首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The continuing spread of exotic plants and increasing human land-use are two major drivers of global change threatening ecosystems, species and their interactions. Separate effects of these two drivers on plant–pollinator interactions have been thoroughly studied, but we still lack an understanding of combined and potential interactive effects. In a subtropical South African landscape, we studied 17 plant–pollinator networks along two gradients of relative abundance of exotics and land-use intensity. In general, pollinator visitation rates were lower on exotic plants than on native ones. Surprisingly, while visitation rates on native plants increased with relative abundance of exotics and land-use intensity, pollinator visitation on exotic plants decreased along the same gradients. There was a decrease in the specialization of plants on pollinators and vice versa with both drivers, regardless of plant origin. Decreases in pollinator specialization thereby seemed to be mediated by a species turnover towards habitat generalists. However, contrary to expectations, we detected no interactive effects between the two drivers. Our results suggest that exotic plants and land-use promote generalist plants and pollinators, while negatively affecting specialized plant–pollinator interactions. Weak integration and high specialization of exotic plants may have prevented interactive effects between exotic plants and land-use. Still, the additive effects of exotic plants and land-use on specialized plant–pollinator interactions would have been overlooked in a single-factor study. We therefore highlight the need to consider multiple drivers of global change in ecological research and conservation management.  相似文献   

2.
Wilschut  Rutger A.  van Kleunen  Mark 《Plant and Soil》2021,462(1-2):285-296
Plant and Soil - Drought events can alter the composition of plant and soil communities, and are becoming increasingly common and severe due to climate change. However, how droughts affect...  相似文献   

3.
Activated carbon (AC) is widely used in ecological studies to elucidate the role of allelopathic substances in interspecific plant competition. However, by adsorbing chemical signalling compounds AC may also have negative effects on plants with symbiosis partners such as arbuscular mycorrhizal fungi and rhizobia. Here we test whether addition of AC has detrimental effects on the mycorrhizal root colonization of the native forb Plantago lanceolata and the exotic legume Lupinus polyphyllus, the nodulation of L. polyphyllus, and the nutrient uptake and growth of the plants growing in intra- and interspecific competition. Allelopathic effects probably occurred in the germination and seedling establishment phase when P. lanceolata suffered from the presence of L. polyphyllus. However, this negative effect of L. polyphyllus on P. lanceolata was not ameliorated by AC addition. AC negatively affected L. polyphyllus root biomass in week 4, and root and shoot biomass of P. lanceolata in week 9 of the experiment; both effects were independent of the presence and absence of the competing plant species. Mycorrhizal root colonization of both plant species was reduced in the presence of AC, although the effect tended to be stronger for L. polyphyllus. No significant effect of AC on the nodulation of L. polyphyllus was detected. P. lanceolata was the superior competitor and led to reduced biomasses of L. polyphyllus in interspecific competition. We conclude that AC can reduce the mycorrhization and performance of plants which may lead to changes in interspecific competition without the involvement of allelopathy. Contrary to former studies the AC used in our study did not enhance the nutrient availability for the plants, but reduced plant growth and mycorrhization. We suggest that the nutrient properties of the used AC are of crucial importance for the direction and the mechanisms of the effects and should always be reported.  相似文献   

4.
The structural organization of mutualism networks, typified by interspecific positive interactions, is important to maintain community diversity. However, there is little information available about the effect of introduced species on the structure of such networks. We compared uninvaded and invaded ecological communities, to examine how two species of invasive plants with large and showy flowers (Carpobrotus affine acinaciformis and Opuntia stricta) affect the structure of Mediterranean plant–pollinator networks. To attribute differences in pollination to the direct presence of the invasive species, areas were surveyed that contained similar native plant species cover, diversity and floral composition, with or without the invaders. Both invasive plant species received significantly more pollinator visits than any native species and invaders interacted strongly with pollinators. Overall, the pollinator community richness was similar in invaded and uninvaded plots, and only a few generalist pollinators visited invasive species exclusively. Invasive plants acted as pollination super generalists. The two species studied were visited by 43% and 31% of the total insect taxa in the community, respectively, suggesting they play a central role in the plant–pollinator networks. Carpobrotus and Opuntia had contrasting effects on pollinator visitation rates to native plants: Carpobrotus facilitated the visit of pollinators to native species, whereas Opuntia competed for pollinators with native species, increasing the nestedness of the plant–pollinator network. These results indicate that the introduction of a new species to a community can have important consequences for the structure of the plant–pollinator network.  相似文献   

