首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Ecological communities are partly structured by indirect interactions, where one species can indirectly affect another by altering its interactions with a third species. In the absence of direct predation, nonconsumptive effects of predators on prey have important implications for subsequent community interactions. To better understand these interactions, we used a Daphnia‐parasite‐predator cue system to evaluate if predation risk affects Daphnia responses to a parasite. We investigated the effects of predator cues on two aspects of host–parasite interactions (susceptibility to infection and infection intensity), and whether or not these effects differed between sexes. Our results show that changes in response to predator cues caused an increase in the prevalence and intensity of parasite infections in female predator‐exposed Daphnia. Importantly, the magnitude of infection risk depended on how long Daphnia were exposed to the cues. Additionally, heavily infected Daphnia that were constantly exposed to cues produced relatively more offspring. While males were ~5× less likely to become infected compared to females, we were unable to detect effects of predator cues on male Daphnia–parasite interactions. In sum, predators, prey, and their parasites can form complex subnetworks in food webs, necessitating a nuanced understanding of how nonconsumptive effects may mediate these interactions.  相似文献   

2.
Unique species of macaques are distributed across Sulawesi Island, Indonesia, and the details of Entamoeba infections in these macaques are unknown. A total of 77 stool samples from Celebes crested macaques (Macaca nigra) and 14 stool samples from pigs were collected in Tangkoko Nature Reserve, North Sulawesi, and the prevalence of Entamoeba infection was examined by PCR. Entamoeba polecki was detected in 97% of the macaques and all of the pigs, but no other Entamoeba species were found. The nucleotide sequence of the 18S rRNA gene in E. polecki from M. nigra was unique and showed highest similarity with E. polecki subtype (ST) 4. This is the first case of identification of E. polecki ST4 from wild nonhuman primates. The sequence of the 18S rRNA gene in E. polecki from pigs was also unique and showed highest similarity with E. polecki ST1. These results suggest that the diversity of the 18S rRNA gene in E. polecki is associated with differences in host species and geographic localization, and that there has been no transmission of E. polecki between macaques and pigs in the study area.  相似文献   

3.
Carnivorous plants acquire most of their nutrients by capturing ants, insects and other arthropods through their leaf‐evolved biological traps. So far, the best‐known attractants in carnivorous prey traps are nectar, colour and olfactory cues. Here, fresh prey traps of 14 Nepenthes, five Sarracenia, five Drosera, two Pinguicula species/hybrids, Dionaea muscipula and Utricularia stellaris were scanned at UV 366 nm. Fluorescence emissions of major isolates of fresh Nepenthes khasiana pitcher peristomes were recorded at an excitation wavelength of 366 nm. N. khasiana field pitcher peristomes were masked by its slippery zone extract, and prey capture rates were compared with control pitchers. We found the existence of distinct blue fluorescence emissions at the capture spots of Nepenthes, Sarracenia and Dionaea prey traps at UV 366 nm. These alluring blue emissions gradually developed with the growth of the prey traps and diminished towards their death. On excitation at 366 nm, N. khasiana peristome 3:1 CHCl3–MeOH extract and its two major blue bands showed strong fluorescence emissions at 430–480 nm. Masking of blue emissions on peristomes drastically reduced prey capture in N. khasiana pitchers. We propose these molecular emissions as a critical factor attracting arthropods and other visitors to these carnivorous traps. Drosera, Pinguicula and Utricularia prey traps showed only red chlorophyll emissions at 366 nm.  相似文献   

4.
Diet analysis is an important aspect when investigating the ecology of fish‐eating animals and essential for assessing their functional role in food webs across aquatic and terrestrial ecosystems. The identification of fish remains in dietary samples, however, can be time‐consuming and unsatisfying using conventional morphological analysis of prey remains. Here, we present a two‐step multiplex PCR system, comprised of six assays, allowing for rapid, sensitive and specific detection of fish DNA in dietary samples. This approach encompasses 78 fish and lamprey species native to Central European freshwaters and enables the identification of 31 species, six genera, two families, two orders and two fish family clusters. All targeted taxa were successfully amplified from 25 template molecules, and each assay was specific when tested against a wide range of invertebrates and vertebrates inhabiting aquatic environments. The applicability of the multiplex PCR system was evaluated in a feeding trial, wherein it outperformed morphological prey analysis regarding species‐specific prey identification in faeces of Eurasian otters. Additionally, a wide spectrum of fish species was detected in field‐collected faecal samples and regurgitated pellets of Common Kingfishers and Great Cormorants, demonstrating the broad applicability of the approach. In conclusion, this multiplex PCR system provides an efficient, easy to use and cost‐effective tool for assessing the trophic ecology of piscivores in Central Europe. Furthermore, the multiplex PCRs and the primers described therein will be applicable wherever DNA of the targeted fish species needs to be detected at high sensitivity and specificity.  相似文献   

