首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
When previously isolated populations meet and mix, the resulting admixed population can benefit from several genetic advantages, including increased genetic variation, the creation of novel genotypes and the masking of deleterious mutations. These admixture benefits are thought to play an important role in biological invasions. In contrast, populations in their native range often remain differentiated and frequently suffer from inbreeding depression owing to isolation. While the advantages of admixture are evident for introduced populations that experienced recent bottlenecks or that face novel selection pressures, it is less obvious why native range populations do not similarly benefit from admixture. Here we argue that a temporary loss of local adaptation in recent invaders fundamentally alters the fitness consequences of admixture. In native populations, selection against dilution of the locally adapted gene pool inhibits unconstrained admixture and reinforces population isolation, with some level of inbreeding depression as an expected consequence. We show that admixture is selected against despite significant inbreeding depression because the benefits of local adaptation are greater than the cost of inbreeding. In contrast, introduced populations that have not yet established a pattern of local adaptation can freely reap the benefits of admixture. There can be strong selection for admixture because it instantly lifts the inbreeding depression that had built up in isolated parental populations. Recent work in Silene suggests that reduced inbreeding depression associated with post-introduction admixture may contribute to enhanced fitness of invasive populations. We hypothesize that in locally adapted populations, the benefits of local adaptation are balanced against an inbreeding cost that could develop in part owing to the isolating effect of local adaptation itself. The inbreeding cost can be revealed in admixing populations during recent invasions.  相似文献   

2.
Adaptation to the specific conditions at different sites may contribute strongly to the wide distribution of a plant species. However, little is known about the scale at which such adaptation occurs in common species. We studied population differentiation, plasticity and local adaptation of the short‐lived perennial Hypochoeris radicata, a widespread and common plant whose seeds are well‐dispersed. We reciprocally transplanted seedlings among several populations of different size within and among three European regions (in the northwest Czech Republic, central Germany and the central Netherlands) and studied several fitness‐related traits over two growing seasons. The region in which the reciprocal transplant experiment was carried out had no influence on the performance of seedlings, indicating that there were no differences in overall habitat quality. In contrast, the site within region, and the plot within site strongly influenced mean plant performance. Plants from different populations of origin differed in their performance, indicating genetic variation among populations, but performance strongly depended on the specific combination of population of origin and transplant site. Plants that grew at their home site produced on average almost twice the number of seeds per transplant (a multiplicative fitness measure) than foreign plants originating from other sites. Survival, rosette size and multiplicative fitness all decreased with increasing distance from the home site to the transplant site. The size of the population of origin did not influence overall plant performance or the strength of local adaptation. In conclusion, our results indicate that the common and widespread H. radicata consists of locally adapted genotypes within its European range at a relatively small scale. Thus a large potential for gene flow by seeds and a high density of populations do not appear to be sufficient to prevent population differentiation by selection.  相似文献   

3.
Common ragweed (Ambrosia artemisiifolia L.) is an invasive, wind‐pollinated plant nearly ubiquitous in disturbed sites in its eastern North American native range and present across growing portions of Europe, Africa, Asia, and Australia. Phenotypic divergence between European and native‐range populations has been described as rapid evolution. However, a recent study demonstrated major human‐mediated shifts in ragweed genetic structure before introduction to Europe and suggested that native‐range genetic structure and local adaptation might fully explain accelerated growth and other invasive characteristics of introduced populations. Genomic differentiation that potentially influenced this structure has not yet been investigated, and it remains unclear whether substantial admixture during historical disturbance of the native range contributed to the development of invasiveness in introduced European ragweed populations. To investigate fine‐scale population genetic structure across the species' native range, we characterized diallelic SNP loci via a reduced‐representation genotyping‐by‐sequencing (GBS) approach. We corroborate phylogeographic domains previously discovered using traditional sequencing methods, while demonstrating increased power to resolve weak genetic structure in this highly admixed plant species. By identifying exome polymorphisms underlying genetic differentiation, we suggest that geographic differentiation of this important invasive species has occurred more often within pathways that regulate growth and response to defense and stress, which may be associated with survival in North America's diverse climatic regions.  相似文献   

