首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mangrove plants comprise a unique group of organisms that grow within the intertidal zones of tropical and subtropical regions and whose distributions are influenced by both biotic and abiotic factors. To understand how these extrinsic and intrinsic processes influence a more fundamental level of the biological hierarchy of mangroves, we studied the genetic diversity of two Neotropical mangrove trees, Avicenniagerminans and A. schaueriana, using microsatellites markers. As reported for other sea-dispersed species, there was a strong differentiation between A. germinans and A. schaueriana populations sampled north and south of the northeastern extremity of South America, likely due to the influence of marine superficial currents. Moreover, we observed fine-scale genetic structures even when no obvious physical barriers were present, indicating pollen and propagule dispersal limitation, which could be explained by isolation-by-distance coupled with mating system differences. We report the first evidence of ongoing hybridization between Avicennia species and that these hybrids are fertile, although this interspecific crossing has not contributed to an increase in the genetic diversity the populations where A. germinans and A. schaueriana hybridize. These findings highlight the complex interplay between intrinsic and extrinsic factors that shape the distribution of the genetic diversity in these sea-dispersed colonizer species.  相似文献   

2.
Climate‐driven range shifts of foundation species could alter ecosystem processes and community composition by providing different resources than resident foundation species. Along the US Atlantic coast, the northward expanding foundation species, black mangrove Avicennia germinans, is replacing the dominant salt marsh foundation species, marsh cordgrass Spartina alterniflora. These species have distinct detrital attributes that ostensibly provide different resources to epifauna. We experimentally examined how detritus of these species affects decomposition and community composition in different habitat contexts at regional and local scales. First, we manipulated detritus identity (Avicennia, Spartina) at 13 sites across a 5° latitudinal gradient spanning mangrove, mixed marsh‐mangrove and salt marsh habitats. Across latitude, we found that Avicennia detritus decomposed 2–4 times faster than Spartina detritus, suggesting that detrital turnover will increase with mangrove expansion. Epifaunal abundance and richness increased 2–7 times from south to north (mangrove to salt marsh) and were equivalent between Avicennia and Spartina detritus except for crabs, a dominant taxonomic group that preferred Spartina detritus. Second, to examine the whether changing habitat context affected regional patterns, we manipulated detritus identity and surrounding habitat type (mangrove, salt marsh) at a single mixed site, also including inert mimics to separate structural and nutritional roles of detritus. Epifaunal richness was similar between the two detrital types, but crabs were 2–7 times more abundant in Spartina detritus due to its structural attributes. Surrounding habitat type did not influence decomposition rate or community patterns, which suggests that latitudinal influences, not surrounding habitat, drove the regional community patterns in the first experiment. Overall, mangrove expansion could alter epifaunal communities due to the lower structural value and faster turnover of mangrove detritus. As species shift with changing climate, understanding foundation species substitutability is critical to predict community change, but we must account for concomitant environmental changes that also modify communities.  相似文献   

3.
In this study, we explored how past terrestrial and marine climate changes have interacted to shape the phylogeographic patterns of the intertidal red seaweed Gracilaria caudata, an economically important species exploited for agar production in the Brazilian north‐east. Seven sites were sampled along the north‐east tropical and south‐east sub‐tropical Brazilian coast. The genetic diversity and structure of G. caudata was inferred using a combination of mitochondrial (COI and cox2‐3), chloroplast (rbcL) and 15 nuclear microsatellite markers. A remarkable congruence between nuclear, mitochondrial and chloroplast data revealed clear separation between the north‐east (from 03° S to 08° S) and the south‐east (from 20° S to 23° S) coast of Brazil. These two clades differ in their demographic histories, with signatures of recent demographic expansions in the north‐east and divergent populations in the south‐east, suggesting the maintenance of several refugia during the last glacial maximum due to sea‐level rise and fall. The Bahia region (around 12° S) occupies an intermediate position between both clades. Microsatellites and mtDNA markers showed additional levels of genetic structure within each sampled site located south of Bahia. The separation between the two main groups in G. caudata is likely recent, probably occurring during the Quaternary glacial cycles. The genetic breaks are concordant with (i) those separating terrestrial refugia, (ii) major river outflows and (iii) frontiers between tropical and subtropical regions. Taken together with previously published eco‐physiological studies that showed differences in the physiological performance of the strains from distinct locations, these results suggest that the divergent clades in G. caudata correspond to distinct ecotypes in the process of incipient speciation and thus should be considered for the management policy of this commercially important species.  相似文献   

