首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Edge disturbance can drive liana community changes and alter liana‐tree interaction networks, with ramifications for forest functioning. Understanding edge effects on liana community structure and liana‐tree interactions is therefore essential for forest management and conservation. We evaluated the response patterns of liana community structure and liana‐tree interaction structure to forest edge in two moist semi‐deciduous forests in Ghana (Asenanyo and Suhuma Forest Reserves: AFR and SFR, respectively). Liana community structure and liana‐tree interactions were assessed in 24 50 × 50 m randomly located plots in three forest sites (edge, interior and deep‐interior) established at 0–50 m, 200 m and 400 m from edge. Edge effects positively and negatively influenced liana diversity in forest edges of AFR and SFR, respectively. There was a positive influence of edge disturbance on liana abundance in both forests. We observed anti‐nested structure in all the liana‐tree networks in AFR, while no nestedness was observed in the networks in SFR. The networks in both forests were less connected, and thus more modular and specialised than their null models. Many liana and tree species were specialised, with specialisation tending to be symmetrical. The plant species played different roles in relation to modularity. Most of the species acted as peripherals (specialists), with only a few species having structural importance to the networks. The latter species group consisted of connectors (generalists) and hubs (highly connected generalists). Some of the species showed consistency in their roles across the sites, while the roles of other species changed. Generally, liana species co‐occurred randomly on tree species in all the forest sites, except edge site in AFR where lianas showed positive co‐occurrence. Our findings deepen our understanding of the response of liana communities and liana‐tree interactions to forest edge disturbance, which are useful for managing forest edge.  相似文献   

2.
Lianas reduce tree growth, reproduction, and survival in tropical forests. Liana competition can be particularly intense in isolated forest fragments, where liana densities are high, and thus, host tree infestation is common. Furthermore, lianas appear to grow particularly well during seasonal drought, when they may compete particularly intensely with trees. Few studies, however, have experimentally quantified the seasonal effects of liana competition on multiple tree species in tropical forests. We used a liana removal experiment in a forest fragment in southeastern Brazil to test whether the effects of lianas on tree growth vary with season and tree species identity. We conducted monthly diameter measurements using dendrometer bands on 88 individuals of five tree species for 24 months. We found that lianas had a stronger negative effect on some tree species during the wet season compared to the dry season. Furthermore, lianas significantly reduced the diameter growth of two tree species but had no effect on the other three tree species. The strong negative effect of lianas on some trees, particularly during the wet season, indicates that the effect of lianas on trees varies both seasonally and with tree species identity. Abstract in Portuguese is available with online material.  相似文献   

3.
木质藤本是维持森林物种多样性的组成部分。近年来,热带、亚热带森林尤其是次生林内的木质藤本数量的过度增长给森林的恢复和健康发展造成了威胁。至今,国内尚少有研究对森林木质藤本过多的现象、增长机制与生态效应进行综合认识。该文梳理国内外相关文献,从木质藤本数量增长的机制与生态效应进行分析和总结,综合相关研究认为:(1)木质藤本数量的增长与干旱化加剧、大气CO2浓度上升、自然干扰和森林破碎化有关,在环境变化的情况下,木质藤本在形态、行为、生理等方面比树木更具优势,表现为更快的生长速率、更强的繁殖力和可塑性以及资源利用效率。(2)木质藤本主要通过遮荫胁迫、资源竞争和机械压力与损伤等方式对树木造成影响。(3)木质藤本过度增长在个体水平上会阻碍树木生长、生殖并引起树木死亡,在群落水平上会改变物种组成、降低多样性,在生态系统水平上会降低森林碳储量,改变碳、矿质养分和水分循环过程等。因此,建议结合野外长期监测与控制实验开展木质藤本数量动态与环境变化关系、森林干扰对木质藤本生长的影响、木质藤本对环境变化的响应及适应机理、木质藤本数量过度增长的生态效应评价研究。同时,应积极探索合理的森林...  相似文献   

