首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 668 毫秒
1.
There are examples of coexisting species with similar morphology and ecology, in apparent contradiction to competition theory. Shrews (Soricidae) are a paradigmatic example of this because members of this group exhibit a conserved body form, relatively low variability in lifestyle, and, in many cases, a sympatric distribution. Here, we combined geometric morphometrics and ecological niche modeling to test whether diversification of soricid species inhabiting the Iberian Peninsula has been driven by niche divergence or, conversely, whether niche conservatism has played a paramount role in this process. We also examined whether pairwise morphological distances increase as the degree of niche overlap between species becomes greater, as would be expected if interspecific competition promotes morphological differentiation. Our results showed that water shrews (Neomys), white‐toothed shrews (Crocidurinae), and red‐toothed shrews (Soricinae) are clearly differentiated in terms of both skull shape and mandible shape. However, we found a lack of phylogenetic signal in most morphological traits, indicating that closely related species are not more similar than expected by random chance. Notably, water shrews show a more “triangular” or sharp skull than white‐toothed and red‐toothed shrews, probably as an adaptation to their semiaquatic lifestyle. In agreement with the phenotypic data, climatic traits (mean annual temperature and annual precipitation) were highly labile and sister taxa showed extensive differentiation in their realized niche space. Finally, we found that phenotypic distances between species tend to increase as the degree of niche overlap increases, suggesting that interspecific competition is an important factor in determining the level of morphological resemblance among relatives. Overall, our results indicate that the existence of limited morphological disparity in a given group does not necessarily imply the existence of a niche conservatism signature.  相似文献   

2.
Ecological theories of adaptive radiation predict that ecological opportunity (EO) stimulates cladogenesis through entry into a novel environment and/or release of competition pressures. Due to its dynamic paleoclimatic and geological history, the Australo‐Papuan region constitutes an opportune scenario to study patterns of diversification in relation to the colonization of new ecological niches. Here, we employ a comparative framework using the Australasian robins (Petroicidae) as a model system to test whether the diversification of this bird family fulfils a niche‐filling process as predicted by the EO model, and to test whether the observed morphological similarity is described by a pattern of phylogenetic niche conservatism (PNC) or convergence. Although we detected an early‐burst, we did not find a slowdown in speciation or morphological evolution as expected in a niche‐filling scenario. Divergence in tarsus length and tail length (PC1) was consistent with a multi‐peak model, in which PC1 represents a convergent trait among distantly related clades sharing the same foraging strategy. Our study thus shows that convergence rather than PNC seems to explain the existence of morphological similarity across independent lineages in the Petroicidae. We also found a low level of PNC regarding annual variations in temperature and precipitation, which is in agreement with the hypothesis that diversification within the Petroicidae involved repeated radiations. We suggest two non‐mutually exclusive hypotheses to explain the overall lack of density‐dependent cladogenesis. First, the extreme spatial and temporal heterogeneity of this region may have generated a pattern of repeated ecological opportunity over time and, second, this family may not yet have reached equilibrium diversity.  相似文献   

3.
Individual foraging specialisation has important ecological implications, but its causes in group‐living species are unclear. One of the major consequences of group living is increased intragroup competition for resources. Foraging theory predicts that with increased competition, individuals should add new prey items to their diet, widening their foraging niche (‘optimal foraging hypothesis’). However, classic competition theory suggests the opposite: that increased competition leads to niche partitioning and greater individual foraging specialisation (‘niche partitioning hypothesis’). We tested these opposing predictions in wild, group‐living banded mongooses (Mungos mungo), using stable isotope analysis of banded mongoose whiskers to quantify individual and group foraging niche. Individual foraging niche size declined with increasing group size, despite all groups having a similar overall niche size. Our findings support the prediction that competition promotes niche partitioning within social groups and suggest that individual foraging specialisation may play an important role in the formation of stable social groupings.  相似文献   