4.
Marine populations are typically characterized by weak genetic differentiation due to the potential for long‐distance dispersal favouring high levels of gene flow. However, strong directional advection of water masses or retentive hydrodynamic forces can influence the degree of genetic exchange among marine populations. To determine the oceanographic drivers of genetic structure in a highly dispersive marine invertebrate, the giant California sea cucumber (Parastichopus californicus), we first tested for the presence of genetic discontinuities along the coast of North America in the northeastern Pacific Ocean. Then, we tested two hypotheses regarding spatial processes influencing population structure: (i) isolation by distance (IBD: genetic structure is explained by geographic distance) and (ii) isolation by resistance (IBR: genetic structure is driven by ocean circulation). Using RADseq, we genotyped 717 individuals from 24 sampling locations across 2,719 neutral SNPs to assess the degree of population differentiation and integrated estimates of genetic variation with inferred connectivity probabilities from a biophysical model of larval dispersal mediated by ocean currents. We identified two clusters separating north and south regions, as well as significant, albeit weak, substructure within regions (FST = 0.002, = .001). After modelling the asymmetric nature of ocean currents, we demonstrated that local oceanography (IBR) was a better predictor of genetic variation (R2 = .49) than geographic distance (IBD) (R2 = .18), and directional processes played an important role in shaping fine‐scale structure. Our study contributes to the growing body of literature identifying significant population structure in marine systems and has important implications for the spatial management of P. californicus and other exploited marine species.  相似文献   

5.
Drosophila melanogaster is postulated to have colonized North America in the past several 100 years in two waves. Flies from Europe colonized the east coast United States while flies from Africa inhabited the Caribbean, which if true, make the south‐east US and Caribbean Islands a secondary contact zone for African and European D. melanogaster. This scenario has been proposed based on phenotypes and limited genetic data. In our study, we have sequenced individual whole genomes of flies from populations in the south‐east US and Caribbean Islands and examined these populations in conjunction with population sequences from the west coast US, Africa, and Europe. We find that west coast US populations are closely related to the European population, likely reflecting a rapid westward expansion upon first settlements into North America. We also find genomic evidence of African and European admixture in south‐east US and Caribbean populations, with a clinal pattern of decreasing proportions of African ancestry with higher latitude. Our genomic analysis of D. melanogaster populations from the south‐east US and Caribbean Islands provides more evidence for the Caribbean Islands as the source of previously reported novel African alleles found in other east coast US populations. We also find the border between the south‐east US and the Caribbean island to be the admixture hot zone where distinctly African‐like Caribbean flies become genomically more similar to European‐like south‐east US flies. Our findings have important implications for previous studies examining the generation of east coast US clines via selection.  相似文献   

6.
Smooth‐shelled blue mussels of the Mytilus edulis species complex are widely distributed bivalve molluscs whose introductions threaten native marine biodiversity (non‐indigenous species – NIS). The aim of the present study was to identify the species and hybrids of Mytilus present in the Magellan Region (southern Chile). Results indicate that three mussel species of the Mytilus edulis complex are found in the region – M. edulis, M. chilensis (or the Southern Hemisphere lineage of Mytilus galloprovincialis), and M. galloprovincialis of Northern Hemisphere origin. For the first time, alleles of the introduced M. trossulus are reported from the Southern Hemisphere. In the Strait of Magellan the native Pacific blue mussel, Mytilus chilensis and the native Atlantic blue mussel, Mytilus edulis, meet and mix at a natural hybrid zone (about 125 km in length). This is the first record of a natural Mytilus hybrid zone in the Southern Hemisphere and is also the first record of the co‐occurrence of genes from all four Mytilus species in any one region. These results contribute to the knowledge of the biodiversity and delimitation of mussel species in southern South America, and highlight how introduced species may threaten the genetic integrity of native species through hybridization and introgression.  相似文献   