4.
Understanding the evolutionary consequences of human‐mediated introductions of domesticated strains into the wild and their subsequent admixture with natural populations is of major concern in conservation biology. However, the genomic impacts of stocking from distinct sources (locally derived vs. divergent) on the genetic integrity of wild populations remain poorly understood. We designed an approach based on estimating local ancestry along individual chromosomes to provide a detailed picture of genomic admixture in supplemented populations. We used this approach to document admixture consequences in the brown trout Salmo trutta, for which decades of stocking practices have profoundly impacted the genetic make‐up of wild populations. In southern France, small local Mediterranean populations have been subject to successive introductions of domestic strains derived from the Atlantic and Mediterranean lineages. To address the impact of stocking, we evaluate the extent of admixture from both domestic strains within populations, using 75,684 mapped SNPs obtained from double‐digested restriction site‐associated DNA sequencing. Then, the chromosomal ancestry profiles of admixed individuals reveal a wider diversity of hybrid and introgressed genotypes than estimated using classical methods for inferring ancestry and hybrid pedigrees. In addition, the length distribution of introgressed tracts retained different timings of introgression between the two domestic strains. We finally reveal opposite consequences of admixture on the level of polymorphism of the recipient populations between domestic strains. Our study illustrates the potential of using the information contained in the genomic mosaic of ancestry tracts in combination with classical methods based on allele frequencies for analysing multiple‐way admixture with population genomic data.  相似文献   

5.
Local adaptation, defined as higher fitness of local vs. nonlocal genotypes, is commonly identified in reciprocal transplant experiments. Reciprocally adapted populations display fitness trade‐offs across environments, but little is known about the traits and genes underlying fitness trade‐offs in reciprocally adapted populations. We investigated the genetic basis and adaptive significance of freezing tolerance using locally adapted populations of Arabidopsis thaliana from Italy and Sweden. Previous reciprocal transplant studies of these populations indicated that subfreezing temperature is a major selective agent in Sweden. We used quantitative trait locus (QTL) mapping to identify the contribution of freezing tolerance to previously demonstrated local adaptation and genetic trade‐offs. First, we compared the genomic locations of freezing tolerance QTL to those for previously published QTL for survival in Sweden, and overall fitness in the field. Then, we estimated the contributions to survival and fitness across both field sites of genotypes at locally adaptive freezing tolerance QTL. In growth chamber studies, we found seven QTL for freezing tolerance, and the Swedish genotype increased freezing tolerance for five of these QTL. Three of these colocalized with locally adaptive survival QTL in Sweden and with trade‐off QTL for overall fitness. Two freezing tolerance QTL contribute to genetic trade‐offs across environments for both survival and overall fitness. A major regulator of freezing tolerance, CBF2, is implicated as a candidate gene for one of the trade‐off freezing tolerance QTL. Our study provides some of the first evidence of a trait and gene that mediate a fitness trade‐off in nature.  相似文献   

6.
Specialization is fundamentally important in biology because specialized traits allow species to expand into new environments, in turn promoting population differentiation and speciation. Specialization often results in trade‐offs between traits that maximize fitness in one environment but not others. Despite the ubiquity of trade‐offs, we know relatively little about how consistently trade‐offs evolve between populations when multiple sets of populations experience similarly divergent selective regimes. In the present study, we report a case study on Brachyrhaphis fishes from different predation environments. We evaluate apparent within/between population trade‐offs in burst‐speed and endurance at two levels of evolutionary diversification: high‐ and low‐predation populations of Brachyrhaphis rhabdophora, and sister species Brachyrhaphis roseni and Brachyrhaphis terrabensis, which occur in high‐ and low‐predation environments, respectively. Populations of Brachyrhaphis experiencing different predation regimes consistently evolved swimming specializations indicative of a trade‐off between two swimming forms that are likely highly adaptive in the environment in which they occur. We show that populations have become similarly locally adapted at both levels of diversification, suggesting that swimming specialization has evolved rather rapidly and persisted post‐speciation. Our findings provide valuable insight into how local adaptation evolves at different stages of evolutionary divergence.  相似文献   