4.
Identifying the mechanisms that structure niche breadth and overlap between species is important for determining how species interact and assessing their functional role in an ecosystem. Without manipulative experiments, assessing the role of foraging ecology and interspecific competition in structuring diet is challenging. Systems with regular pulses of resources act as a natural experiment to investigate the factors that influence the dietary niches of consumers. We used natural pulses of mast‐fruiting of American beech (Fagus grandifolia) to test whether optimal foraging or competition structure the dietary niche breadth and overlap between two congener rodent species (Peromyscus leucopus and P. maniculatus), both of which are generalist consumers. We reconstructed diets seasonally over a 2‐year period using stable isotope analysis (δ13C, δ15N) of hair and of potential dietary items and measured niche dynamics using standard ellipse area calculated within a Bayesian framework. Changes in niche breadth were generally consistent with predictions of optimal foraging theory, with both species consuming more beechnuts (a high‐quality food resource) and having a narrower niche breadth during masting seasons compared to nonmasting seasons when dietary niches expanded and more fungi (a low‐quality food source) were consumed. In contrast, changes in dietary niche overlap were consistent with competition theory, with higher diet overlap during masting seasons than during nonmasting seasons. Overall, dietary niche dynamics were closely tied to beech masting, underscoring that food availability influences competition. Diet plasticity and niche partitioning between the two Peromyscus species may reflect differences in foraging strategies, thereby reducing competition when food availability is low. Such dietary shifts may have important implications for changes in ecosystem function, including the dispersal of fungal spores.  相似文献   

5.
Measuring climatic niche position and breadth may help to determine where species can occur over space and time. Using GIS-based and phylogenetic comparative methods, we investigated global patterns of variation in climatic niche breadth in lacertid lizards to test the following three hypotheses about climatic niche widths. First, does a species' temperature or precipitation niche breadth relate to its temperature or precipitation niche position(the mean value of annual mean temperature or annual precipitation across sampled localities in the range of each species)? Second, are there trade-offs between a species' temperature niche breadth and precipitation niche breadth? Third, does a species' temperature or precipitation niche breadth relate to altitude or latitude? We expect that:(1) species distributed in cold regions are specialized for low-temperature environments(i.e. narrow niche breadth center around low temperatures);(2) a negative relationship between species niche breadth on temperature and precipitation axes according to the tradeoff hypothesis(i.e. species that tolerate a broad range of precipitation regimes cannot also tolerate a broad range of temperatures);(3) precipitation niche breadth decreases with altitude or latitude, whereas temperature climatic niche breadth increases with altitude or latitude. Based on the analytical results we found that:(1) temperature niche breadth and position are negatively related, while precipitation niche breadth and position are positively related;(2) there is no trade-off between temperature and precipitation niche breadths; and (3) temperature niche breadth and latitude/altitude are positively related, but precipitation niche breadth and latitude/altitude are not significantly related. Our results show many similarities with previous studies on climatic niche widths reported for amphibians and lizards, which provide further evidence that such macroecological patterns of variation in climatic niche breadths may be widespread.  相似文献   

6.
Population connectivity is driven by individual dispersal potential and modulated by natal philopatry. In seabirds, high vagility facilitates dispersal yet philopatry is also common, with foraging area overlap often correlated with population connectivity. We assess the interplay between these processes by studying past and current connectivity and foraging niche overlap among southern rockhopper penguin colonies of the coast of southern South America using genomic and stable isotope analyses. We found two distinct genetic clusters and detected low admixture between northern and southern colonies. Stable isotope analysis indicated niche variability between colonies, with Malvinas/Falklands colonies encompassing the species entire isotopic foraging niche, while the remaining colonies had smaller, nonoverlapping niches. A recently founded colony in continental Patagonia differed in isotopic niche width and position with Malvinas/Falklands colonies, its genetically identified founder population, suggesting the exploitation of novel foraging areas and/or prey items. Additionally, dispersing individuals found dead across the Patagonian shore in an unusual mortality event were also assigned to the northern cluster, suggesting northern individuals reach southern localities, but do not breed in these colonies. Facilitated by variability in foraging strategies, and especially during unfavorable conditions, the number of dispersing individuals may increase and enhance the probability of founding new colonies. Metapopulation demographic dynamics in seabirds should account for interannual variability in dispersal behavior and pay special attention to extreme climatic events, classically related to negative effects on population trends.  相似文献   