4.
Previous research found that phylogenetic clustering increased with disturbance for tropical trees, suggesting that community assembly is mainly influenced by abiotic factors during early succession. Lianas are an important additional component of tropical forests, but their phylogenetic community structure has never been investigated. Unlike tropical trees, liana abundance is often high in disturbed forests and diversity can peak in old secondary forest. Therefore, phylogenetic structure along a disturbance gradient might also differ from tropical tree communities. Here we determined phylogenetic community structure of lianas along a disturbance gradient in a tropical montane forest in China, using the net relatedness index (NRI) from 100 equivalent phylogenies with varying branch length that were constructed using DNA‐barcode sequences. Three additional phylogenetic indices were also considered for comparison. When NRI was used as index phylogenetic clustering of liana communities decreased with decreasing tree basal area, suggesting that liana competitive interactions dominate during early succession, which is in contrast to the pattern reported for trees. Liana communities in mature forests, on the other hand, were phylogenetic clustered, which could be caused by dispersal limitation and/or environmental filtering. The three additional phylogenetic indices identified different, sometimes contradicting predictors of phylogenetic community structure, indicating that caution is needed when generalizing interpretations of studies based on a single phylogenetic community structure index. Our study provides a more nuanced picture of non‐random assembly along disturbance gradients by focusing on a non‐tree forest component.  相似文献   

5.
Almost half of lowland tropical forests are at various stages of regeneration following deforestation or fragmentation. Changes in tree communities along successional gradients have predictable bottom‐up effects on consumers. Liana (woody vine) assemblages also change with succession, but their effects on animal succession remain unexplored. Here we used a large‐scale liana removal experiment across a forest successional chronosequence (7–31 years) to determine the importance of lianas to ant community structure. We conducted 1,088 surveys of ants foraging on and living in trees using tree trunk baiting and hand‐collecting techniques at 34 paired forest plots, half of which had all lianas removed. Ant species composition, β‐diversity, and species richness were not affected by liana removal; however, ant species co‐occurrence (the coexistence of two or more species in a single tree) was more frequent in control plots, where lianas were present, versus removal plots. Forest stand age had a larger effect on ant community structure than the presence of lianas. Mean ant species richness in a forest plot increased by ca. 10% with increasing forest age across the 31‐year chronosequence. Ant surveys from forest >20 years old included more canopy specialists and fewer ground‐nesting ant species versus those from forests <20 years old. Consequently, lianas had a minimal effect on arboreal ant communities in this early successional forest, where rapidly changing tree community structure was more important to ant species richness and composition.  相似文献   

6.
Lianas are a key component of tropical forests; however, most surveys are too small to accurately quantify liana community composition, diversity, abundance, and spatial distribution – critical components for measuring the contribution of lianas to forest processes. In 2007, we tagged, mapped, measured the diameter, and identified all lianas ≥1 cm rooted in a 50-ha plot on Barro Colorado Island, Panama (BCI). We calculated liana density, basal area, and species richness for both independently rooted lianas and all rooted liana stems (genets plus clones). We compared spatial aggregation patterns of liana and tree species, and among liana species that varied in the amount of clonal reproduction. We also tested whether liana and tree densities have increased on BCI compared to surveys conducted 30-years earlier. This study represents the most comprehensive spatially contiguous sampling of lianas ever conducted and, over the 50 ha area, we found 67,447 rooted liana stems comprising 162 species. Rooted lianas composed nearly 25% of the woody stems (trees and lianas), 35% of woody species richness, and 3% of woody basal area. Lianas were spatially aggregated within the 50-ha plot and the liana species with the highest proportion of clonal stems more spatially aggregated than the least clonal species, possibly indicating clonal stem recruitment following canopy disturbance. Over the past 30 years, liana density increased by 75% for stems ≥1 cm diameter and nearly 140% for stems ≥5 cm diameter, while tree density on BCI decreased 11.5%; a finding consistent with other neotropical forests. Our data confirm that lianas contribute substantially to tropical forest stem density and diversity, they have highly clumped distributions that appear to be driven by clonal stem recruitment into treefall gaps, and they are increasing relative to trees, thus indicating that lianas will play a greater role in the future dynamics of BCI and other neotropical forests.  相似文献   

