首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Negligible or negative senescence occurs when mortality risk is stable or decreases with age, and has been observed in some wild animals. Age‐independent mortality in animals may lead to an abnormally long maximum individual lifespans and be incompatible with evolutionary theories of senescence. The reason why there is no evidence of senescence in these animals has not been fully understood. Recovery rates are usually very low for wild animals with high dispersal ability and/or small body size (e.g., bats, rodents, and most birds). The only information concerning senescence for most of these species is the reported lifespan when individuals are last seen or caught. We deduced the probability density function of the reported lifespan based on the assumption that the real lifespan corresponding to Weibull or Gompertz distribution. We show that the magnitude of the increase in mortality risk is largely underestimated based on the reported lifespans with low recovery probability. The risk of mortality can aberrantly appear to have a negative correlation with age when it actually increases with increasing lifespan. We demonstrated that the underestimated aging rate for wild animals with low recovery probability can be generalizable to any aging models. Our work provides an explanation for the appearance of negligible senescence in many wild animals. Humans attempt to obtain insights from other creatures to better understand our own biology and its gain insight into how to enhance and extended human health. Our advice is to take a second glance before admiring the negligible senescence in other animals. This ability to escape from senescence is possibly only as beautiful illusion in animals.  相似文献   

2.
Natal dispersal outcomes are an interplay between environmental conditions and individual phenotypes. Peripheral, isolated populations may experience altered environmental conditions and natal dispersal patterns that differ from populations in contiguous landscapes. We document nonphilopatric, sex‐biased natal dispersal in an endangered small mammal, the Mt. Graham red squirrel (Tamiasciurus hudsonicus grahamensis), restricted to a single mountain. Other North American red squirrel populations are shown to have sex‐unbiased, philopatric natal dispersal. We ask what environmental and intrinsic factors may be driving this atypical natal dispersal pattern. We test for the influence of proximate factors and ultimate drivers of natal dispersal: habitat fragmentation, local population density, individual behavior traits, inbreeding avoidance, competition for mates, and competition for resources, allowing us to better understand altered natal dispersal patterns at the periphery of a species’ range. A juvenile squirrel's body condition and its mother's mass in spring (a reflection of her intrinsic quality and territory quality) contribute to individual behavioral tendencies for movement and exploration. Resources, behavior, and body condition have the strongest influence on natal dispersal distance, but affect males and females differently. Male natal dispersal distance is positively influenced by its mother's spring body mass and individual tendency for movement; female natal dispersal distance is negatively influenced by its mother's spring body mass and positively influenced by individual tendency for movement. An apparent feedback between environmental variables and subsequent juvenile behavioral state contributes to an altered natal dispersal pattern in a peripheral population, highlighting the importance of studying ecological processes at the both range center and periphery of species’ distributions.  相似文献   

3.
In bird species that have a high movement capacity, dispersal may connect subpopulations over vast geographical regions, with important consequences for the design of conservation management strategies. Here we used a molecular approach to infer the patterns and rates of dispersal among eight Mediterranean subpopulations of the endangered Bonelli's Eagle, based on 245 individuals screened at 17 microsatellite loci. There was moderate genetic differentiation between subpopulations sampled in the western (Iberia and Morocco) and eastern (Cyprus) Mediterranean, whereas differentiation among subpopulations in the former region was weak to moderate and followed a pattern of isolation by distance. Within the western Mediterranean, the small, peripheral and ecologically unique population of southwest Portugal had the lowest genetic diversity and the highest differentiation. The remaining subpopulations formed two loose clusters, one including Morocco and southwest and eastern Spain, and the other northeast Portugal and western and central Spain. Few recent migrants were detected, and they originated primarily from adjacent subpopulations. Our findings suggest that western Mediterranean Bonelli's Eagles may have a large‐scale metapopulation structure, with subpopulations connected to some extent by distance‐dependent dispersal, probably influenced by natal philopatry and the geographical configuration of subpopulations. The combination of marked ecological and genetic divergence suggests that the peripheral subpopulation of southwest Portugal may be regarded as a distinct management unit.  相似文献   

