首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Plants in multiple symbioses are exploited by symbionts that consume their resources without providing services. Discriminating hosts are thought to stabilize mutualism by preferentially allocating resources into anatomical structures (modules) where services are generated, with examples of modules including the entire inflorescences of figs and the root nodules of legumes. Modules are often colonized by multiple symbiotic partners, such that exploiters that co-occur with mutualists within mixed modules can share rewards generated by their mutualist competitors. We developed a meta-population model to answer how the population dynamics of mutualists and exploiters change when they interact with hosts with different module occupancies (number of colonists per module) and functionally different patterns of allocation into mixed modules. We find that as module occupancy increases, hosts must increase the magnitude of preferentially allocated resources in order to sustain comparable populations of mutualists. Further, we find that mixed colonization can result in the coexistence of mutualist and exploiter partners, but only when preferential allocation follows a saturating function of the number of mutualists in a module. Finally, using published data from the fig–wasp mutualism as an illustrative example, we derive model predictions that approximate the proportion of exploiter, non-pollinating wasps observed in the field.  相似文献   

2.
Plant species vary greatly in their responsiveness to nutritional soil mutualists, such as mycorrhizal fungi and rhizobia, and this responsiveness is associated with a trade-off in allocation to root structures for resource uptake. As a result, the outcome of plant competition can change with the density of mutualists, with microbe-responsive plant species having high competitive ability when mutualists are abundant and non-responsive plants having high competitive ability with low densities of mutualists. When responsive plant species also allow mutualists to grow to greater densities, changes in mutualist density can generate a positive feedback, reinforcing an initial advantage to either plant type. We study a model of mutualist-mediated competition to understand outcomes of plant-plant interactions within a patchy environment. We find that a microbe-responsive plant can exclude a non-responsive plant from some initial conditions, but it must do so across the landscape including in the microbe-free areas where it is a poorer competitor. Otherwise, the non-responsive plant will persist in both mutualist-free and mutualist-rich regions. We apply our general findings to two different biological scenarios: invasion of a non-responsive plant into an established microbe-responsive native population, and successional replacement of non-responders by microbe-responsive species. We find that resistance to invasion is greatest when seed dispersal by the native plant is modest and dispersal by the invader is greater. Nonetheless, a native plant that relies on microbial mutualists for competitive dominance may be particularly vulnerable to invasion because any disturbance that temporarily reduces its density or that of the mutualist creates a window for a non-responsive invader to establish dominance. We further find that the positive feedbacks from associations with beneficial soil microbes create resistance to successional turnover. Our theoretical results constitute an important first step toward developing a general understanding of the interplay between mutualism and competition in patchy landscapes, and generate qualitative predictions that may be tested in future empirical studies.  相似文献   

3.
In ecological communities, numerous species coexist and affect each others’ population levels via various types of interspecific interactions. Previous ecological theory explaining multispecies coexistence tended to focus on a single interaction type, such as antagonism, competition, or mutualism, and its consequences on population dynamics. Hence, it remains unclear what, if any, contribution multiple coexisting interaction types have on the multispecies coexistence. Here, we show that the coexistence of multiple interaction types can be essential for multispecies coexistence. We present a simple model in which the exploiter and mutualist adaptively switch between two competing resource species. An adaptive mutualist, which favors the more abundant species, provides a mechanism of majority-advantage and, thus, potentially inhibits the coexistence of resource species. In the absence of an exploiter, an adaptive mutualist leads to competitive exclusion at the resource species level. However, the coexistence of an adaptive exploiter and a mutualist allows the coexistence of all species in the community, because the mutualist-mediated “winner” tends to be suppressed by the adaptive exploiter. The mutualist indirectly increases the abundance of the exploiter through mutualistic interactions, thereby indirectly supporting this coexistence mechanism. In fact, coexistence may occur even if the exploiter or mutualist alone cannot mediate the coexistence of two resources. We conclude that the coexistence of mutualism and antagonism may be the key to the persistence of the four-species module in the presence of adaptive switching.  相似文献   