5.
In southwestern USA, the jimsonweed Datura wrightii and the nocturnal moth Manduca sexta form a pollinator–plant and herbivore–plant association. Because the floral scent is probably important in mediating this interaction, we investigated the floral volatiles that might attract M. sexta for feeding and oviposition. We found that flower volatiles increase oviposition and include small amounts of both enantiomers of linalool, a common component of the scent of hawkmoth-pollinated flowers. Because (+)-linalool is processed in a female-specific glomerulus in the primary olfactory centre of M. sexta, we hypothesized that the enantiomers of linalool differentially modulate feeding and oviposition. Using a synthetic mixture that mimics the D. wrightii floral scent, we found that the presence of linalool was not necessary to evoke feeding and that mixtures containing (+)- and/or (−)-linalool were equally effective in mediating this behaviour. By contrast, females oviposited more on plants emitting (+)-linalool (alone or in mixtures) over control plants, while plants emitting (−)-linalool (alone or in mixtures) were less preferred than control plants. Together with our previous investigations, these results show that linalool has differential effects in feeding and oviposition through two neural pathways: one that is sexually isomorphic and non-enantioselective, and another that is female-specific and enantioselective.  相似文献   

6.
7.
Isolated embryos ofKarwinskia humboldtiana were cultured in vitro. The growth of embryos and development to plantlets on woody plant medium supplemented with indole-3-acetic acid 6.10-2 mol l–1, gibberellic acid (GA3) 3.10-2 mol l–1, and 6-benzylaminopurine (BA) 2 mol l–1 was obtained. Multiplication of shoots and rooting of excised shoots has been achieved. Callus formation on modified Murashige-Skoog medium supplemented with 1-naphthaleneacetic acid 10 mol l–1, GA3 14 mol l–1, and kinetin 5 mol l–1 on hypocotyls, or on root cultures on medium supplemented with 2.4-dichlorophenoxyacetic acid 10 mol l–1 and BA 10 mol l–1 was induced.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - GA3 gibberellic acid - IAA indole-3-acetic acid - NAA 1-naphthaleneacetic acid - TEM transmission electron microscopy  相似文献   

8.
The seeds of many plant species present a food body that is consumed by animal dispersers. In theory, if the animals are polyphagous, the availability of alternative food resource other than the diaspore itself may influence its dispersal and survival. We used the myrmecochore Helleborus foetidus L. (Ranunculaceae), the seeds of which are attached to a lipid-rich elaiosome that is attractive to ants, as a model system to investigate (1) whether alternative foods that are present along with the plant affect ant foraging behavior and diaspore removal and (2) whether food availability in an ant nest affects seed predation and germination. In a field experiment, artificial diaspore depots were offered together with either sugar, insect corpses, seed, or no food (control). Contrary to the prediction that ants would rather concentrate their foraging effort on the highly rewarding alternative foods only, many workers, attracted by the sugar, switched to the hellebore diaspores, which significantly enhanced removal rate. Results obtained in the laboratory further indicated that the larvae of Aphaenogaster iberica (a major seed disperser) predated more on the H. foetidus embryos when no alternative food was available. This, in turn, slightly reduced seed germination. Overall, these results shed light, for the first time, on the potential indirect effects of alternative resources on the fate of diaspores adapted for ant dispersal.  相似文献   

9.
Abstract Plant species richness influences primary productivity via mechanisms that (1) favour species with particular traits (selection effect) and (2) promote niche differentiation between species (complementarity). Influences of species evenness, plant density and other properties of plant communities on productivity are poorly defined, but may depend on whether selection or complementarity prevails in species mixtures. We predicted that selection effects are insensitive to species evenness but increase with plant density, and that the converse is true for complementarity. To test predictions, we grew three species of annuals in monocultures and in three‐species mixtures in which evenness of established plants was varied at each of three plant densities in a cultivated field in Texas, USA. Above‐ground biomass was smaller in mixtures than expected from monocultures because of negative ‘complementarity’ and a negative selection effect. Neither selection nor complementarity varied with species evenness, but selection effects increased at the greatest plant density as predicted.  相似文献   

10.
Plant species leave a chemical signature in the soils below them, generating fine-scale spatial variation that drives ecological processes. Since the publication of a seminal paper on plant-mediated soil heterogeneity by Paul Zinke in 1962, a robust literature has developed examining effects of individual plants on their local environments (individual plant effects). Here, we synthesize this work using meta-analysis to show that plant effects are strong and pervasive across ecosystems on six continents. Overall, soil properties beneath individual plants differ from those of neighbours by an average of 41%. Although the magnitudes of individual plant effects exhibit weak relationships with climate and latitude, they are significantly stronger in deserts and tundra than forests, and weaker in intensively managed ecosystems. The ubiquitous effects of plant individuals and species on local soil properties imply that individual plant effects have a role in plant–soil feedbacks, linking individual plants with biogeochemical processes at the ecosystem scale.  相似文献   