7.
The evolutionary importance of hybridization as a source of new adaptive genetic variation is rapidly gaining recognition. Hybridization between coyotes and wolves may have introduced adaptive alleles into the coyote gene pool that facilitated an expansion in their geographic range and dietary niche. Furthermore, hybridization between coyotes and domestic dogs may facilitate adaptation to human‐dominated environments. We genotyped 63 ancestry‐informative single‐nucleotide polymorphisms in 427 canids to examine the prevalence, spatial distribution and the ecology of admixture in eastern coyotes. Using multivariate methods and Bayesian clustering analyses, we estimated the relative contributions of western coyotes, western and eastern wolves, and domestic dogs to the admixed ancestry of Ohio and eastern coyotes. We found that eastern coyotes form an extensive hybrid swarm, with all our samples having varying levels of admixture. Ohio coyotes, previously thought to be free of admixture, are also highly admixed with wolves and dogs. Coyotes in areas of high deer density are genetically more wolf‐like, suggesting that natural selection for wolf‐like traits may result in local adaptation at a fine geographic scale. Our results, in light of other previously published studies of admixture in Canis, revealed a pattern of sex‐biased hybridization, presumably generated by male wolves and dogs mating with female coyotes. This study is the most comprehensive genetic survey of admixture in eastern coyotes and demonstrates that the frequency and scope of hybridization can be quantified with relatively few ancestry‐informative markers.  相似文献   

8.
The timing of when to initiate reproduction is an important transition in any organism's life cycle. There is much variation in flowering time among populations, but we do not know to what degree this variation contributes to local adaptation. Here we use a reciprocal transplant experiment to examine the presence of divergent natural selection for flowering time and local adaptation between two distinct populations of Mimulus guttatus. We plant both parents and hybrids (to tease apart differences in suites of associated parental traits) between these two populations into each of the two native environments and measure floral, vegetative, life-history, and fitness characters to assess which traits are under selection at each site. Analysis of fitness components indicates that each of these plant populations is locally adapted. We obtain striking evidence for divergent natural selection on date of first flower production at these two sites. Early flowering is favored at the montane site, which is inhabited by annual plants and characterized by dry soils in midsummer, whereas intermediate (though later) flowering dates are selectively favored at the temperate coastal site, which is inhabited by perennial plants and is almost continually moist. Divergent selection on flowering time contributes to local adaptation between these two populations of M. guttatus, suggesting that genetic differentiation in the timing of reproduction may also serve as a partial reproductive isolating barrier to gene flow among populations.  相似文献   

9.
We used a quantitative trait locus (QTL) approach to study the genetic basis of population differentiation in wild barley, Hordeum spontaneum. Several ecotypes are recognized in this model species, and population genetic studies and reciprocal transplant experiments have indicated the role of local adaptation in shaping population differences. We derived a mapping population from a cross between a coastal Mediterranean population and a steppe inland population from Israel and assessed F3 progeny fitness in the natural growing environments of the two parental populations. Dilution of the local gene pool, estimated as the proportion of native alleles at 96 marker loci in the recombinant lines, negatively affected fitness traits at both sites. QTLs for fitness traits tended to differ in the magnitude but not in the direction of their effects across sites, with beneficial alleles generally conferring a greater fitness advantage at their native site. Several QTLs showed fitness effects at one site only, but no opposite selection on individual QTLs was observed across the sites. In a common-garden experiment, we explored the hypothesis that the two populations have adapted to divergent nutrient availabilities. In the different nutrient environments of this experiment, but not under field conditions, fitness of the F3 progeny lines increased with the number of heterozygous marker loci. Comparison of QTL-effects that underlie genotype x nutrient interaction in the common-garden experiment and genotype x site interaction in the field suggested that population differentiation at the field sites may have been driven by divergent nutrient availabilities to a limited extent. Also in this experiment no QTLs were observed with opposite fitness effects in contrasting environments. Our data are consistent with the view that adaptive differentiation can be based on selection on multiple traits changing gradually along ecological gradients. This can occur without QTLs showing opposite fitness effects in the different environments, that is, in the absence of genetic trade-offs in performance between environments.  相似文献   