4.
Many mutualisms host "exploiter" species that consume the benefits provided by one or both mutualists without reciprocating. Exploiters have been widely assumed to destabilize mutualisms, yet they are common. We develop models to explore conditions for local coexistence of obligate plant/pollinating seed parasite mutualisms and nonpollinating exploiters. As the larvae of both pollinators and (at a later time) exploiters consume seeds, we examine the importance of intraspecific and (asymmetric) interspecific competition among and between pollinators and exploiters for achieving three-way coexistence. With weak intra- and interspecific competition, exploiters can invade the stable mutualism and coexist with the mutualists (either stably or with oscillations), provided the exploiters' intrinsic birthrate (b(E)) slightly exceeds that of the pollinators. At higher b(E), all three species go locally extinct. When facing strong interspecific competition, exploiters cannot invade and coexist with the mutualists if intraspecific competition in pollinators and exploiters is weak. However, strong intraspecific competition in pollinators and exploiters facilitates exploiter invasion and coexistence and greatly expands the range of b(E) over which stable coexistence occurs. Our results suggest that mutualist/exploiter coexistence may be more easily achieved than previously thought, thus highlighting the need for a better understanding of competition among and between mutualists and exploiters.  相似文献   

5.
Evolution of beneficial plant–microbe symbioses is presented as a result of selective processes induced by hosts in the associated microbial populations. These processes ensure a success of “genuine mutualists” (which benefit the host, often at the expense of their own fitness) in competition with “symbiotic cheaters” (which consume the resources provided by host without expressing the beneficial traits). Using a mathematical model describing the cyclic microevolution of rhizobia–legume symbiosis, we suggest that the selective pressures in favor of N2-fixing (Fix+) strains operate within the in planta bacterial population due to preferential allocation of C resources into Fix+ nodules (positive partners’ feedbacks). Under the clonal infection of nodules, Fix+ strains (“genuine mutualists”) are supported by the group (inter-deme, kin) selection while under the mixed infections, this selection is ineffective since the Fix+ strains are over-competed by Fix ones (“symbiotic cheaters”) in the nodular habitats. Nevertheless, under mixed infections, Fix+ strains may be supported due to the coevolutionary responses form plant population which induce the mutualism-specific types of natural (group, individual) selection including the frequency dependent selection implemented in rhizobia population during the competition for host infection. Using the model of multi-strain bacterial competition for inoculation of symbiotic (rhizospheric, nodular) habitats, we demonstrate that the individual selection in favor of host-specific mutualist genotypes is more intensive than in favor of non-host-specific genotypes correlating the experimental data on the coordinated increases of symbiotic efficiency and specificity in the rhizobia–legume coevolution. However, an overall efficiency of symbiotic system is maximal when the non-host-specific mutualists are present in rhizobia population, and selection in favor of these mutualists operating at the whole population level is of key importance for improving the symbiosis. Construction of the agronomically valuable plant–microbe systems should provide the optimization of host-specific versus non-host-specific mutualists’ composition in legume inoculants combined with the clonal penetration of these mutualists into the nodules.  相似文献   

6.
Interspecific mutualisms have been playing a central role in the functioning of all ecosystems since the early history of life. Yet the theory of coevolution of mutualists is virtually nonexistent, by contrast with well-developed coevolutionary theories of competition, predator-prey and host-parasite interactions. This has prevented resolution of a basic puzzle posed by mutualisms: their persistence in spite of apparent evolutionary instability. The selective advantage of 'cheating', that is, reaping mutualistic benefits while providing fewer commodities to the partner species, is commonly believed to erode a mutualistic interaction, leading to its dissolution or reciprocal extinction. However, recent empirical findings indicate that stable associations of mutualists and cheaters have existed over long evolutionary periods. Here, we show that asymmetrical competition within species for the commodities offered by mutualistic partners provides a simple and testable ecological mechanism that can account for the long-term persistence of mutualisms. Cheating, in effect, establishes a background against which better mutualists can display any competitive superiority. This can lead to the coexistence and divergence of mutualist and cheater phenotypes, as well as to the coexistence of ecologically similar, but unrelated mutualists and cheaters.  相似文献   