7.
Pheasants (order Galliformes) are typical ground‐dwelling birds, having a large body size and weak flight abilities. Sympatric pheasants are expected to share narrower niche space and face more extensive interspecific competition. However, little work has been undertaken simultaneously to investigate niche partitioning among sympatric pheasant species across multiple ecological dimensions. We compared microhabitat use, activity pattern and foraging strategy of sympatric Blood Pheasant Ithaginis cruentus, Buff‐throated Partridge Tetraophasis szechenyii and White Eared‐pheasant Crossoptilon crossoptilon on the Qinghai‐Tibet Plateau, China, to identify potential interspecific niche partitioning along different ecological dimensions in the breeding season. We found that the Buff‐throated Partridge differed significantly from the other two species in microhabitat use, and the three species showed different foraging strategies. It is likely that niche partitioning reduced potential interspecific competition, thus facilitating the species’ stable coexistence. Our study provides practical evidence of multidimensional niche theory within sympatric ground‐dwelling pheasant species, emphasizing that species interactions and coexistence within a guild are often not uni‐dimensional. Given global conservation concern for maintaining bird diversity, we recommend further restriction of yak grazing in these species’ habitat.  相似文献   

8.
1. Sister taxa that coexist in the same space and time often face competition due to the use of similar resources. However, some closely related species can adopt fine‐grained specialisation in resource use to coexist. This study investigated niche overlap between three sympatric spider‐hunting wasp species of the genus Trypoxylon (Hymenoptera: Crabronidae) known to nest in three of the habitats found in the study area. 2. First, the co‐occurrence of these wasp species in the three habitats was estimated, as a proxy for potential competition. Then, the following hypotheses were tested: (i) niche partitioning is seen more often between species that co‐occur in a habitat, whereas there is niche overlap between species nesting in distinct habitats (prey specialisation hypothesis); and (ii) wasp species capture prey according to their size (physical constraint hypothesis). 3. Two pairs of wasp species were found consistently nesting in the same habitat. Niche partitioning based on prey taxa occurred regardless of the habitat preference. It was also found that differences in the size of wasps reflected distinctions in the size of their prey. 4. These findings were consistent over the years, showing that the significance of specialisation in foraging activities and physical constraints during prey capture can play key roles in the coexistence of sympatric species. The distinctions in the foraging strategies of these wasps are discussed, as well as potential mechanisms driving the evolution in prey specialisation, with insights for future studies.  相似文献   

9.
Animals facing seasonal food shortage and habitat degradation may adjust their foraging behaviour to reduce intraspecific competition. In the harsh environment of the world's southernmost forests in the Magellanic sub‐Antarctic ecoregion in Chile, we studied intersexual foraging differences in the largest South American woodpecker species, the Magellanic Woodpecker (Campephilus magellanicus). We assessed whether niche overlap between males and females decrease when food resources are less abundant or accessible, that is, during winter and in secondary forests, compared to summer and in old‐growth forests, respectively. We analysed 421 foraging microhabitat observations from six males and six females during 2011 and 2012. As predicted, the amount of niche overlap between males and females decreased during winter, when provisioning is more difficult. During winter, males and females (i) used trees with different diameter at breast height (DBH); (ii) fed in trunk sections with different diameters; and (iii) fed at different heights on tree trunks or branches. Vertical niche partitioning between sexes was found in both old‐growth and secondary forests. Such a niche partitioning during winter may be a seasonal strategy to avoid competition between sexes when prey resources are less abundant or accessible. Our results suggest that the conservation of this forest specialist, dimorphic and charismatic woodpecker species requires considering differences in habitat use between males and females.  相似文献   

10.
We studied the winter foraging niches of tits and related species in deciduous forest fragments varying in size between 1 and 30 ha (plus one forest of 200 ha) in order to investigate the influence of forest fragmentation on foraging niches Very few correlations between niche structure (foraging niche, width and overlap) and forest size or isolation turned out to be significant This implies that either the species that disappear in small fragments are those that suffer most from competition (making the effect unmeasurable), or that competition is relatively unimportant for niche structure In any case we find no evidence that foraging niches are strongly affected by the changes (in habitat and/or community structure) associated with fragmentation  相似文献   