7.
Along the west coast of South America mangroves are found only outside the area influenced by the cold Peruvian Current. At 6° S (near ‘Cerro Illescas’) the current turns west to the open sea in the direction of the Galapagos Islands. Dense mangrove vegetation with a tree height up to 15 m occurs only north of 3° 35′ S from the delta of the river Tumbes (Peru). At 3° 44′ S some small individuals of Rhizophora and at 5° 30′ S a small stand of Avicennia can be found. In the transition zone between 3° 35′ and 6° S no mangrove forest occurs. The reasons for the lack of mangal in the transition zone are:
  1. Evapotranspiration and atmospheric humidity show significant differences between the mangrove region and the transition zone. In this zone soil conditions like salinity, water and organic matter content and the geological structure can also be considered as inhibiting mangrove growth.
  2. Topographic conditions in this zone are not suitable for mangal and the lack of a regular annual flow from rivers provides a sharp limit for the existence of mangal in the delta of the river Tumbes. Nevertheless, cultivation of mangrove species south of the mangrove region is possible and seems promising.
  相似文献   

8.
The effect of glaciation on the levels and patterns of genetic variation has been well studied in the Northern Hemisphere. However, although glaciation has undoubtedly shaped the genetic structure of plants in the Southern Hemisphere, fewer studies have characterized the effect, and almost none of them using microsatellites. Particularly, complex patterns of genetic structure might be expected in areas such as the Andes, where both latitudinal and altitudinal glacial advance and retreat have molded modern plant communities. We therefore studied the population genetics of three closely related, hybridizing species of Nothofagus (Nobliqua, N. alpina, and N. glauca, all of subgenus Lophozonia; Nothofagaceae) from Chile. To estimate population genetic parameters and infer the influence of the last ice age on the spatial and genetic distribution of these species, we examined and analyzed genetic variability at seven polymorphic microsatellite DNA loci in 640 individuals from 40 populations covering most of the ranges of these species in Chile. Populations showed no significant inbreeding and exhibited relatively high levels of genetic diversity (HE = 0.502–0.662) and slight, but significant, genetic structure (RST = 8.7–16.0%). However, in N. obliqua, the small amount of genetic structure was spatially organized into three well‐defined latitudinal groups. Our data may also suggest some introgression of N. alpina genes into N. obliqua in the northern populations. These results allowed us to reconstruct the influence of the last ice age on the genetic structure of these species, suggesting several centers of genetic diversity for N. obliqua and N. alpina, in agreement with the multiple refugia hypothesis.  相似文献   

9.
Mangroves are species of halophytic intertidal trees and shrubs derived from tropical genera and are likely delimited in latitudinal range by varying sensitivity to cold. There is now sufficient evidence that mangrove species have proliferated at or near their poleward limits on at least five continents over the past half century, at the expense of salt marsh. Avicennia is the most cold‐tolerant genus worldwide, and is the subject of most of the observed changes. Avicennia germinans has extended in range along the USA Atlantic coast and expanded into salt marsh as a consequence of lower frost frequency and intensity in the southern USA. The genus has also expanded into salt marsh at its southern limit in Peru, and on the Pacific coast of Mexico. Mangroves of several species have expanded in extent and replaced salt marsh where protected within mangrove reserves in Guangdong Province, China. In south‐eastern Australia, the expansion of Avicennia marina into salt marshes is now well documented, and Rhizophora stylosa has extended its range southward, while showing strong population growth within estuaries along its southern limits in northern New South Wales. Avicennia marina has extended its range southwards in South Africa. The changes are consistent with the poleward extension of temperature thresholds coincident with sea‐level rise, although the specific mechanism of range extension might be complicated by limitations on dispersal or other factors. The shift from salt marsh to mangrove dominance on subtropical and temperate shorelines has important implications for ecological structure, function, and global change adaptation.  相似文献   