7.
ABSTRACT

Background: Lianas are an important component of tropical forests that respond to logging disturbance. Determining liana response to selective logging chronosequence is important for understanding long-term logging effects on lianas and tropical forests.

Aims: Our objective was to quantify the response of liana communities to selective logging chronosequence in a moist semi-deciduous forest in Ghana.

Methods: Liana community characteristics were determined in ten 40 m × 40 m plots randomly and homogenously distributed in each of four selectively logged forest stands that had been logged 2, 14, 40 and 68 years before the surveys and in an old-growth forest stand (ca. >200 years).

Results: Liana species composition differed significantly among the forest stands, as a function of logging time span, while species richness fluctuated along the chronosequence. The abundance of liana communities and of reproductive and climbing guilds was lower in the logged forests than in the old-growth forest. The ratio of liana abundance and basal area to those of trees was similar in the logged forests, but significantly lower than those in the old-growth forest.

Conclusions: Logging impacts on liana community structure and functional traits were largely evident, though no clear chronosequence trends were recorded, except for species composition.  相似文献   

8.
Lianas are a key growth form in tropical forests. Their lack of self-supporting tissues and their vertical position on top of the canopy make them strong competitors of resources. A few pioneer studies have shown that liana optical traits differ on average from those of colocated trees. Those trait discrepancies were hypothesized to be responsible for the competitive advantage of lianas over trees. Yet, in the absence of reliable modelling tools, it is impossible to unravel their impact on the forest energy balance, light competition, and on the liana success in Neotropical forests. To bridge this gap, we performed a meta-analysis of the literature to gather all published liana leaf optical spectra, as well as all canopy spectra measured over different levels of liana infestation. We then used a Bayesian data assimilation framework applied to two radiative transfer models (RTMs) covering the leaf and canopy scales to derive tropical tree and liana trait distributions, which finally informed a full dynamic vegetation model. According to the RTMs inversion, lianas grew thinner, more horizontal leaves with lower pigment concentrations. Those traits made the lianas very efficient at light interception and significantly modified the forest energy balance and its carbon cycle. While forest albedo increased by 14% in the shortwave, light availability was reduced in the understorey (?30% of the PAR radiation) and soil temperature decreased by 0.5°C. Those liana-specific traits were also responsible for a significant reduction of tree (?19%) and ecosystem (?7%) gross primary productivity (GPP) while lianas benefited from them (their GPP increased by +27%). This study provides a novel mechanistic explanation to the increase in liana abundance, new evidence of the impact of lianas on forest functioning, and paves the way for the evaluation of the large-scale impacts of lianas on forest biogeochemical cycles.  相似文献   