7.
Gaku Takimoto  Kenta Suzuki 《Oikos》2016,125(4):535-540
Mutualism is a fundamental building block of ecological communities and an important driver of biotic evolution. Classic theory suggests that a pairwise two‐species obligate mutualism is fragile, with a large perturbation potentially driving both mutualist populations into extinction. In nature, however, there are many cases of pairwise obligate mutualism. Such pairwise obligate mutualisms are occasionally associated with additional interactions with facultative mutualists. Here, we use a mathematical model to show that when a two‐species obligate mutualism has a single additional link to a third facultative mutualist, the obligate mutualism can become permanently persistent. In the model, a facultative mutualist interacts with one of two inter‐dependent obligate mutualists, and the facultative mutualist enhances the persistence not only of its directly interacting obligate mutualist, but also that of the other obligate mutualist indirectly, enabling the permanent coexistence of the three mutualist species. The effect of the facultative mutualist is strong; it can allow a three‐species permanent coexistence even when two obligate mutualists by themselves are not sustainable (i.e. not locally stable). These results suggest that facultative mutualists can play a pivotal role for the persistence of obligate mutualisms, and contribute to a better understanding on the mechanisms maintaining more complex mutualistic networks of multiple species.  相似文献   

8.
Protective mutualisms, where a symbiont reduces the negative effects of another species on a shared host, represent a common type of species interaction in natural communities, yet it is still unclear what ecological conditions might favor their emergence. Studies suggest that the initial evolution of protective mutualists might involve closely related pathogenic variants with similar life histories, but different competitive abilities and impacts on host fitness. We derive a model to evaluate this hypothesis and show that, in general, a protective variant cannot spread from rarity or exclude a more pathogenic strain. While the conditions allowing mutualist invasion are more likely with increased environmental productivity, they still depend on initial densities in the invaded patch exceeding a threshold, highlighting the likely importance of spatial structure and demographic stochasticity. Using a numerical simulation approach, we show that regional coexistence is in fact possible in an explicitly spatial system and that, under some circumstances, the mutualist population can exclude the enemy. More broadly, the establishment of protective mutualists may be favored when there are other life‐history differences from more pathogenic symbionts, such as vertical transmission or additional direct benefits to hosts.  相似文献   

9.
Parasites of mutualisms   总被引:13,自引:0,他引:13  
Cooperation invites cheating, and nowhere is this more apparent than when different species cooperate, known as mutualism. In almost all mutualisms studied, specialist parasites have been identified that purloin the benefits that one mutualist provides another. Explaining how parasites are kept from driving mutualisms extinct remains an unsolved problem because existing theories explaining the maintenance of cooperation do not apply to parasites of mutualisms. Nonetheless, these theories can be summarized in such a way as to suggest how mutualisms can persist in the face of parasites. (1) For cooperation to occur, the recipient of a benefit must reciprocate, and the recriprocated benefit must be captured by the initial giver or its offspring. (2) For cooperation to persist, the mutualism must be re-assembled each generation. Because most mutualisms are of the "by-product' type, broadly defined, the first condition is normally always fulfilled. Thus, the maintenance of mutualism usually requires enforcement of the second condition: reliable re-assembly. Hence, I argue that the persistence of mutualism is best understood by using theories of species coexistence, because each mutualist can be considered a resource for the other, and species coexistence theory explains how multiple taxa (e.g. parasites and mutualists) can stably partition a resource over multiple generations. This approach connects the study of mutualism to theories of population regulation and helps to identify key factors that have promoted the evolution, maintenance and breakdown of mutualism. I discuss how these ideas might apply to and be tested in ant-plant, fig-wasp and yucca-moth mutualisms.  相似文献   

10.
Testes size often predicts the winner during episodes of sperm competition. However, little is known about the source of nutrients allocated to testes development, or testes plasticity under varying nutrient availability. Among many holometabolous insects, metabolic resources can derive from the larval or adult diet. Distinguishing the source of nutrients allocated to testes can shed light on life history factors (such as maternal influences) that shape the evolution of male reproductive strategies. Here we used an experimental approach to assess resource allocation to testes development in walnut flies (Rhagoletis juglandis) from differing nutritional backgrounds. We fed adult male walnut flies on sugar and yeast diets that contrasted with the larval diet in carbon and nitrogen stable isotope ratios. This design allowed us to assess the dietary source of testes carbon and nitrogen and its change over time. We found significant incorporation of adult dietary carbon into testes, implying that walnut flies are income breeders for carbon (relying more on adult resources). In contrast, we found little evidence that walnut flies incorporate adult dietary nitrogen into testes development. We discuss the implications of these allocation decisions for life history evolution in this species.  相似文献   