10.
Climate oscillations have left a significant impact on the patterns of genetic diversity observed in numerous taxa. In this study, we examine the effect of Quaternary climate instability on population genetic variability of a bumble bee pollinator species, Bombus huntii in western North America. Pleistocene and contemporary B. huntii habitat suitability (HS) was estimated with an environmental niche model (ENM) by associating 1,035 locality records with 10 bioclimatic variables. To estimate genetic variability, we genotyped 380 individuals from 33 localities at 13 microsatellite loci. Bayesian inference was used to examine population structure with and without a priori specification of geographic locality. We compared isolation by distance (IBD) and isolation by resistance (IBR) models to examine population differentiation within and among the Bayesian inferred genetic clusters. Furthermore, we tested for the effect of environmental niche stability (ENS) on population genetic diversity with linear regression. As predicted, high‐latitude B. huntii habitats exhibit low ENS when compared to low‐latitude habitats. Two major genetic clusters of B. huntii inhabit western North America: (a) a north genetic cluster predominantly distributed north of 28°N and (b) a south genetic cluster distributed south of 28°N. In the south genetic cluser, both IBD and IBR models are significant. However, in the north genetic cluster, IBD is significant but not IBR. Furthermore, the IBR models suggest that low‐latitude montane populations are surrounded by habitat with low HS, possibly limiting dispersal, and ultimately gene flow between populations. Finally, we detected high genetic diversity across populations in regions that have been climatically unstable since the last glacial maximum (LGM), and low genetic diversity across populations in regions that have been climatically stable since the LGM. Understanding how species have responded to climate change has the potential to inform management and conservation decisions of both ecological and economic concerns.  相似文献   

11.
Much progress in speciation research stems from documenting patterns of morphological and genetic variation in hybrid zones. Contrasting patterns of marker introgression in different sections of the contact can provide valuable insights on the relative importance of various evolutionary mechanisms maintaining species differences in the face of hybridization and gene flow and on hybrid zone temporal and spatial dynamics. We studied species interactions in the common toads Bufo bufo and B. spinosus in France and northwestern Italy using morphological and molecular data from the mitochondrial and nuclear genomes in an extensive survey, including two independent transects west and east of the Alps. At both, we found sharp, coincident and concordant nuclear genetic transitions. However, morphological clines were wider or absent and mtDNA introgression was asymmetric. We discuss alternative, nonexclusive hypotheses about evolutionary processes generating these patterns, including drift, selection, long‐distance dispersal and spatial shifts in hybrid zone location and structure. The distribution of intraspecific mtDNA lineages supports a scenario in which B. bufo held a local refugium during the last glacial maximum. Present‐day genetic profiles are best explained by an advance of B. spinosus from a nearby Iberian refugium, largely superseding the local B. bufo population, followed by an advance of B. bufo from the Balkans, with prongs north and south of the Alps, driving B. spinosus southwards. A pendulum moving hybrid zone, first northwards and then southwards, explains the wide areas of introgression at either side of the current position of the contact zones.  相似文献   

12.
The domestication of plants frequently results in a high level of genetic differentiation between domesticated plants and their wild progenitors. This process is counteracted by gene flow between wild and domesticated plants because they are usually able to inter‐mate and to exchange genes. We investigated the extent of gene flow between wild barley Hordeum spontaneum and cultivated barley Hordeum vulgare, and its effect on population structure in wild barley by analysing a collection of 896 wild barley accessions (Barley1K) from Israel and all available Israeli H. vulgare accessions from the Israeli gene bank. We compared the performance of simple sequence repeats (SSR) and single nucleotide polymorphisms (SNP) marker data genotyped over a core collection in estimating population parameters. Estimates of gene flow rates with SSR markers indicated a high level of introgression from cultivated barley into wild barley. After removing accessions from the wild barley sample that were recently admixed with cultivated barley, the inference of population structure improved significantly. Both SSR and SNP markers showed that the genetic population structure of wild barley in Israel corresponds to the three major ecogeographic regions: the coast, the Mediterranean north and the deserts in the Jordan valley and the South. Gene flow rates were estimated to be higher from north to south than in the opposite direction. As has been observed in other crop species, there is a significant exchange of alleles between the wild species and domesticated varieties that needs to be accounted for in the population genetic analysis of domestication.  相似文献   