5.
The population structure of parasites is central to the ecology and evolution of host‐parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well‐separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host—a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host‐parasite system.  相似文献   

6.
Idiopathic dilated cardiomyopathy (IDCM), characterized by ventricular dilation and impaired systolic function, is a primary cardiomyopathy resulting in heart failure. During heart contraction, the Z‐line is responsible for transmitting force between sarcomeres and is also a hot spot for muscle cell signalling. Mutations in Z‐line proteins have been linked to cardiomyopathies in both humans and mice. Actinin‐associated LIM protein (ALP) and enigma homolog protein (ENH), encoded by PDLIM3 and PDLIM5, are components of the muscle cytoskeleton and localize to the Z‐line. A PDLIM3 or PDLIM5 deficiency in mice leads to dilated cardiomyopathy. Since PDLIM3 and PDLIM5 are candidate IDCM susceptibility genes, the current study aims to investigate whether polymorphisms within PDLIM3 and PDLIM5 could be correlated with IDCM. We designed a case‐control study, and exons of the PDLIM3 and PDLIM5 were amplified by polymerase chain reactions in 111 IDCM patients and 137 healthy controls. We found that five synonymous polymorphisms had statistical distribution differences between IDCM patients and controls, including rs4861669, rs4862543, c.731 + 131 T > G, c.1789‐3 C > T and rs7690296, according to genotype and allele distribution. Haplotype G‐C‐C‐C and A‐T‐C‐T (rs2306705, rs10866276, rs12644280 and rs4635850 synthesized) were regarded as risk factors for IDCM patients when compared with carriers of other haplotypes (all P < .05). Furthermore, IDCM patients with two novel polymorphisms (c.731 + 131 T > G and c.1789‐3 C > T) had lower systolic blood pressure. In conclusion, these five synonymous polymorphisms might constitute a genetic background that increases the risk of the development of IDCM in the Chinese Han population.  相似文献   

7.
8.
9.
Hosts combat their parasites using mechanisms of resistance and tolerance, which together determine parasite virulence. Environmental factors, including diet, mediate the impact of parasites on hosts, with diet providing nutritional and medicinal properties. Here, we present the first evidence that ongoing environmental change decreases host tolerance and increases parasite virulence through a loss of dietary medicinal quality. Monarch butterflies use dietary toxins (cardenolides) to reduce the deleterious impacts of a protozoan parasite. We fed monarch larvae foliage from four milkweed species grown under either elevated or ambient CO2, and measured changes in resistance, tolerance, and virulence. The most high‐cardenolide milkweed species lost its medicinal properties under elevated CO2; monarch tolerance to infection decreased, and parasite virulence increased. Declines in medicinal quality were associated with declines in foliar concentrations of lipophilic cardenolides. Our results emphasize that global environmental change may influence parasite–host interactions through changes in the medicinal properties of plants.  相似文献   