10.
Across western North America, Mimulus guttatus exists as many local populations adapted to site‐specific environmental challenges. Gene flow between locally adapted populations will affect genetic diversity both within demes and across the larger metapopulation. Here, we analyse 34 whole‐genome sequences from the intensively studied Iron Mountain population (IM) in conjunction with sequences from 22 Mimulus individuals sampled from across western North America. Three striking features of these data address hypotheses about migration and selection in a locally adapted population. First, we find very high levels of intrapopulation polymorphism (synonymous π = 0.033). Variation outside of genes is likely even higher but difficult to estimate because excessive divergence reduces the efficiency of read mapping. Second, IM exhibits a significantly positive genomewide average for Tajima's D. This indicates allele frequencies are typically more intermediate than expected from neutrality, opposite the pattern observed in many other species. Third, IM exhibits a distinctive haplotype structure with a genomewide excess of positive associations between rarer alleles at linked loci. This suggests an important effect of gene flow from other Mimulus populations, although a residual effect of population founding might also contribute. The combination of multiple analyses, including a novel tree‐based analytic method, illustrates how the balance of local selection, limited dispersal and metapopulation dynamics manifests across the genome. The overall genomic pattern of sequence diversity suggests successful gene flow of divergent immigrant genotypes into IM. However, many loci show patterns indicative of local adaptation, particularly at SNPs associated with chromosomal inversions.  相似文献   

11.
Adaptation of populations to new environments is frequently costly due to trade‐offs between life history traits, and consequently, parasites are expected to be locally adapted to sympatric hosts. Also, during adaptation to the host, an increase in parasite fitness could have direct consequences on its aggressiveness (i.e. the quantity of damages caused to the host by the virus). These two phenomena have been observed in the context of pathogen adaptation to host's qualitative and monogenic resistances. However, the ability of pathogens to adapt to quantitative polygenic plant resistances and the consequences of these potential adaptations on other pathogen life history traits remain to be evaluated. Potato virus Y and two pepper genotypes (one susceptible and one with quantitative resistance) were used, and experimental evolutions showed that adaptation to a quantitative resistance was possible and resulted in resistance breakdown. This adaptation was associated to a fitness cost on the susceptible cultivar, but had no consequence either in terms of aggressiveness, which could be explained by a high tolerance level, or in terms of aphid transmission efficiency. We concluded that quantitative resistances are not necessarily durable but management strategies mixing susceptible and resistant cultivars in space and/or in time should be useful to preserve their efficiency.  相似文献   

12.
Gene flow between phenotypically divergent populations can disrupt local adaptation or, alternatively, may stimulate adaptive evolution by increasing genetic variation. We capitalised on historical Trinidadian guppy transplant experiments to test the phenotypic effects of increased gene flow caused by replicated introductions of adaptively divergent guppies, which were translocated from high‐ to low‐predation environments. We sampled two native populations prior to the onset of gene flow, six historic introduction sites, introduction sources and multiple downstream points in each basin. Extensive gene flow from introductions occurred in all streams, yet adaptive phenotypic divergence across a gradient in predation level was maintained. Descendants of guppies from a high‐predation source site showed high phenotypic similarity with native low‐predation guppies in as few as ~12 generations after gene flow, likely through a combination of adaptive evolution and phenotypic plasticity. Our results demonstrate that locally adapted phenotypes can be maintained despite extensive gene flow from divergent populations.  相似文献   

13.
Disentangling the effects of natural environmental features and anthropogenic factors on the genetic structure of endangered populations is an important challenge for conservation biology. Here, we investigated the combined influences of major environmental features and stocking with non‐native fish on the genetic structure and local adaptation of Atlantic salmon (Salmo salar) populations. We used 17 microsatellite loci to genotype 975 individuals originating from 34 French rivers. Bayesian analyses revealed a hierarchical genetic structure into five geographically distinct clusters. Coastal distance, geological substrate and river length were strong predictors of population structure. Gene flow was higher among rivers with similar geologies, suggesting local adaptation to geological substrate. The effect of river length was mainly owing to one highly differentiated population that has the farthest spawning grounds off the river mouth (up to 900 km) and the largest fish, suggesting local adaptation to river length. We detected high levels of admixture in stocked populations but also in neighbouring ones, implying large‐scale impacts of stocking through dispersal of non‐native individuals. However, we found relatively few admixed individuals suggesting a lower fitness of stocked fish and/or some reproductive isolation between wild and stocked individuals. When excluding stocked populations, genetic structure increased as did its correlation with environmental factors. This study overall indicates that geological substrate and river length are major environmental factors influencing gene flow and potential local adaptation among Atlantic salmon populations but that stocking with non‐native individuals may ultimately disrupt these natural patterns of gene flow among locally adapted populations.  相似文献   