13.
Comparative phylogeography offers a unique opportunity to understand the interplay between past environmental events and life‐history traits on diversification of unrelated but co‐distributed species. Here, we examined the effects of the quaternary climate fluctuations and palaeomarine currents and present‐day marine currents on the extant patterns of genetic diversity in the two most conspicuous mangrove species of the Neotropics. The black (Avicennia germinans, Avicenniaceae) and the red (Rhizophora mangle, Rhizophoraceae) mangroves have similar geographic ranges but are very distantly related and show striking differences on their life‐history traits. We sampled 18 Atlantic and 26 Pacific locations for A. germinans (N = 292) and R. mangle (N = 422). We performed coalescence simulations using microsatellite diversity to test for evidence of population change associated with quaternary climate fluctuations. In addition, we examined whether patterns of genetic variation were consistent with the directions of major marine (historical and present day) currents in the region. Our demographic analysis was grounded within a phylogeographic framework provided by the sequence analysis of two chloroplasts and one flanking microsatellite region in a subsample of individuals. The two mangrove species shared similar biogeographic histories including: (1) strong genetic breaks between Atlantic and Pacific ocean basins associated with the final closure of the Central American Isthmus (CAI), (2) evidence for simultaneous population declines between the mid‐Pleistocene and early Holocene, (3) asymmetric historical migration with higher gene flow from the Atlantic to the Pacific oceans following the direction of the palaeomarine current, and (4) contemporary gene flow between West Africa and South America following the major Atlantic Ocean currents. Despite the remarkable differences in life‐history traits of mangrove species, which should have had a strong influence on seed dispersal capability and, thus, population connectivity, we found that vicariant events, climate fluctuations and marine currents have shaped the distribution of genetic diversity in strikingly similar ways.  相似文献   

14.
The study of natural hybrid zones can illuminate aspects of lineage divergence and speciation in morphologically cryptic taxa. We studied a hybrid zone between two highly divergent but morphologically similar lineages (south‐western and south‐eastern) of the Iberian endemic Bosca's newt (Lissotriton boscai) in SW Iberia with a multilocus dataset (microsatellites, nuclear and mitochondrial genes). STRUCTURE and NEWHYBRIDS analyses retrieved few admixed individuals, which classified as backcrosses involving parental individuals of the south‐western lineage. Our results show asymmetric introgression of mtDNA beyond the contact from this lineage into the south‐eastern lineage. Analysis of nongeographic introgression patterns revealed asymmetries in the direction of introgression, but except for mtDNA, we did not find evidence for nonconcordant introgression patterns across nuclear loci. Analysis of a 150‐km transect across the hybrid zone showed broadly coincident cline widths (ca. 3.2–27.9 km), and concordant cline centres across all markers, except for mtDNA that is displaced ca. 60 km northward. Results from ecological niche modelling show that the hybrid zone is in a climatically homogenous area with suitable habitat for the species, suggesting that contact between the two lineages is unlikely to occur further south as their distributions are currently separated by an extensive area of unfavourable habitat. Taken together, our findings suggest the genetic structure of this hybrid zone results from the interplay of historical (biogeographic) and population‐level processes. The narrowness and coincidence of genetic clines can be explained by weak selection against hybrids and reflect a degree of reproductive isolation that is consistent with cryptic speciation.  相似文献   

15.
Wild populations of the pustulose ark, Anadara tuberculosa (Bivalvia), an emblematic species of the East Pacific mangrove ecosystem declined in South American countries (Colombia, Ecuador, and Peru) mainly due to overharvesting and habitat loss or degradation. Understanding the genetic aspects of geographic variations and population structure of A. tuberculosa, currently unknown, appears as a priority to fishery authorities in order to elaborate integrated and collaborative conservation policies for fishery management, aquaculture, and stock enhancement programs. We used mtDNA sequence data to investigate haplotype diversity, genetic structure, and demography of A. tuberculosa. Results indicate genetic homogeneity of populations distributed north and south of the equator, respectively. However, statistically significant differentiation emerged between northern and southern populations with pairwise фST values ranging between 0.036 and 0.092. The oceanic current system acting in the area (Panama Current and Humboldt Current) might play a role in limiting the larval dispersal of the species, still poorly understood. Demography reconstruction supported recent population expansion, possibly started after last glacial maximum. Our results would suggest separate and independent management of populations north and south of the equator.  相似文献   