11.
The symbiosis between plants and root‐colonizing arbuscular mycorrhizal (AM) fungi is one of the most ecologically important examples of interspecific cooperation in the world. AM fungi provide benefits to plants; in return plants allocate carbon resources to fungi, preferentially allocating more resources to higher‐quality fungi. However, preferential allocations from plants to symbionts may vary with environmental context, particularly when resource availability affects the relative value of symbiotic services. We ask how differences in atmospheric CO2‐levels influence root colonization dynamics between AMF species that differ in their quality as symbiotic partners. We find that with increasing CO2‐conditions and over multiple plant generations, the more beneficial fungal species is able to achieve a relatively higher abundance. This suggests that increasing atmospheric carbon supply enables plants to more effectively allocate carbon to higher‐quality mutualists, and over time helps reduce lower‐quality AM abundance. Our results illustrate how environmental context may affect the extent to which organisms structure interactions with their mutualistic partners and have potential implications for mutualism stability and persistence under global change.  相似文献   

12.
Mutualistic bacteria infect most eukaryotic species in nearly every biome. Nonetheless, two dilemmas remain unresolved about bacterial–eukaryote mutualisms: how do mutualist phenotypes originate in bacterial lineages and to what degree do mutualists traits drive or hinder bacterial diversification? Here, we reconstructed the phylogeny of the hyperdiverse phylum Proteobacteria to investigate the origins and evolutionary diversification of mutualistic bacterial phenotypes. Our ancestral state reconstructions (ASRs) inferred a range of 34–39 independent origins of mutualist phenotypes in Proteobacteria, revealing the surprising frequency with which host-beneficial traits have evolved in this phylum. We found proteobacterial mutualists to be more often derived from parasitic than from free-living ancestors, consistent with the untested paradigm that bacterial mutualists most often evolve from pathogens. Strikingly, we inferred that mutualists exhibit a negative net diversification rate (speciation minus extinction), which suggests that mutualism evolves primarily via transitions from other states rather than diversification within mutualist taxa. Moreover, our ASRs infer that proteobacterial mutualist lineages exhibit a paucity of reversals to parasitism or to free-living status. This evolutionary conservatism of mutualism is contrary to long-standing theory, which predicts that selection should often favour mutants in microbial mutualist populations that exploit or abandon more slowly evolving eukaryotic hosts.  相似文献   

13.
Mutualistic symbioses are common, especially in nutrient-poor environments where an association between hosts and symbionts can allow the symbiotic partners to persist and collectively out-compete non-symbiotic species. Usually these mutualisms are built on an intimate transfer of energy and nutrients (e.g. carbon and nitrogen) between host and symbiont. However, resource availability is not consistent, and the benefit of the symbiotic association can depend on the availability of resources to mutualists. We manipulated the diets of two temperate sea anemone species in the genus Anthopleura in the field and recorded the responses of sea anemones and algal symbionts in the family Symbiodiniaceae to our treatments. Algal symbiont density, symbiont volume and photosynthetic efficiency of symbionts responded to changes in sea anemone diet, but the responses depended on the species of sea anemone. We suggest that temperate sea anemones and their symbionts can respond to changes in anemone diet, modifying the balance between heterotrophy and autotrophy in the symbiosis. Our data support the hypothesis that symbionts are upregulated or downregulated based on food availability, allowing for a flexible nutritional strategy based on external resources.  相似文献   

