首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
ABSTRACT Wind energy development represents significant challenges and opportunities in contemporary wildlife management. Such challenges include the large size and extensive placement of turbines that may represent potential hazards to birds and bats. However, the associated infrastructure required to support an array of turbines—such as roads and transmission lines—represents an even larger potential threat to wildlife than the turbines themselves because such infrastructure can result in extensive habitat fragmentation and can provide avenues for invasion by exotic species. There are numerous conceptual research opportunities that pertain to issues such as identifying the best and worst placement of sites for turbines that will minimize impacts on birds and bats. Unfortunately, to date very little research of this type has appeared in the peer-reviewed scientific literature; much of it exists in the form of unpublished reports and other forms of gray literature. In this paper, we summarize what is known about the potential impacts of wind farms on wildlife and identify a 3-part hierarchical approach to use the scientific method to assess these impacts. The Lower Gulf Coast (LGC) of Texas, USA, is a region currently identified as having a potentially negative impact on migratory birds and bats, with respect to wind farm development. This area is also a region of vast importance to wildlife from the standpoint of native diversity, nature tourism, and opportunities for recreational hunting. We thus use some of the emergent issues related to wind farm development in the LGC—such as siting turbines on cropland sites as opposed to on native rangelands—to illustrate the kinds of challenges and opportunities that wildlife managers must face as we balance our demand for sustainable energy with the need to conserve and sustain bird migration routes and corridors, native vertebrates, and the habitats that support them.  相似文献   

2.
Numerous efforts have been made in West Virginia to construct and restore compensatory wetlands as mitigation for natural wetlands destroyed through highway development, timbering, mining, and other human activities. Because such little effort has been made to evaluate these wetlands, there is a need to evaluate the success of these systems. The objective of this study was to determine if mitigation wetlands in West Virginia were adequately supporting ecological communities relative to naturally occurring reference wetlands and to attribute specific characteristics in wetland habitat with trends in wildlife abundance across wetlands. Specifically, avian and anuran communities, as well as habitat quality for eight wetland-dependent wildlife species were evaluated. To supplement this evaluation, vegetation and invertebrate communities also were assessed. Wetland ranks were assigned based on several parameters including richness, abundance, diversity, density, and biomass, depending on which taxa was being analyzed. Mitigation wetlands consistently scored better ranks than reference wetlands across all communities analyzed. Canonical correspondence analysis revealed no correlations between environmental variables and community data. However, trends relating wetland habitat characteristics to community structure were observed. These data stress the need to maintain specific habitat characteristics in mitigated wetlands that are compatible with wildlife colonization and proliferation.  相似文献   

3.
4.
5.
6.
7.
Probiotics and Antimicrobial Proteins - Bovicin is a type AII lantibiotic, possessing two β-methyllanthionine and a disulfide bridge encoded by bovA gene hitherto unknown a couple of decades...  相似文献   

8.
9.
10.
11.
Penguins are known to have high pedestrian locomotory costs in comparison to other cursorial birds, but the ecological consequences of this difference have received limited attention. Here we present a method for the accurate estimation of onshore energetics based on measurements of body mass, simple morphometrics and distance moved. The method is shown to be similarly accurate to other field-based estimates of energy expenditure, but has the advantage of logistical simplicity. King penguins spend 30-50% of their time ashore and may walk distances of several kilometres to and from their breeding colonies. However, in such cases the total energetic cost of pedestrian locomotion is estimated to be only 1.0% of the energy expended whilst ashore. Thus, despite a high instantaneous cost, pedestrian locomotion is a small and possibly negligible component of total energy turnover in king penguins.  相似文献   

12.
《Plant molecular biology》1998,38(1-2):339-343
Plant Molecular Biology -  相似文献   

13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号