4.
Individual variability in animal movement behaviour is well documented for many species. However, it remains unclear whether this variability reflects genetic variation, environmental variation or a combination of the two. Here, we conduct a cross‐fostering experiment with the aim of investigating the role of these two components in movement patterns during the post‐fledging dependence period and early natal dispersal of 21 eagle owls Bubo bubo. Our experiment showed that cross‐fostering did not influence any of the movement parameters considered. Movement parameters were, however, affected by the age and sex of the owlets. We therefore suggest that individual variability and family resemblance in movement behaviour during the post‐fledging dependence period and early natal dispersal might not be due to the common genetic origin of siblings, but rather that it originates from factors related to the rearing environment.  相似文献   

5.
We analyzed more than 1,600 dispersal events from two populations of a North American cooperatively breeding woodpecker species to determine what factors influence natal dispersal distance and whether distance traveled affects reproduction later in life. We found significant heritability of natal dispersal distance, in both males and females, indicating substantial additive genetic variance for this behavioral trait. Natal dispersal distance additionally was affected by social and ecological factors: individuals dispersing in their first year of life moved longer distances than those staying on their natal site as helpers for a prolonged time prior to dispersal, and increasing territory isolation led to longer dispersal distances. Successful dispersers incurred fitness costs, with lifetime fledgling production (in both sexes) and lifetime production of recruits to the breeding population (in females only) decreasing with increasing natal dispersal distance. We conclude that natal dispersal distance has a genetic basis but is modulated by environmental and social factors and that natal dispersal distance in this species is (currently) under selection.  相似文献   

6.
African Great Lake cichlid populations are divided into thousands of genetic subpopulations. The low gene flow between these subpopulations is thought to result from high degrees of natal philopatry, heavy predation pressure, and a patchy distribution of preferred habitats. While predation pressure and habitat distribution are fairly straightforward to assess, data on dispersal distances and rates are scarce. In fishes, direct observations of dispersal events are unlikely, but dispersal can be studied using molecular markers. Using seven microsatellite loci, we examined dispersal in the cooperatively breeding cichlid fish, Neolamprologus pulcher. As this species is found in well-defined groups clustered into subpopulations, we could assess dispersal on a narrow (within subpopulation) and broad (between subpopulation) scale. While fish were generally more related to others in their own subpopulation than they were to fish from other subpopulations, large males diverged from this pattern. Large males were more related to other large males from different subpopulations than they were to large males from their own subpopulation, suggesting more frequent dispersal by large males. Across subpopulations, relatedness between large males was higher than the relatedness among large females; this pattern was not detected in small males and small females. Within a subpopulation, individuals appeared to be preferentially moving away from relatives, and movement was unrestricted by the physical distance between groups. Our results highlight the importance of examining multiple spatial scales when studying individual dispersal biases.  相似文献   

7.
The lifetime movements of an individual determine the gene flow and invasion potential of the species. However, sex dependence of dispersal and selective pressures driving dispersal have gained much more attention than dispersal at different life and age stages. Natal dispersal is more common than dispersal between breeding attempts, but breeding dispersal may be promoted by resource availability and competition. Here, we utilize mark–recapture data on the nest‐box population of Siberian flying squirrels to analyze lifetime dispersal patterns. Natal dispersal means the distance between the natal nest and the nest used the following year, whereas breeding movements refer to the nest site changes between breeding attempts. The movement distances observed here were comparable to distances reported earlier from radio‐telemetry studies. Breeding movements did not contribute to lifetime dispersal distance and were not related to variation in food abundance or habitat patch size. Breeding movements of males were negatively, albeit not strongly, related to male population size. In females, breeding movement activity was low and was not related to previous breeding success or to competition between females for territories. Natal philopatry was linked to apparent death of a mother; that is, we did not find evidence for mothers bequeathing territories for offspring, like observed in some other rodent species. Our results give an example of a species in which breeding movements are not driven by environmental variability or nest site quality. Different evolutionary forces often operate in natal and breeding movements, and our study supports the view that juveniles are responsible for redistributing individuals within and between populations. This emphasizes the importance of knowledge on natal dispersal, if we want to understand consequences of movement ecology of the species at the population level.  相似文献   