11.
Hummingbirds foraging in alpine meadows of central Colorado, United States, face a heterogeneous distribution of nectar rewards. This study investigated how variability in nectar resources caused by nectar-robbing bumblebees affected the foraging behavior of hummingbird pollinators and, subsequently, the reproductive success of a host plant (Ipomopsis aggregata). We presented hummingbirds with experimental arrays of I. aggregata and measured hummingbird foraging behavior as a function of known levels of nectar robbing. Hummingbirds visited significantly fewer plants with heavy nectar robbing (over 80% of available flowers robbed) and visited fewer flowers on those plants. These changes in hummingbird foraging behavior resulted in decreased percent fruit set as well as decreased total seed set in heavily robbed plants. These results indicate that hummingbird avoidance of nectar-robbed plants and flowers reduces plant fitness components. In addition, our results suggest that the mutualisms between pollinators and host plants may be affected by other species, such as nectar robbers. Received: 22 April 1998 / Accepted: 12 May 1998  相似文献   

12.
13.
14.
A. Raps  S. Vidal 《Oecologia》1998,114(4):541-547
The effects of Acremonium alternatum Gams (Ascomycotina, Clavicipitacea) on the development and nutrition of diamondback moth larvae Plutella xylostella L. (Lepidoptera, Plutellidae) were studied in the laboratory. All experiments were conducted before the endophyte reached the green parts of the plants; thus P. xylostella, a folivore, was not in direct contact with the endophyte. Larvae feeding on leaves of previously inoculated plants suffered from increased mortality, especially during the first 10 days of development. Likewise, during early development surviving larvae had a reduced relative growth rate (RGR), which, however, did not result in reduced pupal or adult weight. We found sexual differences in the food utilization efficiency; female P. xylostella progeny reacted more sensitively to endophytic infection of cabbage than male larvae. Female larvae feeding on leaves of endophyte-infested plants responded to reduced efficiency of conversion of ingested food (ECI) by increasing their relative consumption rate (RCR). The underlying mechanisms for these results are discussed in relation to changes in plant phytosterol metabolism which could account for reduced larval growth on inoculated cabbage plants. Our data suggest that unspecialized, soil-borne endophytic fungi, even when their association with the host plant is weak, can influence aboveground herbivore development and should be considered when investigating plant-insect interactions. Received: 3 November 1997 / Accepted 29 December 1997  相似文献   

15.
Increased fire frequency can significantly erode both soil properties and plant–pollinator interactions affecting plant reproductive success but they have seldom been assessed simultaneously. Here, we evaluate soil properties, pollinator assemblage and the reproductive success of two native Fabaceae herbs, Desmodium uncinatum and Rhynchosia edulis, growing in unburned, low and high fire frequency sites of Chaco Serrano across two consecutive years. Desmodium uncinatum is outcrossing with a high dependence on pollinators, whereas R. edulis is autogamous and completely independent of pollinators. We found that soil water content, nitrates and electrical conductivity significantly decreased in low and high fire frequency sites. Pollinator richness and composition visiting each plant species was similar across all fire frequency scenarios. However, fruit set of the exogamous D. uncinatum was strongly reduced in frequently burned sites, whereas fruit set of the autogamous R. edulis showed no significant changes. In both species, the probability of setting fruits was positively related to soil quality across fire frequency scenarios, implying that decreased reproduction was mainly driven by limitation of abiotic resources shaped by increased fire frequency. Because the pollinator-dependent D. uncinatum has a higher reproductive cost, reduced soil quality induced by fire frequency had stronger effects on its reproduction. Chronic reduction of sexual reproduction in frequently burned sites with depleted soils will limit population recruitment with negative consequences on long-term plant population persistence.  相似文献   