14.
One of the strongest biological impacts of climate change has been the movement of species poleward and upward in elevation. Yet, what is not clear is the extent to which the spatial distribution of locally adapted lineages and ecologically important traits may also shift with continued climate change. Here, we take advantage of a transplant experiment mimicking up‐slope seed dispersal for a suite of ecologically diverse populations of yellow monkeyflower (Mimulus guttatus sensu lato) into a high‐elevation common garden during an extreme drought period in the Sierra Nevada mountains, California, USA. We use a demographic approach to quantify fitness and test for selection on life history traits in local versus lower‐elevation populations and in normal versus drought years to test the potential for up‐slope migration and phenotypic selection to alter the distribution of key life history traits in montane environments. We find that lower‐elevation populations tend to outperform local populations, confirming the potential for up‐slope migration. Although selection generally favored some local montane traits, including larger flowers and larger stem size at flowering, drought conditions tended to select for earlier flowering typical of lower‐elevation genotypes. Taken together, this suggests that monkeyflower lineages moving upward in elevation could experience selection for novel trait combinations, particularly under warmer and drier conditions that are predicted to occur with continued climate change.  相似文献   

15.
Understanding the genetic basis of local adaptation requires insight in the fitness effects of individual loci under natural field conditions. While rapid progress is made in the search for genes that control differences between plant populations, it is typically unknown whether the genes under study are in fact key targets of habitat-specific natural selection. Using a quantitative trait loci (QTL) approach, we show that a QTL associated with flowering-time variation between two locally adapted wild barley populations is an important determinant of fitness in one, but not in the other population's native habitat. The QTL mapped to the same position as a habitat-specific QTL for field fitness that affected plant reproductive output in only one of the parental habitats, indicating that the genomic region is under differential selection between the native habitats. Consistent with the QTL results, phenotypic selection of flowering time differed between the two environments, whereas other traits (growth rate and seed weight) were under selection but experienced no habitat-specific differential selection. This implies the flowering-time QTL as a driver of adaptive population divergence. Our results from phenotypic selection and QTL analysis are consistent with local adaptation without genetic trade-offs in performance across environments, i.e. without alleles or traits having opposing fitness effects in contrasting environments.  相似文献   

16.
To evaluate the effects of intraspecific hybridization of local and nonlocal genotypes on growth traits of progeny in Abies sachalinensis, we performed reciprocal crossing between nonlocal trees in a high‐elevation zone (1,100–1,200 m asl) and local trees in a low‐elevation zone (530 m asl) in Hokkaido, northern Japan, in 1979 and established a common garden experiment using local × local (female × male ), local × nonlocal , nonlocal × local , and nonlocal × nonlocal progeny in the low‐elevation zone in 1986. Survival, height, diameter at breast height (dbh), needle nitrogen content, specific leaf area (SLA), and needle area per shoot diameter (NA) of 25‐year‐old progeny were measured in 2005. The survival rate was consistently high (>85% on average). Reductions in height and dbh were apparent in F1 hybrids compared with local × local progeny. Furthermore, outbreeding depression was significant in height growth of nonlocal × local F1 hybrids and in dbh of both F1 hybrids. Reductions in growth traits may be related to morphological needle traits, such as the low values of SLA and NA. Elevation guidelines for A. sachalinensis seed zones are discussed to ensure the long‐term viability of both restored and native populations.  相似文献   

17.
Populations across the geographical distribution of a species are shaped by different local environments to produce distinctive patterns of variation in plant traits. Among‐population variation is, therefore, important for understanding potential shifts in distributions under changing environments, but is often not included in studies. In particular, critical data on the suitability of local environments for plant traits expressed at different life stages are lacking. To address this we performed two experiments to disentangle the influence of the local environment on multiple plant traits for populations of Actinotus helianthi from across its latitudinal range. A common environment experiment was used to compare early plant traits of germination, early seedling growth and survival for 17 populations of A. helianthi. To examine how biotic interactions vary across populations, we evaluated whether plant traits, including height and number of pseudanthia, influence visitor diversity and abundance, and if insect visitor abundance or diversity was associated with seed set success. We found that populations varied in germination success between 0.2 ± 0.1% and 64.2 ± 2.3%. Seedling growth and early survival varied among populations by as much as a factor of two and 44 respectively. We recorded variation in plant traits across hierarchical spatial scales from the maternal plant to biogeographical regions. The abundance and diversity of insect visitors also varied among populations and seed set was found to be site specific. There was a trend for populations with taller plants and larger floral display sizes to be more frequently visited by pollinators. We also identified a positive linear relationship between the number of visits by flies and seed set success. These results suggest that the local environment has a strong role in directly and indirectly influencing variation in plant traits within populations of A. helianthi, and potentially other perennial species.  相似文献   