8.
Dispersal is an ecological phenomenon which is of fundamental importance to population biology. While dispersal behaviour of many orders of winged insects has received a great deal of attention, the dispersal characteristics of odonates have been poorly documented. We used capture-mark-recapture techniques to study dispersal behaviour of seven species of odonates breeding on a network of 11 small ponds in Cheshire, U.K. The ponds ranged in size from 615 to 1300 m2- and varied from 30 to 860 m apart. We found surprisingly high rates of dispersal between ponds, with 10–47% per species of recaptured individuals moving from their natal pond. The mean probability of dispersal differed significantly among species but the relationship between the probability of dispersal and distance moved consistently followed a simple negative exponential curve for all species. Most individuals stayed at their natal pond, but a few moved long distances. Neither the age at which an individual was marked (teneral vs sexually mature) nor its sex significantly affected its tendency to disperse. The negative exponential relationship suggests that dispersal should be relatively easy to incorporate in more complex models of odonate spatio-temporal dynamics. To our knowledge, this is the first large-scale, multi-species study to assess dispersal behaviour of odonates by direct observation.  相似文献   

9.
The genetic consequences of small population size and isolation are of central concern in both population and conservation biology. Organisms with a metapopulation structure generally show effective population sizes that are much smaller than the number of mature individuals and this can reduce genetic diversity especially in small sized and isolated subpopulations. Here, we examine the association between heterozygosity and the size and spatial isolation of natal colonies in a metapopulation of lesser kestrels (Falco naumanni). For this purpose, we used capture-mark-recapture data to determine the patterns of immigration into the studied colonies, and 11 highly polymorphic microsatellite markers that allowed us to estimate genetic diversity of locally born individuals. We found that individuals born in smaller and more isolated colonies were genetically less diverse. These colonies received a lower number of immigrants, supporting the idea that both reduced gene flow and small population size are responsible for the genetic pattern observed. Our results are particularly intriguing because the lesser kestrel is a vagile and migratory species with great movement capacity and dispersal potential. Overall, this study provides evidence of the association between individual heterozygosity and the size and spatial isolation of natal colonies in a highly mobile vertebrate showing relatively frequent dispersal and low genetic differentiation among local subpopulations.  相似文献   

10.
Connectivity, the demographic linking of local populations through the dispersal of individuals, is one of the most poorly understood processes in population dynamics, yet has profound implications for conservation and harvest strategies. For marine species with pelagic larvae, direct estimation of connectivity remains logistically challenging and has mostly been limited to single snapshots in time. Here, we document seasonal and interannual patterns of larval dispersal in a metapopulation of the coral reef fish Amphiprion polymnus. A 3‐year record of larval trajectories within and among nine discrete local populations from an area of approximately 35 km was established by determining the natal origin of settled juveniles through DNA parentage analysis. We found that spatial patterns of both self‐recruitment and connectivity were remarkably consistent over time, with a low level of self‐recruitment at the scale of individual sites. Connectivity among sites was common and multidirectional in all years and was not significantly influenced by seasonal variability of predominant surface current directions. However, approximately 75% of the sampled juveniles could not be assigned to parents within the study area, indicating high levels of immigrations from sources outside the study area. The data support predictions that the magnitude and temporal stability of larval connectivity decreases significantly with increasing distance between subpopulations, but increases with the size of subpopulations. Given the considerable effort needed to directly measure larval exchange, the consistent patterns suggest snapshot parentage analyses can provide useful dispersal estimates to inform spatial management decisions.  相似文献   