11.
Foraging mode is a functional trait with cascading impacts on ecological communities. The foraging syndrome hypothesis posits a suite of concurrent traits that vary with foraging mode; however, comparative studies testing this hypothesis are typically interspecific. While foraging modes are often considered typological for a species when predicting foraging‐related traits or mode‐specific cascading impacts, intraspecific mode switching has been documented in some lizards. Mode‐switching lizards provide an opportunity to test foraging syndromes and explore how intraspecific variability in foraging mode might affect local ecological communities.Because lizard natural history is intimately tied to habitat use and structure, I tested for mode switching between populations of the Aegean wall lizard, Podarcis erhardii, inhabiting undisturbed habitat and human‐built rock walls on the Greek island of Naxos. I observed foraging behavior among 10 populations and tested lizard morphological and performance predictions at each site. Furthermore, I investigated the diet of lizards at each site relative to the available invertebrate community.I found that lizards living on rock walls were significantly more sedentary—sit and wait—than lizards at nonwall sites. I also found that head width increased in females and the ratio of hindlimbs to forelimbs in both sexes increased as predicted. Diet also changed, with nonwall lizards consuming a higher proportion of sedentary prey. Lizard bite force also varied significantly between sites; however, the pattern observed was opposite to that predicted, suggesting that bite force in these lizards may more closely relate to intraspecific competition than to diet.This study demonstrates microgeographic variability in lizard foraging mode as a result of human land use. In addition, these results demonstrate that foraging mode syndromes can shift intraspecifically with potential cascading effects on local ecological communities.  相似文献   

12.
Patterns of ecological specialization offer invaluable information about ecosystems. Yet, specialization is rarely quantified across several ecological niche axes and variables beyond the link between morphological and dietary specialization have received little attention. Here, we provide a quantitative evaluation of ecological specialization in a coral reef fish assemblage (f. Acanthuridae) along one fundamental and two realized niche axes. Specifically, we examined ecological specialization in 10 surgeonfish species with regards to morphology and two realized niche axes associated with diet and foraging microhabitat utilization using a recently developed multidimensional framework. We then investigated the potential relationships between morphological and behavioural specialization. These relationships differed markedly from the traditional ecomorphological paradigm. While morphological specialization showed no relationship with dietary specialization, it exhibited a strong relationship with foraging microhabitat specialization. However, this relationship was inverted: species with specialized morphologies were microhabitat generalists, whereas generalized morphotypes were microhabitat specialists. Interestingly, this mirrors relationships found in plant–pollinator communities and may also be applicable to other ecosystems, highlighting the potential importance of including niche axes beyond dietary specialization into ecomorphological frameworks. On coral reefs, it appears that morphotypes commonly perceived as most generalized may, in fact, be specialized in exploiting flat and easily accessible microhabitats.  相似文献   

13.
Horses (family Equidae) are a classic example of adaptive radiation, exhibiting a nearly 60‐fold increase in maximum body mass and a peak taxonomic diversity of nearly 100 species across four continents. Such patterns are commonly attributed to niche competition, in which increased taxonomic diversity drives increased size disparity. However, neutral processes, such as macroevolutionary ‘diffusion’, can produce similar increases in disparity without increased diversity. Using a comprehensive database of Equidae species size estimates and a common mathematical framework, we measure the contributions of diversity‐driven and diffusion‐driven mechanisms for increased disparity during the Equidae radiation. We find that more than 90% of changes in size disparity are attributable to diffusion alone. These results clarify the role of species competition in body size evolution, indicate that morphological disparity and species diversity may be only weakly coupled in general, and demonstrate that large species may evolve from neutral macroevolutionary diffusion processes alone.  相似文献   

14.
Macroecological analyses often test hypotheses at the global scale, or among more closely related species in a single region (e.g. continent). Here, we test several hypotheses about climatic niche widths among relatively closely related species that occur across multiple continents, and compare patterns within and across continents to see if they differ. We focus on the lizard genus Varanus (monitor lizards), which occurs in diverse environments in Africa, Asia, and Australia. We address three main questions. 1) How do climatic niche breadths of species on a given niche axis change based on the position of species along that niche axis? (E.g. are species that occur in more extreme environments more narrowly specialized for those conditions?) 2) Are there trade‐offs in niche breadths on temperature and precipitation axes among species, or are niche widths on different axes positively related? 3) Is variation in niche breadths among species explained primarily by within‐locality seasonal variation, or by differences in climatic conditions among localities across the species range? We generate a new time‐calibrated phylogeny for Varanus and test these hypotheses within and between continents using climatic data and phylogenetic methods. Our results show that patterns on each continent often parallel each other and global patterns. However, in many other cases, the strength of relationships can change dramatically among closely related species on different continents. Overall, we found that: 1) species in warmer environments have narrower temperature niche breadths, but there is no relationship between precipitation niche breadth and niche position; 2) temperature and precipitation niche breadths tend to be positively related among species, rather than showing trade‐offs; and 3) within‐locality seasonal variation explains most variation in climatic niche breadths. Some of these results are concordant with previous studies (in amphibians and North American lizards), and might represent general macroecological patterns.  相似文献   

