sit4, a protein phosphatase 2A (PP2A)‐like phosphatase, and Kns1 are required for TORC1 signaling to regulate PMA1 expression and that TORC1 signaling and the cyclic AMP (cAMP)/protein kinase A (PKA) pathway converge on CK2 to regulate PMA1 expression through Sir2. Taken together, these findings suggest that TORC1 signaling regulates PMA1 expression and pHc through the CK2–Sir2 axis, which is also controlled by cAMP/PKA signaling in yeast.  相似文献   

8.
9.
10.
    

Aims

This study aims to assess the removal mechanism of patulin using heat‐treated Saccharomyces cerevisiae cells and identify the role of different cell wall components in the binding process.

Methods and Results

In order to understand the binding mechanism, viable cells, heat‐treated cells, cell wall and intracellular extract were performed to assess their ability to remove patulin. Additionally, the effects of chemical and enzymatic treatments of yeast on the binding ability were tested. The results showed that there was no significant difference between viable (53·28%) and heat‐treated yeast cells (51·71%) in patulin binding. In addition, the cell wall fraction decreased patulin by 35·05%, and the cell extract nearly failed to bind patulin. Treatments with protease E, methanol, formaldehyde, periodate or urea significantly decreased (< 0·05) the ability of heat‐treated cells to remove patulin. Fourier transform infrared (FTIR) analysis indicated that more functional groups were involved in the binding process of heat‐treated cells.

Conclusions

Polysaccharides and protein are important components of yeast cell wall involved in patulin removal. In addition, hydrophobic interactions play a major role in binding processes.

Significance and Impact of the Study

Heat‐treated S. cerevisiae cells could be used to control patulin contamination in the apple juice industry. Also, our results proof that the patulin removal process is based mainly on the adsorption not degradation.  相似文献   

11.
    
The capacity of some yeasts to extract energy from single sugars, generating CO2 and ethanol (=fermentation), even in the presence of oxygen, is known as the Crabtree effect. This phenomenon represents an important adaptation as it allowed the utilization of the ecological niche given by modern fruits, an abundant source of food that emerged in the terrestrial environment in the Cretaceous. However, identifying the evolutionary events that triggered fermentative capacity in Crabtree‐positive species is challenging, as microorganisms do not leave fossil evidence. Thus, key innovations should be inferred based only on traits measured under culture conditions. Here, we reanalyzed data from a common garden experiment where several proxies of fermentative capacity were recorded in Crabtree‐positive and Crabtree‐negative species, representing yeast phylogenetic diversity. In particular, we applied the “lasso‐OU” algorithm which detects points of adaptive shifts, using traits that are proxies of fermentative performance. We tested whether multiple events or a single event explains the actual fermentative capacity of yeasts. According to the lasso‐OU procedure, evolutionary changes in the three proxies of fermentative capacity that we considered (i.e., glycerol production, ethanol yield, and respiratory quotient) are consistent with a single evolutionary episode (a whole‐genomic duplication, WGD), instead of a series of small genomic rearrangements. Thus, the WGD appears as the key event behind the diversification of fermentative yeasts, which by increasing gene dosage, and maximized their capacity of energy extraction for exploiting the new ecological niche provided by single sugars.  相似文献   