10.
The outcome of species interactions may manifest differently at different spatial scales; therefore, our interpretation of observed interactions will depend on the scale at which observations are made. For example, in ladybeetle–aphid systems, the results from small‐scale cage experiments usually cannot be extrapolated to landscape‐scale field observations. To understand how ladybeetle–aphid interactions change across spatial scales, we evaluated predator–prey interactions in an experimental system. The experimental habitat consisted of 81 potted plants and was manipulated to facilitate analysis across four spatial scales. We also simulated a spatially explicit metacommunity model parallel to the experiment. In the experiment, we found that the negative effect of ladybeetles on aphids decreased with increasing spatial scales. This pattern can be explained by ladybeetles strongly suppressing aphids at small scales, but not colonizing distant patches fast enough to suppress aphids at larger scales. In the experiment, the positive effects of aphids on ladybeetles were strongest at three‐plant scale. In a model scenario where predators did not have demographic dynamics, we found, consistent with the experiment, that both the effects of ladybeetles on aphids and the effects of aphids on ladybeetles decreased with increasing spatial scales. These patterns suggest that dispersal was the primary cause of ladybeetle population dynamics in our experiment: aphids increased ladybeetle numbers at smaller scales because ladybeetles stayed in a patch longer and performed area‐restricted searches after encountering aphids; these behaviors did not affect ladybeetle numbers at larger spatial scales. The parallel experimental and model results illustrate how predator–prey interactions can change across spatial scales, suggesting that our interpretation of observed predator–prey dynamics would differ if observations were made at different scales. This study demonstrates how studying ecological interactions at a range of scales can help link the results of small‐scale ecological experiments to landscape‐scale ecological problems.  相似文献   

11.
Understanding community assembly and population dynamics frequently requires detailed knowledge of food web structure. For many consumers, obtaining precise information about diet composition has traditionally required sacrificing animals or other highly invasive procedures, generating tension between maintaining intact study populations and knowing what they eat. We developed 16S mitochondrial DNA sequencing methods to identify arthropods in the diets of generalist vertebrate predators without requiring a blocking primer. We demonstrate the utility of these methods for a common Caribbean lizard that has been intensively studied in the context of small island food webs: Anolis sagrei (a semi‐arboreal ‘trunk‐ground’ anole ecomorph). Novel PCR primers were identified in silico and tested in vitro. Illumina sequencing successfully characterized the arthropod component of 168 faecal DNA samples collected during three field trips spanning 12 months, revealing 217 molecular operational taxonomic units (mOTUs) from at least nine arthropod orders (including Araneae, Blattodea, Coleoptera, Hemiptera, Hymenoptera, Isoptera, Lepidoptera and Orthoptera). Three mOTUs (one beetle, one cockroach and one ant) were particularly frequent, occurring in ≥50% of samples, but the majority of mOTUs were infrequent (180, or 83%, occurred in ≤5% of samples). Species accumulation curves showed that dietary richness and composition were similar between size‐dimorphic sexes; however, female lizards had greater per‐sample dietary richness than males. Overall diet composition (but not richness) was significantly different across seasons, and we found more pronounced interindividual variation in December than in May. These methods will be generally useful in characterizing the diets of diverse insectivorous vertebrates.  相似文献   

12.
Recent research indicates that low genetic variation in individuals can increase susceptibility to parasite infection, yet evidence from natural invertebrate populations remains scarce. Here, we studied the relationship between genetic heterozygosity, measured as AFLP‐based inbreeding coefficient fAFLP, and gregarine parasite burden from eleven damselfly, Calopteryx splendens, populations. We found that in the studied populations, 5–92% of males were parasitized by endoparasitic gregarines (Apicomplexa: Actinocephalidae). Number of parasites ranged from none to 47 parasites per male, and parasites were highly aggregated in a few hosts. Mean individual fAFLP did not differ between populations. Moreover, we found a positive association between individual's inbreeding coefficient and parasite burden. In other words, the more homozygous the individual, the more parasites it harbours. Thus, parasites are likely to pose strong selection pressure against inbreeding and homozygosity. Our results support the heterozygosity‐fitness correlation hypothesis, which suggests the importance of heterozygosity for an individual's pathogen resistance.  相似文献   

13.
The aim of this work was to analyze the sequential foraging behavior of dusky dolphins (Lagenorhynchus obscurus). Foraging sequences were defined when more than two feeding bouts occur with a traveling bout between them. We hypothesized that traveling costs of searching for prey patches were related to the time spent feeding on a patch. In addition, the distribution and seasonal variation of anchovy schools were studied in the area to better understand dolphins' behavior. We observed dolphins from a research vessel from 2001 to 2007, and recorded their location and behavior. Anchovy data were collected during two hydro‐acoustic surveys. Dusky dolphin behaviors varied seasonally; they spent a greater proportion of time traveling and feeding in the warm season (Kruskal‐Wallis: = 172.07, < 0.01). During the cold season dolphin groups were more likely to exhibit diving behavior and less surface feeding. We found a positive correlation between searching and foraging time (= 0.88, = 0.019), suggesting that the costs associated with searching were compensated by an increase in the energy intake during the foraging bout. There was an association between dusky dolphin and anchovy distribution, in that they co‐varied spatially and seasonally.  相似文献   