15.
In the study of food webs, the existence and explanation of recurring patterns, such as the scale invariance of linkage density, predator–prey ratios and mean chain length, constitute long-standing issues. Our study focused on litter-associated food webs and explored the influence of detritivore and predator niche width (as δ13C range) on web topological structure. To compare patterns within and between aquatic and terrestrial ecosystems and take account of intra-habitat variability, we constructed 42 macroinvertebrate patch-scale webs in four different habitats (lake, lagoon, beech forest and cornfield), using an experimental approach with litterbags. The results suggest that although web differences exist between ecosystems, patterns are more similar within than between aquatic and terrestrial web types. In accordance with optimal foraging theory, we found that the niche width of predators and prey increased with the number of predators and prey taxa as a proportion of total taxa in the community. The tendency was more marked in terrestrial ecosystems and can be explained by a lower per capita food level than in aquatic ecosystems, particularly evident for predators. In accordance with these results, the number of links increased with the number of species but with a significantly sharper regression slope for terrestrial ecosystems. As a consequence, linkage density, which was found to be directly correlated to niche width, increased with the total number of species in terrestrial webs, whereas it did not change significantly in aquatic ones, where connectance scaled negatively with the total number of species. In both types of ecosystem, web robustness to rare species removal increased with connectance and the niche width of predators. In conclusion, although limited to litter-associated macroinvertebrate assemblages, this study highlights structural differences and similarities between aquatic and terrestrial detrital webs, providing field evidence of the central role of niche width in determining the structure of detritus-based food webs and posing foraging optimisation constraints as a general mechanistic explanation of food web complexity differences within and between ecosystem types.  相似文献   

16.
The niche variation hypothesis (NVH) predicts that populations with wider niches exhibit greater morphological variation through increased interindividual differences in both niche and morphology. In this study, we examined niche–trait relationships in three passerine species (Cyanoderma ruficeps, Sinosuthora webbiana, and Zosterops simplex). A total of 289 C. ruficeps from 7 sites, 259 S. webbiana from 8 sites, and 144 Z. simplex from 6 sites were sampled along an elevation gradient (0–2,700 m) in Taiwan from 2009 to 2017. We measured bill traits (length, width, and depth of bill) and body size traits (length of head, tarsus, and wing) of the birds, which were reduced to four principal components (bill PC1, bill PC2, body size PC1, and body size PC2). We collected feather tissues for stable carbon and nitrogen isotope analyses to quantify their isotope niche. We quantified interindividual differences in isotope space and trait space with four diversity metrics (divergence, dispersion, evenness, and uniqueness) and tested whether interindividual differences in isotope space and trait space are positively associated. We quantified population isotope niche width by Bayesian ellipse area and population morphological variation by variances of the PCs. The results showed that individual uniqueness in isotope niche and bill morphology (average closeness of individuals within the population isotope/trait space) were positively associated across three species. Furthermore, isotope niche width and bill PC1 (reflecting the size of bill) variation at population level were also positively associated across the three species, supporting the NVH. Of the three species, C. ruficeps and S. webbiana showed stronger support for the NVH than Z. simplex, possibly due to the latter having narrower elevational distribution and a more specialized, plant‐based diet. The diversity metrics represented different aspects of interindividual differences in niche/trait space, and for the passerines, individual uniqueness appeared to play an important role in their niche–trait dynamics.  相似文献   

17.
By specialising on specific resources, species evolve advantageous morphologies to increase the efficiency of nutrient acquisition. However, many specialists face variation in resource availability and composition. Whether specialists respond to these changes depends on the composition of the resource pulses, the cost of foraging on poorly matched resources, and the strength of interspecific competition. We studied hummingbird bill and plant corolla matching during seasonal variation in flower availability and morphology. Using a hierarchical Bayesian model, we accounted for the detectability and spatial overlap of hummingbird‐plant interactions. We found that despite seasonal pulses of flowers with short‐corollas, hummingbirds consistently foraged on well‐matched flowers, leading to low niche overlap. This behaviour suggests that the costs of searching for rare and more specialised resources are lower than the benefit of switching to super‐abundant resources. Our results highlight the trade‐off between foraging efficiency and interspecific competition, and underline niche partitioning in maintaining tropical diversity.  相似文献   