9.
There is mounting empirical evidence that lianas affect the carbon cycle of tropical forests. However, no single vegetation model takes into account this growth form, although such efforts could greatly improve the predictions of carbon dynamics in tropical forests. In this study, we incorporated a novel mechanistic representation of lianas in a dynamic global vegetation model (the Ecosystem Demography Model). We developed a liana‐specific plant functional type and mechanisms representing liana–tree interactions (such as light competition, liana‐specific allometries, and attachment to host trees) and parameterized them according to a comprehensive literature meta‐analysis. We tested the model for an old‐growth forest (Paracou, French Guiana) and a secondary forest (Gigante Peninsula, Panama). The resulting model simulations captured many features of the two forests characterized by different levels of liana infestation as revealed by a systematic comparison of the model outputs with empirical data, including local census data from forest inventories, eddy flux tower data, and terrestrial laser scanner‐derived forest vertical structure. The inclusion of lianas in the simulations reduced the secondary forest net productivity by up to 0.46 tC ha?1 year?1, which corresponds to a limited relative reduction of 2.6% in comparison with a reference simulation without lianas. However, this resulted in significantly reduced accumulated above‐ground biomass after 70 years of regrowth by up to 20 tC/ha (19% of the reference simulation). Ultimately, the simulated negative impact of lianas on the total biomass was almost completely cancelled out when the forest reached an old‐growth successional stage. Our findings suggest that lianas negatively influence the forest potential carbon sink strength, especially for young, disturbed, liana‐rich sites. In light of the critical role that lianas play in the profound changes currently experienced by tropical forests, this new model provides a robust numerical tool to forecast the impact of lianas on tropical forest carbon sinks.  相似文献   

10.
Lianas are an important component of tropical forests; they alter tree mortality and recruitment and impact biogeochemical cycling. Recent evidence suggests that the abundance of lianas in tropical forests is increasing. To understand and predict the effect of lianas on ecosystem processes in tropical forests, it is important to understand the mechanisms through which they compete with trees. In this study, we investigated the functional traits of lianas and trees in a lowland tropical forest in northeast Queensland, Australia. The site is located at 16.1° south latitude and experiences significant seasonality in rainfall, with pronounced wet and dry seasons. It is also subject to relatively frequent disturbance by cyclones. We asked the question of whether the canopy liana community at this site would display functional traits consistent with a competitive advantage over trees in response to disturbance, or in response to dry season water stress. We found that traits that we considered indicative of a dry season advantage (xylem water δ18O as an indicator of rooting depth; leaf and stem tissue δ13C and instantaneous gas exchange as measures of water‐use efficiency) did not differ between canopy lianas and canopy trees. On the other hand, lianas differed from trees in traits that should confer an advantage in response to disturbance (low wood density; low leaf dry matter content; high leaf N concentration; high mass‐based photosynthetic rates). We conclude that the liana community at the study site expressed functional traits geared towards rapid resource acquisition and growth in response to disturbance, rather than outcompeting trees during periods of water stress. These results contribute to a body of literature which will be useful for parameterising a liana functional type in ecosystem models.  相似文献   

11.
Lianas are poorly characterized for central African forests. We quantify variation in liana composition, diversity and community structure in different forest types in the Yangambi Man and Biosphere Reserve, Democratic Republic of Congo. These attributes of liana assemblages were examined in 12 1-ha plots, randomly demarcated within regrowth forest, old growth monodominant forest, old growth mixed forest and old growth edge forest. Using a combination of multivariate and univariate community analyses, we visualize the patterns of these liana assemblage attributes and/or test for their significant differences across forest types. The combined 12 1-ha area contains 2,638 lianas (≥2 cm diameter) representing 105 species, 49 genera and 22 families. Liana species composition differed significantly across forest types. Taxonomic diversity was higher in old growth mixed forests compared to old growth monodominant and regrowth forests. Trait diversity was higher than expected in the regrowth forest as opposed to the rest of forest types. Similarly, the regrowth forest differed from the rest of forest types in the pattern of liana species ecological traits and diameter frequency distribution. The regrowth forest was also less densely populated in lianas and had lower liana total basal area than the rest of forest types. We speculate that the mechanism of liana competitive exclusion by dominant tree species is mainly responsible for the lower liana species diversity in monodominant compared to mixed forests. We attribute variation in liana community structure between regrowth and old growth forests mostly to short development time of size hierarchies.  相似文献   

