首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
Fusarium head blight, caused primarily by Fusarium graminearum (Fg), is one of the most devastating diseases of wheat. Host resistance in wheat is classified into five types (Type‐I to Type‐V), and a majority of moderately resistant genotypes carry Type‐II resistance (resistance to pathogen spread in the rachis) alleles, mainly from the Chinese cultivar Sumai 3. Histopathological studies in the past failed to identify the key tissue in the spike conferring resistance to pathogen spread, and most of the studies used destructive techniques, potentially damaging the tissue(s) under study. In the present study, nondestructive synchrotron‐based phase contrast X‐ray imaging and computed tomography techniques were used to confirm the part of the wheat spike conferring Type‐II resistance to Fg spread, thus showcasing the application of synchrotron‐based techniques to image host–pathogen interactions. Seven wheat genotypes of moderate resistance to Fusarium head blight were studied for changes in the void space volume fraction and grayscale/voxel intensity following Fg inoculation. Cell‐wall biopolymeric compounds were quantified using Fourier‐transform midinfrared spectroscopy for all genotype‐treatment combinations. The study revealed that the rachilla and rachis nodes together are structurally important in conferring Type‐II resistance. The structural reinforcement was not necessarily observed from lignin deposition but rather from an unknown mechanism.  相似文献   

2.
3.
Most zoological systematics studies are currently based on morphological features, molecular traits or a combination of both to reconstruct animals’ phylogenetic history. Increasingly, morphological studies of museum specimens are using X‐ray computed tomography to visualize internal morphology, because of its ‘non‐destructive’ nature. However, it is not known whether CT can fragment the size of DNA extracted from museum specimens, as has been demonstrated to occur in living cells. This question is of paramount importance for collections based research because X‐rays may reduce the amount of data obtainable from specimens. In our study, we tested whether exposure of museum bird skins to typical CT X‐ray energies (for visualization of the skeleton) increased DNA strand fragmentation, a key factor for the success of downstream molecular applications. For the present study, we extracted DNA from shavings of 24 prepared and dried bird skins (100+ years) footpads before and after CT scanning. The pre‐ and post‐CT fragmentation profiles were assessed using a capillary electrophoresis high‐precision instrument (Agilent Bioanalyzer). Comparison of the most common strand length in each DNA sample (relative mass) revealed no significant difference unexposed and exposed tissue (paired t‐test p = 0.463). In conclusion, we found no further quantifiable degradation of DNA strand length under standard X‐ray exposure obtained from our bird skins sample. Differences in museum preservation techniques probably had a greater effect on variation of pre‐CT DNA fragmentation.  相似文献   

4.
X‐ray microscopy can provide unique chemical, electronic, and structural insights into perovskite materials and devices leveraging bright, tunable synchrotron X‐ray sources. Over the last decade, fundamental understanding of halide perovskites and their impressive performance in optoelectronic devices has been furthered by rigorous research regarding their structural and chemical properties. Herein, studies of perovskites are reviewed that have used X‐ray imaging, spectroscopy, and scattering microscopies that have proven valuable tools toward understanding the role of defects, impurities, and processing on perovskite material properties and device performance. Together these microscopic investigations have augmented the understanding of the internal workings of perovskites and have helped to steer the perovskite community toward promising directions. In many ways, X‐ray microscopy of perovskites is still in its infancy, which leaves many exciting paths unexplored including new ptychographic, multimodal, in situ, and operando experiments. To explore possibilities, pioneering X‐ray microscopy along these lines is briefly highlighted from other semiconductor systems including silicon, CdTe, GaAs, CuInxGa1?xSe2, and organic photovoltaics. An overview is provided on the progress made in utilizing X‐ray microscopy for perovskites and present opportunities and challenges for future work.  相似文献   

5.
Abstract: Making the link between evolutionary processes and development in extinct organisms is usually hampered by the lack of preservation of ontogenetic stages in the fossil record. Planktic foraminifers, which grow by adding chambers, are an ideal target organism for such studies as their test incorporates all prior developmental stages. Previously, studies of development in these organisms were limited by the small size of their early chambers. Here, we describe the application of synchrotron radiation X‐ray tomographic microscopy (SRXTM) to document the ontogenetic history of the foraminifers Globigerinoides sacculifer and Globorotalia menardii. Our SRXTM scans permit resolution at submicrometre scale, thereby displaying additional internal structures such as pores, dissolution patterns and complexity of the wall growth. Our methods provide a powerful tool to pick apart the developmental history of these microfossils and subsequently assist in inferring phylogenetic relationships and evolutionary processes.  相似文献   