11.
Sea urchins exhibit a very different life history from humans and short-lived model animals and therefore provide the opportunity to gain new insight into the complex process of aging. Sea urchins grow indeterminately, regenerate damaged appendages, and reproduce throughout their lifespan. Some species show no increase in mortality rate at advanced ages. Nevertheless, different species of sea urchins have very different reported lifespans ranging from 4 to more than 100?years, thus providing a unique model to investigate the molecular, cellular, and physiological mechanisms underlying both lifespan determination and negligible senescence. Studies to date have demonstrated maintenance of telomeres, maintenance of antioxidant and proteasome enzyme activities, and little accumulation of oxidative cellular damage with age in tissues of sea urchin species with different lifespans. Gene expression studies indicate that key cellular pathways involved in energy metabolism, protein homeostasis, and tissue regeneration are maintained with age. Taken together, these studies suggest that long-term maintenance of mechanisms that sustain tissue homeostasis and regenerative capacity is essential for indeterminate growth and negligible senescence, and a better understanding of these processes may suggest effective strategies to mitigate the degenerative decline in human tissues with age.  相似文献   

12.
Animals exhibit diverse dispersal strategies, including sex‐biased dispersal, a phenomenon common in vertebrates. Dispersal influences the genetic structure of populations as well as geographic variation in phenotypic traits. Patterns of spatial genetic structure and geographic variation may vary between the sexes whenever males and females exhibit different dispersal behaviors. Here, we examine dispersal, spatial genetic structure, and spatial acoustic structure in Rufous‐and‐white Wrens, a year‐round resident tropical bird. Both sexes sing in this species, allowing us to compare acoustic variation between males and females and examine the relationship between dispersal and song sharing for both sexes. Using a long‐term dataset collected over an 11‐year period, we used banding data and molecular genetic analyses to quantify natal and breeding dispersal distance in Rufous‐and‐white Wrens. We quantified song sharing and examined whether sharing varied with dispersal distance, for both males and females. Observational data and molecular genetic analyses indicate that dispersal is female‐biased. Females dispersed farther from natal territories than males, and more often between breeding territories than males. Furthermore, females showed no significant spatial genetic structure, consistent with expectations, whereas males showed significant spatial genetic structure. Overall, natal dispersal appears to have more influence than breeding dispersal on spatial genetic structure and spatial acoustic structure, given that the majority of breeding dispersal events resulted in individuals moving only short distances. Song sharing between pairs of same‐sex animals decreases with the distance between their territories for both males and females, although males exhibited significantly greater song sharing than females. Lastly, we measured the relationship between natal dispersal distance and song sharing. We found that sons shared fewer songs with their fathers the farther they dispersed from their natal territories, but that song sharing between daughters and mothers was not significantly correlated with natal dispersal distance. Our results reveal cultural differences between the sexes, suggesting a relationship between culture and sex‐biased dispersal.  相似文献   

13.
The distances that individuals disperse, from their natal site to the site of first breeding and between breeding sites, have important consequences for the dynamics and genetic structure of a population. Nearly all previous studies on dispersal have the problem that, because the study area encompassed only a part of the population, emigration may have been confounded with mortality. As a result long-distance dispersers may have been overlooked and dispersal data biased towards short distances. By studying a virtually closed population of Seychelles warblers Acrocephalus sechellensis we obtained almost unbiased results on several aspects of dispersal. As in the majority of other avian species, natal dispersal distance was female biased in the Seychelles warbler. Female offspring also forayed further from the natal territory in search of breeding vacancies than male offspring. The sex bias in natal dispersal distance did, however, depend on local breeding density. In males, dispersal distance decreased as the number of territories bordering the natal territory increased, while in females, dispersal distance did not vary with local density. Dispersal by breeders was rare and, unlike in most species, distances did not differ between the sexes. We argue that our results favour the idea that the sex bias in natal dispersal distance in the Seychelles warbler is due to inbreeding avoidance and not resource competition or intrasexual competition for mates.  相似文献   