12.
Aim Due to the important role of lianas in the functioning of forest ecosystem, knowledge of the factors that affect them are important in the management of forests. Currently, there are conflicting reports on the response of liana communities to disturbance, calling for more research in the area. The present study was carried out to investigate the response of liana diversity and structure to human disturbance within two major forests in the Penang National Park, Malaysia. The study also looked at the implication of the findings for conservation.Methods A total of 15 40 × 40-m 2 (or 40-m × 40-m) plots each were randomly located across a range of habitats in a primary forest and disturbed secondary forest. Trees with diameter at breast height ≥10 cm were examined for lianas with diameter ≥2 cm. Both lianas and trees were enumerated and compared between the two forests. Diversity and structural variables of lianas were compared between the two forests using the t -test analysis. Tree abundance was also compared between the two forests with t -test, while linear regression analysis was run to determine the effects of tree abundance on liana abundance.Important findings A total of 46 liana species belonging to 27 genera and 15 families were identified in the study. Human disturbance significantly reduced liana species richness and species diversity in the secondary forest. Liana abundance remained the same in both forests whereas liana basal area was significantly higher in the primary forest. Twiners and hook climbers were significantly more abundant in the primary and secondary forest, respectively. Large diameter lianas were more abundant in the primary forest compared with the secondary forest. The diameter distribution of most families in the primary forest followed the inverted J-shaped curve whereas only a few of the families in the secondary forest did so. Tree abundance was significantly higher in the primary forest. The abundance of lianas significantly depended on tree abundance in all the forests. The study has provided evidence of negative effects of human disturbance on liana diversity and structure that does not auger well for biodiversity in the forest. In view of the critical role of lianas in maintaining biodiversity in the forest ecosystem, lianas in the national park should be protected from further exploitation.  相似文献   

13.
In this study we attempted to explore patterns of diversity, abundance, climbing and dispersal mode of lianas in relation to disturbance in 40 Indian subtropical dry forests. The sites were selected to represent four disturbance categories: relatively undisturbed, moderately disturbed, much disturbed and heavily disturbed. All lianas ≥1 cm dbh were counted, which resulted in a total amount of 5689 individuals of lianas, representing 77 species in 62 genera and 32 families. Liana species richness and abundance increased with forest disturbance, but the liana basal area values showed an opposite trend, with high scores in undisturbed sites. Twining was the main climbing mechanism (61.3%) and zoochory (59.6%) was the main dispersal mode in all the four forest categories. Application of Bray–Curtis cluster analysis produced three distinct clusters in which the much disturbed category was more distant from the others. High abundance of large lianas in undisturbed sites and that of the invasive Lantana camara in heavily disturbed site signals the conservation significance of the less disturbed study sites. The predominance of zoochorous dispersal indicates the faunal dependence of lianas, besides of host trees, thus underlining the need for a holistic approach in biodiversity conservation of this and similar tropical forests.  相似文献   

14.
Yi Ding  Runguo Zang 《Biotropica》2009,41(5):618-624
Lianas are an integral part of tropical forest ecosystems, which usually respond strongly to severe disturbances, such as logging. To compare the effect of different logging systems on the lianas diversity in tropical rain forest, we recorded all lianas and trees ≥1 cm dbh in two 40-year-old forest sites after clear cutting (CC) and selective cutting (SC) as well as in an old-growth (OG) lowland tropical rain forest on Hainan Island in south China. Results showed that OG contained fewer liana stems and lower species richness (stems: 261, richness: 42 in 1 ha) than CC (606, 52) and SC (727, 50). However, OG had the highest Fisher's α diversity index (17.3) and species richness per stem (0.184). Species composition and dbh class distribution of lianas varied significantly with different logging systems. The mean liana dbh in OG (22.1 cm) were higher than those in CC (7.0 cm) and SC (10.4 cm). Stem twining was the most frequent climbing mechanism represented in the forest, as shown by the greatest species richness, abundance, basal area, and host tree number with this mechanism. The percent of host tree stems ≥4 cm dbh hosting at least one liana individual in SC (39%) was higher than CC (23%) and OG (19.5%). Large host trees (dbh≥60 cm) were more likely to be infested by lianas in SC and OG. Our study demonstrated that logging disturbance could significantly change the composition and structure of liana communities in the lowland tropical rain forest of south China.
  相似文献   