6.
7.
The zooxanthellate dendrophylliid coral, Turbinaria peltata (Scleractinia), exhibit various growth forms that increase the photoreception area through the development of coenosteum skeletons. Because it is difficult to make detailed observations of the internal structures, we visualized inner skeletal structures using nondestructive microfocus X‐ray computed tomography (CT) imaging. After removal of the coenosteum skeletons from the X‐ray CT images, three‐dimensional 3D‐models were reconstructed for individual corallites. Regular budding was observed from the 3D‐model and cross‐sectional images as follows: 1) lateral corallites occurred only near the two primary septa on one side, apart from a directive primary septum with distinct polarity; 2) the budding occurred upward at acute angles; and 3) these regular structures and polarity were repeated throughout growth with every generation. Even in zooxanthellate dendrophylliids, the same budding modes as observed in azooxanthellate equivalents control the colonial growth. These characteristics provide clues for understanding the mechanisms that regulate the shapes of modular marine organisms. J. Morphol. 276:1100–1108, 2015. © 2015 Wiley Periodicals, Inc.  相似文献   

8.
Several studies have suggested that the majority of iron (Fe) and zinc (Zn) in wheat grains are associated with phytate, but a nuanced approach to unravel important tissue‐level variation in element speciation within the grain is lacking. Here, we present spatially resolved Fe‐speciation data obtained directly from different grain tissues using the newly developed synchrotron‐based technique of X‐ray absorption near‐edge spectroscopy imaging, coupling this with high‐definition μ‐X‐ray fluorescence microscopy to map the co‐localization of essential elements. In the aleurone, phosphorus (P) is co‐localized with Fe and Zn, and X‐ray absorption near‐edge structure imaging confirmed that Fe is chelated by phytate in this tissue layer. In the crease tissues, Zn is also positively related to P distribution, albeit less so than in the aleurone. Speciation analysis suggests that Fe is bound to nicotianamine rather than phytate in the nucellar projection, and that more complex Fe structures may also be present. In the embryo, high Zn concentrations are present in the root and shoot primordium, co‐occurring with sulfur and presumably bound to thiol groups. Overall, Fe is mainly concentrated in the scutellum and co‐localized with P. This high resolution imaging and speciation analysis reveals the complexity of the physiological processes responsible for element accumulation and bioaccessibility.  相似文献   

9.
In this work, the detailed morphology studies of polymer poly(3‐hexylthiophene‐2,5‐diyl) (P3HT):fullerene(PCBM) and polymer(P3HT):polymer naphthalene diimide thiophene (PNDIT) solar cell are presented to understand the challenge for getting high performance all‐polymer solar cells. The in situ X‐ray scattering and optical interferometry and ex situ hard and soft X‐ray scattering and imaging techniques are used to characterize the bulk heterojunction (BHJ) ink during drying and in dried state. The crystallization of P3HT polymers in P3HT:PCBM bulk heterojunction shows very different behavior compared to that of P3HT:PNDIT BHJ due to different mobilities of P3HT in the donor:acceptor glass. Supplemented by the ex situ grazing incidence X‐ray diffraction and soft X‐ray scattering, PNDIT has a lower tendency to form a mixed phase with P3HT than PCBM, which may be the key to inhibit the donor polymer crystallization process, thus creating preferred small phase separation between the donor and acceptor polymer.  相似文献   

10.
Plants close their stomata during drought to avoid excessive water loss, but species differ in respect to the drought severity at which stomata close. The stomatal closure point is related to xylem anatomy and vulnerability to embolism, but it also has implications for phloem transport and possibly phloem anatomy to allow sugar transport at low water potentials. Desiccation‐tolerant plants that close their stomata at severe drought should have smaller xylem conduits and/or fewer and smaller interconduit pits to reduce vulnerability to embolism but more phloem tissue and larger phloem conduits compared with plants that avoid desiccation. These anatomical differences could be expected to increase in response to long‐term reduction in precipitation. To test these hypotheses, we used tridimensional synchroton X‐ray microtomograph and light microscope imaging of combined xylem and phloem tissues of 2 coniferous species: one‐seed juniper (Juniperus monosperma) and piñon pine (Pinus edulis) subjected to precipitation manipulation treatments. These species show different xylem vulnerability to embolism, contrasting desiccation tolerance, and stomatal closure points. Our results support the hypothesis that desiccation tolerant plants require higher phloem transport capacity than desiccation avoiding plants, but this can be gained through various anatomical adaptations in addition to changing conduit or tissue size.  相似文献   

11.