14.
Dynamics of mutualist populations that are demographically open   总被引:1,自引:0,他引:1  
1. Few theoretical studies have examined the impact of immigration and emigration on mutualist population dynamics, but a recent empirical study (A.R. Thompson Oecologia, 143, 61-69) on mutualistic fish and shrimp showed that immigration can prevent population collapse, and that intraspecific competition for a mutualistic partner can curb population expansion. To understand in a theoretical context the implications of these results, and to assess their generality, we present a two-species model that accounts explicitly for immigration and emigration, as well as distinguishing the impacts of mutualism on birth rates, death rates and habitat acquisition. 2. The model confirms that immigration can stabilize mutualistic populations, and predicts that high immigration, along with enhanced reproduction and/or reduced mortality through mutualism, can cause population sizes to increase until habitat availability curbs further expansion. 3. We explore in detail the effects of different forms of habitat limitation on mutualistic populations. Habitat availability commonly limits the density of both populations if mutualists acquire shelter independently. If a mutualist depends on a partner for habitat, densities of that mutualist are capped by the amount of space provided by that partner. The density of the shelter-provider is limited by the environment. 4. If a mutualism solely augments reproduction, and most locally produced individuals leave the focal patch, then the mutualism will have a minimal effect on local dynamics. If the mutualism operates by reducing rates of death or enhancing habitat availability, and there is at least some immigration, then mutualism will affect local dynamics. This finding may be particularly relevant in marine systems, where there is high variability (among species and locations) in the extent to which progeny disperse from natal locations. 5. Overall, our results demonstrate that the consequences of immigration and emigration for the dynamics of mutualists depend strongly on which demographic rate is influenced by mutualism. 6. By relating our model to a variety of terrestrial and aquatic systems, we provide a general framework to guide future empirical studies of the dynamics of mutualistic populations.  相似文献   

15.
Indirect interactions among species emerge from the complexity of ecological networks and can strongly affect the response of communities to disturbances. To determine these indirect interactions and understand better community dynamics, ecologists focused on the interactions within small sets of species or modules. Thanks to their analytical tractability, modules bring insights on the mechanisms occurring in complex interaction networks. So far, most studies have considered modules with a single type of interaction although numerous species are involved in mutualistic and antagonistic interactions simultaneously. In this study, we analyse the dynamics of a diamond-shaped module with multiple interaction types: two resource species sharing a mutualist and a consumer. We describe the different types of indirect interaction occurring between the resource species and the conditions for a stable coexistence of all species. We show that the nature of indirect interactions between resource species (i.e. apparent facilitation, competition or antagonism), as well as stable coexistence, depend on the species generalism and asymmetry of interactions, or in other words, on the distribution of interaction strengths among species. We further unveil that a balance between mutualistic and antagonistic interactions at the level of resource species favours stable coexistence, and that species are more likely to coexist stably if there is apparent facilitation between the two resource species rather than apparent competition. Our results echo existing knowledge on the trophic diamond-shaped module, and confirm that our understanding of communities combining different interaction types can gain from module analyses.  相似文献   

16.
Following defaunation, the loss of interactions with mutualists such as pollinators or seed dispersers may be compensated through increased interactions with remaining mutualists, ameliorating the negative cascading impacts on biodiversity. Alternatively, remaining mutualists may respond to altered competition by reducing the breadth or intensity of their interactions, exacerbating negative impacts on biodiversity. Despite the importance of these responses for our understanding of the dynamics of mutualistic networks and their response to global change, the mechanism and magnitude of interaction compensation within real mutualistic networks remains largely unknown. We examined differences in mutualistic interactions between frugivores and fruiting plants in two island ecosystems possessing an intact or disrupted seed dispersal network. We determined how changes in the abundance and behavior of remaining seed dispersers either increased mutualistic interactions (contributing to “interaction compensation”) or decreased interactions (causing an “interaction deficit”) in the disrupted network. We found a “rich‐get‐richer” response in the disrupted network, where remaining frugivores favored the plant species with highest interaction frequency, a dynamic that worsened the interaction deficit among plant species with low interaction frequency. Only one of five plant species experienced compensation and the other four had significant interaction deficits, with interaction frequencies 56–95% lower in the disrupted network. These results do not provide support for the strong compensating mechanisms assumed in theoretical network models, suggesting that existing network models underestimate the prevalence of cascading mutualism disruption after defaunation. This work supports a mutualist biodiversity‐ecosystem functioning relationship, highlighting the importance of mutualist diversity for sustaining diverse and resilient ecosystems.  相似文献   