14.
Several models and experimental studies conducted in confined environments have shown that intraguild predation (IGP) can modulate population abundances and structure communities. A number of ecological and abiotic factors determine the nature and frequency of IGP. This study examined the effect of plant architecture and extraguild prey density, and their interactions, on the occurrence of IGP between two species of ladybird, Harmonia axyridis (Pallas) and Propylea quatuordecimpunctata L. (both Coleoptera: Coccinellidae). Theoretical concepts predict that IGP levels would increase with a decrease of both extraguild prey density and plant structural complexity. We conducted a factorial experiment in an open soybean field into which coccinellid larvae were introduced in experimental plots for a period of 5 days. We tested two levels of soybean aphid [Aphis glycines Matsumara (Hemiptera: Aphididae)] density, low and high (100 and 1 000 aphids per plot, respectively), and two levels of plant complexity, low (by removing half of the branches from the soybean plants) and high (by leaving plants intact). We used species‐specific molecular markers to detect the presence of P. quatuordecimpunctata in the digestive tract of H. axyridis. Molecular gut‐content analysis of H. axyridis revealed that rates of IGP were higher (20%) at low aphid density than at high aphid density (<6%). Decreased plant complexity did not impact the frequency of IGP. In accordance with existing literature, this study demonstrates that IGP is amplified at low extraguild prey density. We conclude that considering environmental factors, such as extraguild prey density, is crucial to improve our ability to predict the impact of intraguild predation on community structure and, from an applied perspective, biological control.  相似文献   

15.
Parasites and hosts interact across both micro‐ and macroevolutionary scales where congruence among their phylogeographic and phylogenetic structures may be observed. Within southern Africa, the four‐striped mouse genus, Rhabdomys, is parasitized by the ectoparasitic sucking louse, Polyplax arvicanthis. Molecular data recently suggested the presence of two cryptic species within P. arvicanthis that are sympatrically distributed across the distributions of four putative Rhabdomys species. We tested the hypotheses of phylogeographic congruence and cophylogeny among the two parasite lineages and the four host taxa, utilizing mitochondrial and nuclear sequence data. Despite the documented host‐specificity of P. arvicanthis, limited phylogeographic correspondence and nonsignificant cophylogeny was observed. Instead, the parasite–host evolutionary history is characterized by limited codivergence and several duplication, sorting and host‐switching events. Despite the elevated mutational rates found for P. arvicanthis, the spatial genetic structure was not more pronounced in the parasite lineages compared with the hosts. These findings may be partly attributed to larger effective population sizes of the parasite lineages, the vagility and social behaviour of Rhabdomys, and the lack of host‐specificity observed in areas of host sympatry. Further, the patterns of genetic divergence within parasite and host lineages may also be largely attributed to historical biogeographic changes (expansion‐contraction cycles). It is thus evident that the association between P. arvicanthis and Rhabdomys has been shaped by the synergistic effects of parasite traits, host‐related factors and biogeography over evolutionary time.  相似文献   

16.
Host shifts are widespread among avian haemosporidians, although the success of transmission depends upon parasite‐host and parasite‐vector compatibility. Insular avifaunas are typically characterized by a low prevalence and diversity of haemosporidians, although the underlying ecological and evolutionary processes remain unclear. We investigated the parasite transmission network in an insular system formed by Eleonora's falcons (the avian host), louse flies that parasitize the falcons (the potential vector), and haemosporidians (the parasites). We found a great diversity of parasites in louse flies (16 Haemoproteus and 6 Plasmodium lineages) that did not match with lineages previously found infecting adult falcons (only one shared lineage). Because Eleonora's falcon feeds on migratory passerines hunted over the ocean, we sampled falcon kills in search of the origin of parasites found in louse flies. Surprisingly, louse flies shared 10 of the 18 different parasite lineages infecting falcon kills. Phylogenetic analyses revealed that all lineages found in louse flies (including five new lineages) corresponded to Haemoproteus and Plasmodium parasites infecting Passeriformes. We found molecular evidence of louse flies feeding on passerines hunted by falcons. The lack of infection in nestlings and the mismatch between the lineages isolated in adult falcons and louse flies suggest that despite louse flies’ contact with a diverse array of parasites, no successful transmission to Eleonora's falcon occurs. This could be due to the falcons’ resistance to infection, the inability of parasites to develop in these phylogenetically distant species, or the inability of haemosporidian lineages to complete their development in louse flies.  相似文献   