18.
Gene flow between diverging populations experiencing dissimilar ecological conditions can theoretically constrain adaptive evolution. To minimize the effect of gene flow, alleles underlying traits essential for local adaptation are predicted to be located in linked genome regions with reduced recombination. Local reduction in gene flow caused by selection is expected to produce elevated divergence in these regions. The highly divergent crab‐adapted and wave‐adapted ecotypes of the marine snail Littorina saxatilis present a model system to test these predictions. We used genome‐wide association (GWA) analysis of geometric morphometric shell traits associated with microgeographic divergence between the two L. saxatilis ecotypes within three separate sampling sites. A total of 477 snails that had individual geometric morphometric data and individual genotypes at 4,066 single nucleotide polymorphisms (SNPs) were analyzed using GWA methods that corrected for population structure among the three sites. This approach allowed dissection of the genomic architecture of shell shape divergence between ecotypes across a wide geographic range, spanning two glacial lineages. GWA revealed 216 quantitative trait loci (QTL) with shell size or shape differences between ecotypes, with most loci explaining a small proportion of phenotypic variation. We found that QTL were evenly distributed across 17 linkage groups, and exhibited elevated interchromosomal linkage, suggesting a genome‐wide response to divergent selection on shell shape between the two ecotypes. Shell shape trait‐associated loci showed partial overlap with previously identified outlier loci under divergent selection between the two ecotypes, supporting the hypothesis of diversifying selection on these genomic regions. These results suggest that divergence in shell shape between the crab‐adapted and wave‐adapted ecotypes is produced predominantly by a polygenic genomic architecture with positive linkage disequilibrium among loci of small effect.  相似文献   

19.
The use of local seed sources for revegetation is accepted practice to reduce the potential that propagules will be poorly adapted to site conditions. However, data are often lacking to determine the distance within which seed sources represent local genotypes. Short‐term reciprocal transplant studies represent a class of tools to detect local adaptation of target species. We conducted a reciprocal transplant of Nassella pulchra between two central California locations to test for adaptation to local environmental conditions over a 3‐year period. Experimental plots at one location were split between grazed and ungrazed sites to evaluate the potential influence of livestock grazing on the detection or magnitude of local adaptation. During each year of the study, evidence of a home‐site advantage depended on the location, traits studied, and population. At the end of the 3‐year study period, however, we detected consistent evidence of a home‐site advantage for seedling biomass among grazed sites at one location and ungrazed plots at the other location. In effect, local adaptation was only apparent in the final year of the study. Short‐term reciprocal transplant studies are an effective tool to guide the selection of seed sources most likely to germinate and to become established at a restoration site, but such studies cannot rule out local adaptation, which may not be immediately detectable.  相似文献   

20.
Spatial variation in environmental conditions can lead to local adaptation of plant populations, particularly if gene flow among populations is low. Many studies have investigated adaptation to contrasting environmental conditions, but little is known about the spatial scale of adaptive evolution. We studied population differentiation and local adaptation at two spatial scales in the monocarpic grassland perennial Carlina vulgaris. We reciprocally transplanted seedlings among five European regions (northwestern Czech Republic, central Germany, Luxembourg, southern Sweden and northwestern Switzerland) and among populations of different sizes within three of the regions. We recorded survival, growth and reproduction over three growing periods. At the regional scale, several performance traits and the individual fitness of C. vulgaris were highest if the plants were grown in their home region and they decreased with increasing transplant distance. The effects are likely due to climatic differences that increased with the geographical distance between regions. At the local scale, there were significant interactions between the effects of the population of origin and the transplant site, but these were not due to an enhanced performance of plants at their home site and they were not related to the geographical or environmental distance between the site of origin and the transplant site. The size of the population of origin did not influence the strength of local adaptation. The results of our study suggest that C. vulgaris consists of regionally adapted genotypes, and that distance is a good predictor of the extent of adaptive differentiation at large scales ( > 200 km) but not at small scales. We conclude that patterns of local adaptation should be taken into account for the efficient preservation of genetic resources, when assessing the status of a plant species and during conservation planning.Electronic supplementary material Supplementary material is available in the online version of this article at and is accessible for authorized users.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号