Background  

Despite advances in imaging techniques, real-time visualization of the structure and dynamics of tissues and organs inside small living animals has remained elusive. Recently, we have been using synchrotron x-rays to visualize the internal anatomy of millimeter-sized opaque, living animals. This technique takes advantage of partially-coherent x-rays and diffraction to enable clear visualization of internal soft tissue not viewable via conventional absorption radiography. However, because higher quality images require greater x-ray fluxes, there exists an inherent tradeoff between image quality and tissue damage.  相似文献   

12.
Determining the structure of macromolecules is important for understanding their function. The fine structure of large macromolecules is currently studied primarily by X‐ray crystallography and single‐particle cryo‐electron microscopy (EM) reconstruction. Before the development of these techniques, macromolecular structure was often examined by negative‐staining, rotary‐shadowing and freeze‐etching EM, which are categorised here as ‘direct imaging EM methods’. In this review, the results are summarised by each of the above techniques and compared with respect to four macromolecules: the ryanodine receptor, cadherin, rhodopsin and the ribosome–translocon complex (RTC). The results of structural analysis of the ryanodine receptor and cadherin are consistent between each technique. The results obtained for rhodopsin vary to some extent within each technique and between the different techniques. Finally, the results for RTC are inconsistent between direct imaging EM and other analytical techniques, especially with respect to the space within RTC, the reasons for which are discussed. Then, the role of direct imaging EM methods in modern structural biology is discussed. Direct imaging methods should support and verify the results obtained by other analytical methods capable of solving three‐dimensional molecular architecture, and they should still be used as a primary tool for studying macromolecule structure in vivo.  相似文献   

13.
Ancient mummified soft‐tissues are a unique source to study the evolution of disease. Diagnostic imaging of such historic tissues is of foremost interest in paleoanthropology or paleopathology, with conventional x‐ray and computed tomography (CT) being the gold‐standard. Longer wavelength radiation in the far‐infrared or Terahertz region allows diagnostic close‐to‐surface tissue differentiation of bone morphology while being harmless to human cells. The aim of this study is to show the feasibility and the morpho‐diagnostic impact of THz imaging of historic remains. Images of an artificially embalmed ancient Egyptian human mummy hand, an artificially embalmed ancient Egyptian mummified fish and a macerated human lumbar vertebra were obtained by THz‐pulse imaging and compared with conventional X‐ray and CT images. Although conventional x‐ray imaging provides higher spatial resolution, we found that THz‐imaging is well‐suited for the investigation of ancient mummified soft tissue and embalming‐related substances / wrappings. In particular, bone and cartilaginous structures can be well differentiated from surrounding soft‐tissues and bandage‐wrappings by THz imaging. Furthermore, THz‐pulse imaging also measures the time‐delay of the pulsed signal when passing through the sample, which provides supplementary information on the optical density of the sample that is not obtained by X‐ray and CT. Terahertz radiation provides a completely non‐invasive diagnostic imaging modality for historic dry specimens. We anticipate this modality also to be used for detection of hidden objects in historic samples such as funerary amulets still in situ in wrapped mummies, as well as potentially for the identification of spectral signatures from chemical substances, e.g., in embalming essences.. Am J Phys Anthropol, 2010. © 2010 Wiley‐Liss, Inc.  相似文献   

14.
15.
Obtaining biological and spatial information of the early life history (ELH) phases of fishes has been problematic, such that larval and juvenile phases are often referred to as the ‘black box’ of fish population biology and ecology. However, a potent source of life‐history data has been mined from the earstones (otoliths) of bony fishes. We systematically reviewed 476 empirical papers published between 2005 and 2012 (inclusive) that used otoliths to examine fish ELH phases, which has been an area of increasing attention over this period. We found that otolith‐based research during this period could be split into two broad themes according to whether studies examined: (i) biological objectives related to intrinsic processes such as larval and juvenile age, growth and mortality, and/or (ii) spatial objectives, such as habitat use, dispersal and migration. Surprisingly, just 24 studies (5%) explored a combined biological–spatial objective by simultaneously exploiting biological and spatial information from otoliths, suggesting much more scope for such integrated research objectives to be answered via the use of multiple otolith‐based techniques in a single study. Mapping otolith analytical techniques across these two approaches revealed that otolith structural analysis was mainly used to investigate biological processes, while otolith chemical analyses were most often applied to spatial questions. Heavy skew in research effort was apparent across biomes, with most (62%) publications specific to marine species, despite comparable levels of species richness and the importance of freshwater taxa (just 15% of papers). Indeed, around 1% (380 species) of a possible 31400+ extant species were examined in our surveyed papers, with a strong emphasis on temperate marine species of commercial value. Potential model species for otolith‐based ELH ecology research are arising, with the eel genus Anguilla (24 studies) and the European anchovy Engraulis encrasicolis (14 studies) attracting more research effort than most other taxa. While there is a preponderance of common techniques (e.g. daily otolith increment counts, increment widths), novel techniques such as transgenerational marking and computed X‐ray tomography, are increasingly being applied in published studies. The application of an integrative approach based on a combination of emerging techniques and traditional methods holds promise for major advances in our understanding of ELH fish ecology and to shine light into the ‘black box’ of fish ecology.  相似文献   