15.
Aim Lianas differ physiologically from trees, and therefore their species‐richness patterns and potential climate‐change responses might also differ. However, multivariate assessments of spatial patterns in liana species richness and their controls are lacking. Our aim in this paper is to identify the environmental factors that best explain the variation in liana species richness within tropical forests. Location Lowland and montane Neotropical forests. Methods We quantified the contributions of environmental variables and liana and tree‐and‐shrub abundance to the species richness of lianas, trees and shrubs ≥ 2.5 cm in diameter using a subset of 65 standardized (0.1 ha) plots from 57 Neotropical sites from a global dataset collected by the late Alwyn Gentry. We used both regression and structural equation modelling to account for the effects of environmental variables (climate, soil and disturbance) and liana density on liana species richness, and we compared the species‐richness patterns of lianas with those of trees and shrubs. Results We found that, after accounting for liana density, dry‐season length was the dominant predictor of liana species richness. In addition, liana species richness was also related to stand‐level wood density (a proxy for disturbance) in lowland forests, a pattern that has not hitherto been shown across such a large study region. Liana species richness had a weak association with soil properties, but the effect of soil may be obscured by the strong correlation between soil properties and climate. The diversity patterns of lianas and of trees and shrubs were congruent: wetter forests had a greater species richness of all woody plants. Main conclusions The primary association of both liana and tree‐and‐shrub species richness with water availability suggests that, if parts of the Neotropics become drier as a result of climate change, substantial declines in the species richness of woody plants at the stand level may be anticipated.  相似文献   

16.
As competition from lianas reduces fitness of host trees, lianas could influence community composition and structure if potential host species differ in susceptibility to infestation. We quantified infestation frequencies of Chilean temperate rainforest tree species by the massive liana Hydrangea serratifolia (H. et A.) F. Phil (Hydrangeaceae), which climbs using adhesive adventitious roots, and examined relationships with host light requirements and stem diameter. We recorded presence or absence of H. serratifolia in a random sample of 515 trees ≥10 cm diameter. Fifty‐four per cent of trees were infested by at least one individual of H. serratifolia. Although there was significant interspecific variation in infestation frequency, this variation was not systematically related to light requirements of host tree species. Probability of infestation increased with diameter for most host tree species, and old trees were found to be infested by a wide range of liana size classes, including some stems <2 cm diameter. This evidence supports the proposal that lianas which attach by adhesive roots can colonize host stems of any size.  相似文献   

17.
Changes in tree, liana, and understory plant diversity and community composition in five tropical rain forest fragments varying in area (18–2600 ha) and disturbance levels were studied on the Valparai plateau, Western Ghats. Systematic sampling using small quadrats (totaling 4 ha for trees and lianas, 0.16 ha for understory plants) enumerated 312 species in 103 families: 1968 trees (144 species), 2250 lianas (60 species), and 6123 understory plants (108 species). Tree species density, stem density, and basal area were higher in the three larger (> 100 ha) rain forest fragments but were negatively correlated with disturbance scores rather than area per se. Liana species density, stem density, and basal area were higher in moderately disturbed and lower in heavily disturbed fragments than in the three larger fragments. Understory species density was highest in the highly disturbed 18‐ha fragment, due to weedy invasive species occurring with rain forest plants. Nonmetric multidimensional scaling and Mantel tests revealed significant and similar patterns of floristic variation suggesting similar effects of disturbance on community compositional change for the three life‐forms. The five fragments encompassed substantial plant diversity in the regional landscape, harbored at least 70 endemic species (3.21% of the endemic flora of the Western Ghats–Sri Lanka biodiversity hotspot), and supported many endemic and threatened animals. The study indicates the significant conservation value of rain forest fragments in the Western Ghats, signals the need to protect them from further disturbances, and provides useful benchmarks for restoration and monitoring efforts.  相似文献   