18.
Invasive species are an important issue worldwide but predicting invasiveness, and the underlying mechanisms that cause it, is difficult. There are several primary hypotheses to explain invasion success. Two main hypothesis based on niche spaces stand out as alternative, although not exclusive. The empty niche hypothesis states that invaders occupy a vacant niche space in the recipient community, and the niche competition hypothesis states that invaders overlap with native species in niche space. Studies on trait similarity/dissimilarity between the invader and native species can provide information on their niche overlap. Here, we use the highly invasive and well‐studied cane toad (Rhinella marina) to test these two hypotheses in Australia, and assess its degree of overlap with native species in several niche dimensions. We compare extensive morphological and environmental data of this successful invader to 235 species (97%) of native Australian frogs. Our study is the first to document the significant morphological differences between the invasive cane toad and a continent‐wide frog radiation: despite significant environmental overlap, cane toads were distinct in body size and shape from most Australian frog species, suggesting that in addition to their previously documented phenotypic plasticity and wide environmental and trophic niche breadth, their unique shape also may have contributed to their success as an invasive species in Australia. Thus, the invasive success of cane toads in Australia may be explained through them successfully colonizing an empty niche among Australian anurans. Our results support that the cane toad's distinct morphology may have played a unique role in the invasiveness of this species in Australia, which coupled with a broad environmental niche breadth, would have boosted their ability to expand their distribution across Australia. We also propose RLLR (Relative limb length ratio) as a potentially useful measure of identifying morphological niche uniqueness and a potential measure of invasiveness potential in anuran amphibians.  相似文献   

19.
The relative roles of historical processes, environmental filtering, and ecological interactions in the organization of species assemblages vary depending on the spatial scale. We evaluated the phylogenetic and morphological relationships between species and individuals (i.e., inter‐ and intraspecific variability) of Neotropical nonvolant small mammals coexisting in grassland‐forest ecotones, in landscapes and in regions, that is, three different scales. We used a phylogenetic tree to infer evolutionary relationships, and morphological traits as indicators of performance and niche similarities between species and individuals. Subsequently, we applied phylogenetic and morphologic indexes of diversity and distance between species to evaluate small mammal assemblage structures on the three scales. The results indicated a repulsion pattern near forest edges, showing that phylogenetically similar species coexisted less often than expected by chance. The strategies for niche differentiation might explain the phylogenetic repulsion observed at the edge. Phylogenetic and morphological clustering in the grassland and at the forest interior indicated the coexistence of closely related and ecologically similar species and individuals. Coexistence patterns were similar whether species‐trait values or individual values were used. At the landscape and regional scales, assemblages showed a predominant pattern of phylogenetic and morphological clustering. Environmental filters influenced the coexistence patterns at three scales, showing the importance of phylogenetically conserved ecological tolerances in enabling taxa co‐occurrence. Evidence of phylogenetic repulsion in one region indicated that other processes beyond environmental filtering are important for community assembly at broad scales. Finally, ecological interactions and environmental filtering seemed important at the local scale, while environmental filtering and historical colonization seemed important for community assembly at broader scales.  相似文献   

20.
Phenotypic diversity, or disparity, can be explained by simple genetic drift or, if functional constraints are strong, by selection for ecologically relevant phenotypes. We here studied phenotypic disparity in head shape in aquatic snakes. We investigated whether conflicting selective pressures related to different functions have driven shape diversity and explore whether similar phenotypes may give rise to the same functional output (i.e., many‐to‐one mapping of form to function). We focused on the head shape of aquatically foraging snakes as they fulfill several fitness‐relevant functions and show a large amount of morphological variability. We used 3D surface scanning and 3D geometric morphometrics to compare the head shape of 62 species in a phylogenetic context. We first tested whether diet specialization and size are drivers of head shape diversification. Next, we tested for many‐to‐one mapping by comparing the hydrodynamic efficiency of head shape characteristic of the main axes of variation in the dataset. We 3D printed these shapes and measured the forces at play during a frontal strike. Our results show that diet and size explain only a small amount of shape variation. Shapes did not fully functionally converge as more specialized aquatic species evolved a more efficient head shape than others. The shape disparity observed could thus reflect a process of niche specialization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号