12.
13.
14.
Aims: Dammarenediol production by an engineered yeast Saccharomyces cerevisiae was investigated. Methods and Results: A dammarenediol‐producing engineered yeast was constructed by heterologous expression of the dammarenediol synthase gene from Panax ginseng hairy roots through RT‐PCR. Fermentation was carried out in a 5‐L GRJY‐bioreactor with an inoculum size of 1% v/v at 30°C. Dammarenediol detection was performed with silica gel chromatography and HPLC. Determination of dammarenediol synthase activity subcellular distribution was carried out by surveying the enzyme activity in microsomes, lipid particles and total yeast homogenate. When cultured under aerobic conditions, the engineered yeast could produce dammarenediol up to 250 μg l?1. However, when an anaerobic shift strategy was employed, dammarenediol accumulated at a level as twice as that under aerobic condition. The dammarenediol synthase and dammarenediol were mainly localized in lipid particles. Conclusions: Dammarenediol could be heterologously produced in engineered yeast. The heterologously expressed dammarenediol synthase is mainly localized in lipid particles. Anaerobic shift strategy could enhance the dammarenediol level in the engineered yeast. Significance and Impact of the Study: This study showed that the high‐value plant product dammarenediol could be produced by heterologous expression of the according gene in yeast. Furthermore, the anaerobic shift strategy could be potentially applied in oxidosqualene‐derived compounds production in yeast. Here, the information about subcellular distribution of heterologously expressed dammarenediol synthase in the engineered yeast was also provided.  相似文献   

15.
16.
17.
18.
    
Lignocellulosic biomass has considerable potential for the production of fuels and chemicals as a promising alternative to conventional fossil fuels. However, the bioconversion of lignocellulosic biomass to desired products must be improved to reach economic viability. One of the main technical hurdles is the presence of inhibitors in biomass hydrolysates, which hampers the bioconversion efficiency by biorefinery microbial platforms such as Saccharomyces cerevisiae in terms of both production yields and rates. In particular, acetic acid, a major inhibitor derived from lignocellulosic biomass, severely restrains the performance of engineered xylose‐utilizing S. cerevisiae strains, resulting in decreased cell growth, xylose utilization rate, and product yield. In this study, the robustness of XUSE, one of the best xylose‐utilizing strains, was improved for the efficient conversion of lignocellulosic biomass into bioethanol under the inhibitory condition of acetic acid stress. Through adaptive laboratory evolution, we successfully developed the evolved strain XUSAE57, which efficiently converted xylose to ethanol with high yields of 0.43–0.50 g ethanol/g xylose even under 2–5 g/L of acetic stress. XUSAE57 not only achieved twofold higher ethanol yields but also improved the xylose utilization rate by more than twofold compared to those of XUSE in the presence of 4 g/L of acetic acid. During fermentation of lignocellulosic hydrolysate, XUSAE57 simultaneously converted glucose and xylose with the highest ethanol yield reported to date (0.49 g ethanol/g sugars). This study demonstrates that the bioconversion of lignocellulosic biomass by an engineered strain could be significantly improved through adaptive laboratory evolution for acetate tolerance, which could help realize the development of an economically feasible lignocellulosic biorefinery to produce fuels and chemicals.  相似文献   

19.
    
l ‐Phenylalanine serves as a building block for the biosynthesis of proteins, but also as a precursor for a wide range of plant‐derived compounds essential for plants and animals. Plants can synthesize Phe within the plastids using arogenate as a precursor; however, an alternative pathway using phenylpyruvate as an intermediate, described for most microorganisms, has recently been proposed. The functionality of this pathway requires the existence of enzymes with prephenate dehydratase (PDT) activity (EC 4.2.1.51) in plants. Using phylogenetic studies, functional complementation assays in yeast and biochemical analysis, we have identified the enzymes displaying PDT activity in Pinus pinaster. Through sequence alignment comparisons and site‐directed mutagenesis we have identified a 22‐amino acid region conferring PDT activity (PAC domain) and a single Ala314 residue critical to trigger this activity. Our results demonstrate that all plant clades include PAC domain‐containing ADTs, suggesting that the PDT activity, and thus the ability to synthesize Phe using phenylpyruvate as an intermediate, has been preserved throughout the evolution of plants. Moreover, this pathway together with the arogenate pathway gives plants a broad and versatile capacity to synthesize Phe and its derived compounds. PAC domain‐containing enzymes are also present in green and red algae, and glaucophytes, the three emerging clades following the primary endosymbiont event resulting in the acquisition of plastids in eukaryotes. The evolutionary prokaryotic origin of this domain is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号