18.
The physical characteristics of habitats shape local community structure; a classic example is the positive relationship between the size of insular habitats and species richness. Despite the high density and proximity of tree crowns in forests, trees are insular habitats for some taxa. Specifically, crown isolation (i.e. crown shyness) prevents the movement of small cursorial animals among trees. Here, we tested the hypothesis that the species richness of ants (Sa) in individual, isolated trees embedded within tropical forest canopies increases with tree size. We predicted that this pattern disappears when trees are connected by lianas (woody vines) or when strong interactions among ant species determine tree occupancy. We surveyed the resident ants of 213 tree crowns in lowland tropical forest of Panama. On average, 9.2 (range = 2–20) ant species occupied a single tree crown. Average (± SE) Sa was ca 25% higher in trees with lianas (10.2 ± 0.26) than trees lacking lianas (8.0 ± 0.51). Sa increased with tree size in liana‐free trees (Sa = 10.99A0.256), but not in trees with lianas. Ant species composition also differed between trees with and without lianas. Specifically, ant species with solitary foragers occurred more frequently in trees with lianas. The mosaic‐like pattern of species co‐occurrence observed in other arboreal ant communities was not found in this forest. Collectively, the results of this study indicate that lianas play an important role in shaping the local community structure of arboreal ants by overcoming the insular nature of tree crowns.  相似文献   

19.
The species richness and density of lianas (woody vines) in tropical forests is determined by various abiotic and biotic factors. Factors such as altitude, forest patch size and the degree of forest disturbance are known to exert strong influences on liana species richness and density. We investigated how liana species richness and density were concurrently influenced by altitude (1700–2360 m), forest patch size, forest patch location (edge or interior) and disturbance intensity in the tropical montane evergreen forests, of the Nilgiri and Palni hills, Western Ghats, southern India. All woody lianas (≥1 cm dbh) were enumerated in plots of 30 × 30 m in small, medium and large forest patches, which were located along an altitudinal gradient ranging from 1700 to 2360 m. A total of 1980 individual lianas were recorded, belonging to 45 species, 32 genera and 21 families, from a total sampling area of 13.86 ha (across 154 plots). Liana species richness and density decreased significantly with increasing altitude and increased with increasing forest patch size. Within forest patches, the proportion of forest edge or interior habitat influenced liana distribution and succession especially when compared across the patch size categories. Liana species richness and density also varied along the altitudinal gradient when examined using eco-physiological guilds (i.e. shade tolerance, dispersal mode and climbing mechanism). The species richness and density of lianas within these ecological guilds responded negatively to increasing altitude and positively to increasing patch size and additionally displayed differing sensitivities to forest disturbance. Importantly, the degree of forest disturbance significantly altered the relationship between liana species richness and density to increasing altitude and patches size, and as such is likely the primary influence on liana response to montane forest succession. Our findings suggest that managing forest disturbance in the examined montane forests would assist in conserving local liana diversity across the examined altitudinal range.  相似文献   

20.
We have assessed the effects of habitat fragmentation on understory tree communities in mesic temperate forests of the Tokachi plain of northern Japan. Tree community composition was analyzed across 13 forest fragments of various sizes ranging from 0.30 to 8.51 ha. The community composition varied along the edge-to-interior gradient: there was a lower abundance of shade-tolerant shrubs in forest edges than in forest interiors, while saplings of dominant canopy trees and pioneer trees were more abundant near the edges. The edge influence extended approximately 56 m into the forest interiors. Even the interior area of small fragments were likely to be affected not only by the nearest edge but also by more distant edges. Consequently, most areas in fragments smaller than 2 ha were covered by these “edge-type” communities. These results indicate that it is of primary importance to conserve and restore forests with an area at least larger than several hectares to sustain forest-interior tree communities.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号