17.
We develop an approach for studying population dynamics resulting from mutualism by employing functional responses based on density-dependent benefits and costs. These functional responses express how the population growth rate of a mutualist is modified by the density of its partner. We present several possible dependencies of gross benefits and costs, and hence net effects, to a mutualist as functions of the density of its partner. Net effects to mutualists are likely a monotonically saturating or unimodal function of the density of their partner. We show that fundamental differences in the growth, limitation, and dynamics of a population can occur when net effects to that population change linearly, unimodally, or in a saturating fashion. We use the mutualism between senita cactus and its pollinating seed-eating moth as an example to show the influence of different benefit and cost functional responses on population dynamics and stability of mutualisms. We investigated two mechanisms that may alter this mutualism's functional responses: distribution of eggs among flowers and fruit abortion. Differences in how benefits and costs vary with density can alter the stability of this mutualism. In particular, fruit abortion may allow for a stable equilibrium where none could otherwise exist.  相似文献   

18.
Mutualists have been suggested to play an important role in the assembly of many plant and animal communities, but it is not clear how this depends on environmental factors. Do, for instance, natural disturbances increase or decrease the role of mutualism? We focused on entire guilds of mutualists, studying seed‐dispersing ants and ant‐dispersed plants along gradients of inundation disturbances. We first studied how abundance and richness of the mutualists, relative to non‐mutualists, change along 35 small‐scale gradients of inundation disturbances. We found that at disturbed sites, mutualistic plant species, those that reproduce by seeds dispersed by ants, increased in abundance and in consequences in richness, relative to other herbaceous plants. In contrast, we found that among the epigeic arthropods the abundance of mutualists declined, even more so than other arthropods. Correspondingly, distributions of plant and animal mutualists became increasingly discordant at disturbed sites: most plant mutualists were spatially separated from most animal mutualists. We finally found that high abundances of plant mutualists did not translate into a high nutrition service rendered to ants: at disturbed sites, many of the plants of ant‐dispersed species did not produce seeds, which coincided with a decline in seed dispersal by ants and a changing searching behavior of the ants. Overall, the small‐scale natural disturbances we studied were correlated to a major change in the assembly of mutualist guilds. However, the correlation was often opposite between interacting plant and animal mutualist guilds and may thus reduce the potential interaction between them.  相似文献   

19.
Previous studies have shown that root colonization by arbuscular mycorrhiza (AM) fungi enhances plant resistance to abiotic and biotic stressors and finally plant growth. However, little is known about the effect of AM on isoprenoid foliar and root content. In this study we tested whether the AM symbiosis affects carbon resource allocation to different classes of isoprenoids such as the volatile nonessential isoprenoids (monoterpenes and sesquiterpenes) and the non-volatile essential isoprenoids (abscisic acid, chlorophylls and carotenoids). By subjecting the plants to stressors such as drought and to exogenous application of JA, we wanted to test their interaction with AM symbiosis in conditions where isoprenoids usually play a role in resistance to stress and in plant defence. Root colonization by AM fungi favoured the leaf production of essential isoprenoids rather than nonessential ones, especially under drought stress conditions or after JA application. The increased carbon demand brought on by AM fungi might thus influence not only the amount of carbon allocated to isoprenoids, but also the carbon partitioning between the different classes of isoprenoids, thus explaining the not previously shown decrease of root volatile isoprenoids in AM plants. We propose that since AM fungi are a nutrient source for the plant, other carbon sinks normally necessary to increase nutrient uptake can be avoided and therefore the plant can devote more resources to synthesize essential isoprenoids for plant growth.  相似文献   

20.
Mutualism among species is ubiquitous in natural ecosystems but its evolution is not well understood. We provided a simple lattice model to clarify the importance of spatial structure for the evolution of mutualism. We assumed reproductive rates of two species are modified through interaction between species and examine conditions where mutualists of both species, that give some benefit to the other species with their own cost, invade non-mutualists populations. When dispersal of offspring is unlimited, we verified the evolution of mutualism is impossible under any condition. On the other hand, when the dispersal is limited to neighboring lattice sites, mutualists can invade if the ratio of cost to benefit is low and the intrinsic reproductive rate is low in case where the parameter values are symmetric between species. Under the same conditions, non-mutualists cannot invade mutualist populations, that is, the latter are evolutionarily stable. In case of asymmetric parameters, mutualists tend to invade if the average value of costs to two species is low or that of benefits is high, and if the intrinsic reproductive rate is low for one of the two species. A mechanistic explanation of why mutualists increase when the dispersal is limited is given by showing that mutualist pairs of the two species at the same lattice site rapidly increase at the initial phase of the invasion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号