17.
Parasites are thought to be a major driving force shaping genetic variation in their host, and are suggested to be a significant reason for the maintenance of sexual reproduction. A leading hypothesis for the occurrence of multiple mating (polyandry) in social insects is that the genetic diversity generated within‐colonies through this behavior promotes disease resistance. This benefit is likely to be particularly significant when colonies are exposed to multiple species and strains of parasites, but host–parasite genotypic interactions in social insects are little known. We investigated this using honey bees, which are naturally polyandrous and consequently produce genetically diverse colonies containing multiple genotypes (patrilines), and which are also known to host multiple strains of various parasite species. We found that host genotypes differed significantly in their resistance to different strains of the obligate fungal parasite that causes chalkbrood disease, while genotypic variation in resistance to the facultative fungal parasite that causes stonebrood disease was less pronounced. Our results show that genetic variation in disease resistance depends in part on the parasite genotype, as well as species, with the latter most likely relating to differences in parasite life history and host–parasite coevolution. Our results suggest that the selection pressure from genetically diverse parasites might be an important driving force in the evolution of polyandry, a mechanism that generates significant genetic diversity in social insects.  相似文献   

18.
The fact that sand dollars are often dislodged and inverted is an inescapable consequence of living at or slightly below the sediment–water interface. Once inverted, however, how do sand dollars effectively right themselves, given their small spines and stiff internal skeletons? Here, we examined the possibility that individuals of Mellita quinquiesperforata and Dendraster excentricus may take advantage of the interaction of their morphology and flow to increase the likelihood of righting. Based on flow tank observations, the critical velocity required to flip an inverted sand dollar varies with orientation and increases with test size. For both species, the critical velocity was lower when inverted sand dollars were oriented with the posterior margin facing directly downstream, compared with when the posterior margin was positioned in an upstream orientation. To test whether inverted sand dollars would actively rotate into a more advantageous position for flipping, we exposed inverted animals in three starting orientations – with their posterior edge directed upstream (the least favored position for flipping), perpendicular, and downstream to flow – to the minimum flow expected to induce flipping and compared their responses. Time‐lapse photography showed that regardless of initial orientation, within one hour, a majority of individuals of both species rotated into positions that were not statistically different from the downstream orientation (the most favored position for flipping). These results for D. excentricus were further confirmed in a field experiment. Taken together, these data suggest that inverted sand dollars are able to recognize flow direction and respond by modifying their orientation to maximize lift and drag for righting.  相似文献   

19.
In natural populations, the expression and severity of inbreeding depression can vary widely across taxa. Describing processes that influence the extent of inbreeding and inbreeding depression aid in our understanding of the evolutionary history of mating systems such as cooperative breeding and nonrandom mate selection. Such findings also help shape wildlife conservation theory because inbreeding depression reduces the viability of small populations. We evaluated the extent of inbreeding and inbreeding depression in a small, re‐introduced population of red wolves (Canis rufus) in North Carolina. Since red wolves were first re‐introduced in 1987, pedigree inbreeding coefficients (f) increased considerably and almost every wild born wolf was inbred (average = 0.154 and max = 0.383). The large inbreeding coefficients were due to both background relatedness associated with few founders and numerous close relative matings. Inbreeding depression was most evident for adult body size and generally absent for direct fitness measures such as reproductive success and survival; no lethal equivalents (LE = 0.00) were detected in juvenile survival. The lack of strong inbreeding depression in direct measures of fitness could be due to a founder effect or because there were no outbred individuals for comparison. Our results highlight the variable expression of inbreeding depression across traits and the need to measure a number of different traits when evaluating inbreeding depression in a wild population.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号