14.
A better understanding of the factors that govern individual cell lifespan and the replicative capacity of cells (i.e. Hayflick's limit) is important for addressing disease progression and ageing. Estimates of cell lifespan in vivo and the replicative capacity of cell lines in culture vary substantially both within and across species, but the underlying reasons for this variability remain unclear. Here, we address this issue by presenting a quantitative model of cell lifespan and cell replicative capacity. The model is based on the relationship between cell mortality and metabolic rate, which is supported with data for different cell types from ectotherms and endotherms. These data indicate that much of the observed variation in cell lifespan and cell replicative capacity is explained by differences in cellular metabolic rate, and thus by the three primary factors that control metabolic rate: organism size, organism temperature and cell size. Individual cell lifespan increases as a power law with both body mass and cell mass, and decreases exponentially with increasing temperature. The replicative capacity of cells also increases with body mass, but is independent of temperature. These results provide a point of departure for future comparative studies of cell lifespan and replicative capacity in the laboratory and in the field.  相似文献   

15.
The kin structure and dispersal pattern of polar bears ( Ursus maritimus ) of the Barents Sea was investigated during the spring mating season using two complementary approaches. First, individual genotypes based on the analyses of 27 microsatellite loci of 583 polar bears were related to field information gathered from 1146 bears in order to reconstruct the animals' pedigrees and to infer geographical distances between adult bears of different relatedness categories. According to the data, the median natal dispersal distance of the male animals was 52 km while that of the females was 93 km. Second, the relatedness of pairs of adult bears was estimated and correlated to the geographical distance between them. The female dyads had a much stronger kin structure than the male dyads. The 'pedigree approach' revealed a male kin structure which could not be detected using the 'relatedness approach'. This suggests that, on a broader scale, effective dispersal is slightly male biased. Despite fidelity to natal areas, male-mediated gene flow may nevertheless prevent genetic differentiation. Males might occasionally shift their home range which could therefore lead to a male-biased breeding dispersal. Our results showed that a nonterritorial species such as the polar bear that has a high dispersal potential, lives in a highly unstable environment and migrates seasonally is still able to exhibit a distinct kin structure during the mating season.  相似文献   

16.
17.
Genetic consequences of natal dispersal in the colonial lesser kestrel   总被引:1,自引:1,他引:0  
Dispersal is a life-history trait that plays a fundamental role in population dynamics, influencing evolution, species distribution, and the genetics and structure of populations. In spite of the fact that dispersal has been hypothesized to be an efficient behavioural mechanism to avoid inbreeding, the expected relationship between dispersal and mate relatedness still remains controversial. Here, we examine the genetic consequences of natal dispersal, namely the higher chance of obtaining genetically less similar mates as a result of moving from natal to breeding sites, in a lesser kestrel (Falco naumanni) population. Relatedness between individuals tended to decrease with distance between their breeding colonies, indicating that the study population follows an 'isolation-by-distance' pattern of spatial genetic structure. Such a fine-scale genetic structure generates a scenario in which individuals can potentially increase the chance of obtaining genetically less similar mates by dispersing over larger distances from their natal colony. Using dispersal information and genotypic data, we showed that mate relatedness decreased with natal dispersal distance, an effect that remained significant both while including and excluding philopatric individuals from the data set. These results, together with the well known detrimental consequences of reduced genetic diversity in the study population, suggest that dispersal may have evolved, at least in part, to avoid the negative fitness consequences of mating with genetically similar individuals.  相似文献   