16.
17.
The microhabitat in which plants grow affects the outcome of their interactions with animals, particularly non-specialist consumers. Nevertheless, as most research on this topic has dealt with either mutualists or antagonists, little is known about the indirect effects of plant microhabitats on the outcome of tripartite interactions involving plants and both mutualists (e.g. seed dispersers) and antagonists (e.g. granivores). During three consecutive years, we analysed small-scale variations in the interaction of a perennial myrmecochore, Helleborus foetidus, with its seed dispersers and consumers as a function of the intensity of plant cover. Most seeds were released during the day and were rapidly removed by ants. Nevertheless, the proportion of ant-removed seeds was higher for plants located in open microhabitats than for plants surrounded by dense vegetation and rocky cover. Ant sampling revealed that seed removers were equally abundant, irrespective of the level of cover. By contrast, a few tiny ant species that feed on the reward without transporting the seeds were more abundant in highly covered microhabitats, irrespective of hellebore diaspore availability. These “cheaters” decrease the chance of removal by removers and increase the probability of seeds remaining on the ground until night, when granivore mice Apodemus sylvaticus become active. Mice also preferred foraging in covered microhabitats, where they consumed a larger proportion of seeds. Therefore, the density of cover indirectly increased seed predation risk by attracting more seed predators and cheater ants that contribute to increase seed availability for seed predators. Our results emphasize the importance of considering the indirect effects of plant microhabitat on their dispersal success. They highlight the indirect effect of cheaters that are likely to interfere in mutualisms and may lead to their collapse unless external factors such as spatio-temporal heterogeneity in seed availability constrain their effect. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Defenses induced by herbivore feeding or phytohormones such as methyl jasmonate (MeJA) can affect growth, reproduction, and herbivory, not only on the affected individual but also in its neighboring plants. Here, we report multiannual defense, growth, and reproductive responses of MeJA‐treated bilberry (Vaccinium myrtillus) and neighboring ramets. In a boreal forest in western Norway, we treated bilberry ramets with MeJA and water (control) and measured responses over three consecutive years. We observed the treatment effects on variables associated with herbivory, growth, and reproduction in the MeJA‐treated and untreated ramet and neighboring ramets distanced from 10 to 500 cm. MeJA‐treated ramets had fewer grazed leaves and browsed shoots compared to control, with higher effects in 2014 and 2015, respectively. In 2013, growth of control ramets was greater than MeJA‐treated ramets. However, MeJA‐treated ramets had more flowers and berries than control ramets 2 years after the treatment. The level of insect and mammalian herbivory was also lower in untreated neighboring ramets distanced 10–150 cm and, consistent with responses of MeJA‐treated ramets, the stronger effect was also one and 2 years delayed, respectively. The same neighboring ramets had fewer flowers and berries than untreated ramets, indicating a trade‐off between defense and reproduction. Although plant–plant effects were observed across all years, the strength varied by the distance between the MeJA‐treated ramets and its untreated neighbors. We document that induced defense in bilberry reduces both insect and mammalian herbivory, as well as growth, over multiple seasons. The defense responses occurred in a delayed manner with strongest effects one and 2 years after the induction. Additionally, our results indicate defense signaling between MeJA‐treated ramets and untreated neighbors. In summary, this study shows that induced defenses are important ecological strategies not only for the induced individual plant but also for neighboring plants across multiple years in boreal forests.  相似文献   

19.
Aim To understand cross‐taxon spatial congruence patterns of bird and woody plant species richness. In particular, to test the relative roles of functional relationships between birds and woody plants, and the direct and indirect environmental effects on broad‐scale species richness of both groups. Location Kenya. Methods Based on comprehensive range maps of all birds and woody plants (native species > 2.5 m in height) in Kenya, we mapped species richness of both groups. We distinguished species richness of four different avian frugivore guilds (obligate, partial, opportunistic and non‐frugivores) and fleshy‐fruited and non‐fleshy‐fruited woody plants. We used structural equation modelling and spatial regressions to test for effects of functional relationships (resource–consumer interactions and vegetation structural complexity) and environment (climate and habitat heterogeneity) on the richness patterns. Results Path analyses suggested that bird and woody plant species richness are linked via functional relationships, probably driven by vegetation structural complexity rather than trophic interactions. Bird species richness was determined in our models by both environmental variables and the functional relationships with woody plants. Direct environmental effects on woody plant richness differed from those on bird richness, and different avian consumer guilds showed distinct responses to climatic factors when woody plant species richness was included in path models. Main conclusions Our results imply that bird and woody plant diversity are linked at this scale via vegetation structural complexity, and that environmental factors differ in their direct effects on plants and avian trophic guilds. We conclude that climatic factors influence broad‐scale tropical bird species richness in large part indirectly, via effects on plants, rather than only directly as often assumed. This could have important implications for future predictions of animal species richness in response to climate change.  相似文献   

20.
The impacts of climatic change on organisms depend on the interaction of multiple stressors and how these may affect the interactions among species. Consumer–prey relationships may be altered by changes to the abundance of either species, or by changes to the per capita interaction strength among species. To examine the effects of multiple stressors on a species interaction, we test the direct, interactive effects of ocean warming and lowered pH on an abundant marine herbivore (the amphipod Peramphithoe parmerong), and whether this herbivore is affected indirectly by these stressors altering the palatability of its algal food (Sargassum linearifolium). Both increased temperature and lowered pH independently reduced amphipod survival and growth, with the impacts of temperature outweighing those associated with reduced pH. Amphipods were further affected indirectly by changes to the palatability of their food source. The temperature and pH conditions in which algae were grown interacted to affect algal palatability, with acidified conditions only affecting feeding rates when algae were also grown at elevated temperatures. Feeding rates were largely unaffected by the conditions faced by the herbivore while feeding. These results indicate that, in addition to the direct effects on herbivore abundance, climatic stressors will affect the strength of plant–herbivore interactions by changes to the susceptibility of plant tissues to herbivory.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号