16.
17.
Recent advances in synchrotron imaging allow us to study the three‐dimensional (3D) histology of vertebrate fossils, including microfossils (e.g. teeth and scales) of early jawed vertebrates. These microfossils can often be scanned at submicron resolution (<1 µm) because of their small size. The resulting voxel (3D pixel) stacks can be processed into virtual thin sections revealing almost every internal detail of the samples, comparable to traditional thin sections. In addition, 3D models of the internal microanatomical structures, such as embedded odontodes and vasculature, can be assembled and examined in situ. Scales of two early osteichthyans, Psarolepis romeri from the Early Devonian of China and Andreolepis hedei from the Late Silurian of Sweden, were scanned using propagation phase‐contrast synchrotron X‐ray microtomography (PPC‐SRµCT), and 3D models of internal canal systems and buried odontodes were created from the scans. Based on these new data, we review the evolutionary origin of cosmine and its associated pore‐canal system, which has been long recognized as a synapomorphy of sarcopterygians. The first odontode that appeared during growth shows almost identical morphology in the two scales, but the second odontode of the Psarolepis scale shows a distinctive morphology with several pores on the surface. It is suggested that a shift from ridge‐like odontode to pore‐bearing odontode was the key step in the origin of cosmine, which was then elaborated further in more‐derived sarcopterygians. We perform a detailed comparison between the two scales and propose a primary homology framework to generate microanatomical characters, which can be used in the phylogenetic analysis of early osteichthyans when more 3D data become available. Our results highlight the importance of 3D data for the study of histology and ontogeny of the dermal skeleton of early jawed vertebrates, especially scales of the polyodontode type. The traditional microvertebrate collection is not only useful for biostratigraphic studies, but also preserves invaluable biological information about the growth of vertebrate hard tissues. Today, we are only beginning to understand the biological meaning of the new 3D data. The increasing availability of such data will enable, and indeed require, a complete revision of traditional palaeohistological studies on early vertebrates.  相似文献   

18.
Limited veterinary information is available for invertebrates. The purpose of this study was to improve baseline knowledge of invertebrate radiology and radiographic anatomy by evaluating diagnostic imaging modalities in six terrestrial invertebrate species. For each species, variably sized individuals were radiographed using multiple techniques to obtain optimal images, and radiographic technique charts were formulated using this data. To evaluate anatomy and compare gastrointestinal transit information among carnivores, omnivores, and herbivores, gastrointestinal contrast radiography was employed. Individuals were fed radiographic contrast media or contrast‐containing food items. Contrast radiography resulted in improved visualization of gastrointestinal anatomy in all species. Radiographic contrast media was visualized in gastrointestinal tracts in at least one individual of all taxa for greater than 60 days, substantially longer than expected. Survey and gastrointestinal contrast radiographs of cockroaches were superior to those studies in other species. Zoo Biol 27:109–125, 2008. © 2008 Wiley‐Liss, Inc.  相似文献   

19.
The objective of this study was to elucidate the potential of synchrotron radiation‐based microcomputer tomography as a non‐destructive method to visualize hard tissue in fish with high resolution. The high X‐ray contrast between mineralized tissue (bone and teeth) and soft tissue permits an easy differentiation. The nature of this method avoids preparation artefacts which may occur during the preparation for histology or scanning electron microscopy. The spatial resolution is of the order of a few μm, depending on the sample. Results obtained for the species medaka (Oryzias latipes) and zebrafish (Danio rerio) are presented.  相似文献   

20.
Planarian's strong regenerative ability is dependent on stem cells (called neoblasts) that are X‐ray‐sensitive and proliferative stem cells. In addition to neoblasts, another type of X‐ray‐sensitive cells was newly identified by recent research. Thus, planarian's X‐ray‐sensitive cells can be divided into at least two populations, Type 1 and Type 2, the latter corresponding to planarian's classically defined “neoblasts”. Here, we show that Type 1 cells were distributed in the outer region (OR) immediately underneath the muscle layer at all axial levels from head to tail, while the Type 2 cells were distributed in a more internal region (IR) of the mesenchymal space at the axial levels from neck to tail. To elucidate the biological significance of these two regions, we searched for genes expressed in differentiated cells that were locate close to these X‐ray‐sensitive cell populations in the mesenchymal space, and identified six genes mainly expressed in the OR or IR, named OR1, OR2, OR3, IR1, IR2 and IR3. The predicted amino acid sequences of these genes suggested that differentiated cells expressing OR1, OR3, IR1, or IR2 provide Type 1 and Type 2 cells with specific extracellular matrix (ECM) environments.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号