18.
1. We investigated the causes of natal dispersal in four Spanish areas where 35 breeding groups of the polygynous great bustard Otis tarda were monitored intensively. A total of 392 juveniles were radio-tracked between 1991 and 2006 by ground and via aeroplane to avoid potential biases derived from the non-detection of long-distance dispersers. 2. We explored 10 explanatory variables that were related to individual phenotypic features, habitat and conspecific traits in terms of group size and breeding performance, and spatial distribution of available breeding groups. Probability of group change and natal dispersal distances were investigated separately through multifactorial analyses. 3. Natal dispersal occurred in 47.8% of the birds and median natal dispersal distance of dispersers was 18.1 km (range 4.97-178.42 km). Sex largely determined the dispersal probability, with 75.6% of males being dispersers and 80.0% of females being philopatric, in contrast to the general pattern of female-biased dispersal found in most avian species. 4. Both the frequency of natal dispersal and dispersal distances were affected by the spatial distribution of breeding groups. More isolated groups showed a higher proportion of philopatric individuals, the effect being more evident in males than in females. This implies a reduction in gene flow in fragmented populations, as most genetic exchange is achieved through male dispersal. Additionally, dispersers hatched in more isolated groups tended to exhibit longer dispersal distances, which increases the associated energetic costs and mortality risks. 5. The dispersal decision was influenced by the number of conspecifics in the natal group. The individual probability of natal dispersal was related inversely to the size of the natal group, which supports the balanced dispersal model and the conspecific attraction hypothesis. 6. Overall, our results provide a good example of phenotypic plasticity and reinforce the current view that dispersal is an evolutionary complex trait conditioned by the interaction of individual, social and environmental causes that vary between individuals and populations.  相似文献   

19.
Natal dispersal is an important component of bird ecology, plays a key role in many ecological and evolutionary processes, and has important conservation implications. Nevertheless, detailed knowledge on natal dispersal is still lacking in many bird species, especially raptors. We review and compile existing information from five tagging programmes of juvenile Montagu's harriers (Circus pygargus) in different Spanish regions, with PVC rings or wing tags, to provide an assessment of philopatry and natal dispersal of the species in Spain. Only 7% of all tagged harriers were observed as breeders in subsequent years. The percentage of philopatric (i.e. breeding within 10?km of the natal site) males and females was lower that 5%. Overall, there were no sexual differences in percentage of philopatric birds or dispersal distances, but we found study area differences. The low philopatry observed suggests a high capacity for natal dispersal in this species, for both sexes, and therefore high genetic mixing between populations. Differences in philopatry between study areas may be influenced by the different observation effort or detectability, or else reflect different philopatric strategies among populations. Finally, we found no significant differences in philopatry rate or dispersal distances related to tagging method, suggesting that tagging technique has a smaller effect than monitoring effort or observation ease on observation probability. Developing tagging programmes at a small scale and without procuring very large-scale and intensive subsequent monitoring is not worthwhile for evaluating philopatry and natal dispersal in this species.  相似文献   

20.
Species that alternate periods of solitary and social living may provide clues to the conditions that favor sociality. Social spiders probably originated from subsocial‐like ancestors, species in which siblings remain together for part of their life cycle but disperse prior to mating. Exploring the factors that lead to dispersal in subsocial species, but allow the development of large multigenerational colonies in social species, may provide insight into this transition. We studied the natal dispersal patterns of a subsocial spider, Anelosimus cf. jucundus, in Southeastern Arizona. In this population, spiders disperse from their natal nests in their penultimate and antepenultimate instars over a 3‐mo period. We tracked the natal dispersal of marked spiders at sites with clustered vs. isolated nests. We found that most spiders initially dispersed less than 5 m from their natal nests. Males and females, and spiders in patches with different densities of nests, dispersed similar distances. The fact that both sexes in a group dispersed, the lack of a sex difference in dispersal distance, and the relatively short distances dispersed are consistent with the hypothesis that natal dispersal results from resource competition within the natal nest, rather than inbreeding avoidance in competition for mates. Additionally, an increase in the average distance dispersed with time and with the number of spiders leaving a nest suggests that competition for nest sites in the vicinity of the natal nest may affect dispersal distances. The similar distances dispersed in patches with isolated vs. clustered nests, in contrast, suggest that competition among dispersers from different nests may not affect dispersal distances.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号