16.
Douglas‐fir (Pseudotsuga menziesii) is one of numerous wide‐range forest tree species represented by subspecies/varieties, which hybridize in contact zones. This study examined the genetic structure of this North American conifer and its two hybridizing varieties, coastal and Rocky Mountain, at intervarietal and intravarietal level. The genetic structure was subsequently associated with the Pleistocene refugial history, postglacial migration and intervarietal hybridization/introgression. Thirty‐eight populations from the USA and Canada were genotyped for 13 nuclear SSRs and analyzed with simulations and traditional population genetic structuring methods. Eight genetic clusters were identified. The coastal clusters embodied five refugial populations originating from five distinct refugia. Four coastal refugial populations, three from California and one from western Canada, diverged during the Pleistocene (56.9–40.1 ka). The three Rocky Mountain clusters reflected distinct refugial populations of three glacial refugia. For Canada, ice covered during the Last Glacial Maximum, we present the following three findings. (1) One refugial population of each variety was revealed in the north of the distribution range. Additional research including paleodata is required to support and determine whether both northern populations originated from cryptic refugia situated south or north of the ice‐covered area. (2) An interplay between intravarietal gene flow of different refugial populations and intervarietal gene flow by hybridization and introgression was identified. (3) The Canadian hybrid zone displayed predominantly introgressants of the Rocky Mountain into the coastal variety. This study provides new insights into the complex Quaternary dynamics of this conifer essential for understanding its evolution (outside and inside the native range), adaptation to future climates and for forest management.  相似文献   

17.
Aim The tunicate Molgula manhattensis has a disjunct amphi‐Atlantic distribution and a recent history of world‐wide introductions. Its distribution could be the result of regional extinctions followed by post‐glacial recolonization, or anthropogenic dispersal. To determine whether the North Atlantic distribution of M. manhattensis is natural or human‐mediated, we analysed mtDNA cytochrome c oxidase subunit I (COI) sequence variation in individuals from cryptogenic and introduced ranges. Location North Atlantic Europe and America; Black Sea; San Francisco Bay; Osaka Bay. Methods Nuclear 18S rDNA sequences were used to resolve phylogenetic relationships and mtDNA COI sequences for phylogeographic analyses. Results Phylogenetic analyses confirmed that M. manhattensis and M. socialis, which are frequently confused, are distinct species. MtDNA haplotype diversity was nearly three times higher with deeper relationships among haplotypes on the North‐east American coast than in Europe. Diversity declined from south to north in America but not in Europe. In areas of known introductions (Black Sea, Japan, San Francisco Bay), M. manhattensis showed variable levels of haplotype diversity. Medium‐to‐high‐frequency haplotypes originating from the North‐west Atlantic were present in two locations of known introductions, but not in Europe. Private haplotypes were found on both sides of the Atlantic and in introduced populations. The mismatch distribution for the North‐east Atlantic coast indicates a recent expansion. Main conclusions Molgula manhattensis is native in North‐east America. However, whether it was introduced or is native to Europe remains equivocal. Additional sampling might or might not reveal the presence of putative private European haplotypes in America. The low European diversity may be explained by low effective population size and a recent expansion, or by low propagule pressure of anthropogenic introduction. Absence of medium‐to‐high‐frequency American haplotypes in Europe may be the result of exclusive transport from southern ports, or long‐term residence. These arguments are ambiguous, and M. manhattensis remains cryptogenic in Europe.  相似文献   

18.
Previous studies suggested that the biodiversity of the mangrove‐associated Bostrychia radicans/Bostrychia moritziana species complex on the Pacific coast of Central America, based on genetic and reproductive data, were low compared with similar areas on the Atlantic coast. Evolutionary scenarios were proposed based on either a recent introduction to the Pacific, or a more uniform environment leading to genetically connected populations and low differentiation between populations. We sampled more extensively in southern Mexico, Guatemala and El Salvador and sequenced the samples for the RuBisCo spacer. Our results show that genetic diversity is high in these populations. Many haplotypes retrieved are also found in the Atlantic Ocean (USA, Brazil), an observation not made before. Data suggest that populations are highly differentiated with little evidence of isolation‐by‐distance. The population at La Puntilla, El Salvador is highly differentiated from other populations. Data also suggest that diversity is reduced in a northerly direction, with only one haplotype, unique to Pacific Central America, found north of Chiapas, Mexico. This could be due to northern expansion of this unique genotype as sea surface temperatures ameliorated following the last glacial maximum. Our data do not support the previous proposition of low diversity in the east central Pacific and suggest that much of the Pacific Central America diversity is from before the closure of the Isthmus of Panama.  相似文献   

19.
Out of 62 bacterial isolates obtained from the mangrove Avicennia marina rhizosphere that grows along the Abu Dhabi coast, United Arab Emirates (UAE), an isolate of Pseudoalteromonas maricaloris (Wild type strain) (WT) produced relatively high levels of 1-aminocyclopropane-1-carboxylic acid (ACC) deaminase in vitro. Application of this WT strain under greenhouse conditions to A. marina seedlings significantly (P < 0.05), reduced endogenous levels of ACC in the roots and shoots, and significantly (P < 0.05) increased the levels of in planta endogenous plant growth regulators (PGRs) including indole-3-acetic acid (IAA), indole-3-pyruvic acid (IPYA), putrescine (Put), spermidine (Spd) and spermine (Spm) in roots and shoots compared with control mangrove seedlings. WT application has also significantly (P < 0.05) increased photosynthetic pigment contents, photosynthetic carbon assimilation, plant water use efficiency and promoted mangrove seedlings growth characteristics including increased dry weight and length of roots and shoots, total leaf area and the number of the side branches compared with control mangrove seedlings. In comparison, an ACC deaminase non-producing mutant strain (NPM) failed to reduce endogenous levels of ACC in the roots and shoots and also failed to increase endogenous PGRs and photosynthetic pigments and did not promote seedling growth. Both WT and NPM strains were incapable of producing in vitro detectable levels of IAA, IPYA, Gibberellic acid (GA3), zeatin (Z), Put, Spd and Spm in the culture filtrates. This study demonstrated for the first time the ability of ACC deaminase-producing bacteria to promote mangrove growth under greenhouse conditions. P. maricaloris has potential as biological inoculants to promote the growth of mangrove seedlings in afforestation programs in nutrient impoverished sediments in hyper-saline coastal areas in the UAE.  相似文献   

20.
Norman C. Duke 《Hydrobiologia》1995,295(1-3):167-181
Without continental drift, the diversity and distribution of many species, including mangrove plants, would be very different today. First, there would be fewer pantropic genera and many more endemics. Second, their characteristics would not be as common and widespread as some are today. Continental drift has brought about the massive mixing and dispersal of genes in geologically recent times, greatly enhancing the evolutionary process; particularly for flowering plants — the angiosperms, which evolved during the period.Mangrove plants are comprised of approximately 70 species from 20 quite different angiosperm families. Most taxa are characterized by special physiological abilities and structural forms, enabling them to live in both seasonally fluctuating saline conditions, and water-saturated soils. Their occurrence is mostly tropical, perhaps because of harsh physiological conditions of intertidal habitats; but distributions of specific taxa do not fully concur with the idea of a completely tropical evolution, at least for some important species.At least one genus of mangrove tree, Avicennia, occurs around the world, chiefly in tropical estuarine habitats, although they also range into temperate latitudes, especially in the south. Around the world, there are no more than ten species of Avicennia recognised today, but their diagnostic determinants were inadequate prior to recent studies using both numerical analyses of morphological parameters and isozymes. Such analyses significantly reduced the number of apparent species, notably around Australia, and provided a basis for the revision of distributional records throughout the Indo West Pacific region. One species, A. marina, was found to be widespread and morphologically variable with genes divided into characteristic groupings of at least three geographic areas in the region. Based on these findings, there are several novel inferences to be made regarding the evolution of this genus. A western Gondwanan origin is proposed, with subsequent radiation of several taxa facilitated via the tectonic dispersal of southern continental fragments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号