首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Landscape genetic analyses allow detection of fine‐scale spatial genetic structure (SGS) and quantification of effects of landscape features on gene flow and connectivity. Typically, analyses require generation of resistance surfaces. These surfaces characteristically take the form of a grid with cells that are coded to represent the degree to which landscape or environmental features promote or inhibit animal movement. How accurately resistance surfaces predict association between the landscape and movement is determined in large part by (a) the landscape features used, (b) the resistance values assigned to features, and (c) how accurately resistance surfaces represent landscape permeability. Our objective was to evaluate the performance of resistance surfaces generated using two publicly available land cover datasets that varied in how accurately they represent the actual landscape. We genotyped 365 individuals from a large black bear population (Ursus americanus) in the Northern Lower Peninsula (NLP) of Michigan, USA at 12 microsatellite loci, and evaluated the relationship between gene flow and landscape features using two different land cover datasets. We investigated the relative importance of land cover classification and accuracy on landscape resistance model performance. We detected local spatial genetic structure in Michigan''s NLP black bears and found roads and land cover were significantly correlated with genetic distance. We observed similarities in model performance when different land cover datasets were used despite 21% dissimilarity in classification between the two land cover datasets. However, we did find the performance of land cover models to predict genetic distance was dependent on the way the land cover was defined. Models in which land cover was finely defined (i.e., eight land cover classes) outperformed models where land cover was defined more coarsely (i.e., habitat/non‐habitat or forest/non‐forest). Our results show that landscape genetic researchers should carefully consider how land cover classification changes inference in landscape genetic studies.  相似文献   

2.
American black bears (Ursus americanus) were extirpated from Oklahoma, USA, in the early twentieth century but have since recolonized eastern portions of the state after immigrating from Arkansas, where they were successfully translocated. Within the last 2 decades, a population of black bears was detected in the Oklahoma Ozark region, prompting studies to determine population size, growth rate, and genetic makeup. To understand how black bears were recolonizing the human-dominated landscape, we investigated resource selection at 2 scales. Between 2011 and 2016, we collected global positioning system collar spatial data for 10 males and 13 females. We calculated average kernel density home ranges on a seasonal scale for all collared bears. We used generalized linear mixed models to calculate resource selection functions at the study area, defined by locations of all radio-collared black bears (second order) and the scale of individual black bear home ranges (third order). Resource selection did not differ significantly by sex. Black bears across seasons and scales selected riparian forest and moist oak (Quercus spp.) forest land cover types and mostly selected against indicators of human activity (e.g., pasture-prairie, anthropogenic land cover types, roads, and areas of high human population density). Black bears also selected areas with rugged terrain at high elevations, although not consistently across seasons and scales. Black bear recolonization appeared to be negatively affected by areas and features characterized as human-altered. Further expansion of the range of black bears may be limited by anthropogenic disturbance in the region. © 2021 The Wildlife Society.  相似文献   

3.
Urban areas are highly fragmented and thereby exert strong constraints on individual dispersal. Despite this, some species manage to persist in urban areas, such as the garden snail, Cornu aspersum, which is common in cityscapes despite its low mobility. Using landscape genetic approaches, we combined study area replication and multiscale analysis to determine how landscape composition, configuration and connectivity influence snail dispersal across urban areas. At the overall landscape scale, areas with a high percentage of roads decreased genetic differentiation between populations. At the population scale, genetic differentiation was positively linked with building surface, the proportion of borders where wooded patches and roads appeared side by side and the proportion of borders combining wooded patches and other impervious areas. Analyses based on pairwise genetic distances validated the isolation‐by‐distance and isolation‐by‐resistance models for this land snail, with an equal fit to least‐cost paths and circuit‐theory‐based models. Each of the 12 landscapes analysed separately yielded specific relations to environmental features, whereas analyses integrating all replicates highlighted general common effects. Our results suggest that urban transport infrastructures facilitate passive snail dispersal. At a local scale, corresponding to active dispersal, unfavourable habitats (wooded and impervious areas) isolate populations. This work upholds the use of replicated landscapes to increase the generalizability of landscape genetics results and shows how multiscale analyses provide insight into scale‐dependent processes.  相似文献   

4.
Inhibited dispersal, leading to reduced gene flow, threatens populations with inbreeding depression and local extinction. Fragmentation may be especially detrimental to social insects because inhibited gene flow has important consequences for cooperation and competition within and among colonies. Army ants have winged males and permanently wingless queens; these traits imply male‐biased dispersal. However, army ant colonies are obligately nomadic and have the potential to traverse landscapes. Eciton burchellii, the most regularly nomadic army ant, is a forest interior species: colony raiding activities are limited in the absence of forest cover. To examine whether nomadism and landscape (forest clearing and elevation) affect population genetic structure in a montane E. burchellii population, we reconstructed queen and male genotypes from 25 colonies at seven polymorphic microsatellite loci. Pairwise genetic distances among individuals were compared to pairwise geographical and resistance distances using regressions with permutations, partial Mantel tests and random forests analyses. Although there was no significant spatial genetic structure in queens or males in montane forest, dispersal may be male‐biased. We found significant isolation by landscape resistance for queens based on land cover (forest clearing), but not on elevation. Summed colony emigrations over the lifetime of the queen may contribute to gene flow in this species and forest clearing impedes these movements and subsequent gene dispersal. Further forest cover removal may increasingly inhibit Eciton burchellii colony dispersal. We recommend maintaining habitat connectivity in tropical forests to promote population persistence for this keystone species.  相似文献   

5.
Global biodiversity is decreasing rapidly. Parks and protected lands, while designed to conserve wildlife, often cannot provide the habitat protection needed for wide‐ranging animals such as the American black bear (Ursus americanus). Conversely, private lands are often working landscapes (e.g., farming) that have high human footprints relative to protected lands. In southwestern Alberta, road densities are highest on private lands and black bears can be hunted year‐round. On protected lands, road densities are lowest, and hunting is prohibited. On public lands under the jurisdiction of the provincial government (Crown lands), seasonal hunting is permitted. Population estimates are needed to calculate sustainable harvest levels and to monitor population trends. In our study area, there has never been a robust estimate of black bear density and spatial drivers of black bear density are poorly understood. We used non‐invasive genetic sampling and indices of habitat productivity and human disturbance to estimate density and abundance for male and female black bears in 2013 and 2014 using two methods: spatially explicit capture–recapture (SECR) and resource‐selection functions (RSF). Land tenure best explained spatial variation in black bear density. Black bear densities for females and males were highest on parkland and lowest on Crown lands. Sex ratios were female‐biased on private lands, likely a result of lower harvests and movement of females out of areas with high male density. Synthesis and application: Both SECR and RSF methods clearly indicate spatial structuring of black bear density, with a strong influence based on how lands are managed. Land tenure influences the distribution of available foods and risk from humans. We emphasize the need for improved harvest reporting, particularly for non‐licensed hunting on private land, to estimate the extent of black bear harvest mortality.  相似文献   

6.
Population effects of competition between large carnivore species may be evident by contrasting actual distributions of putative competitors against predictions of inherent landscape quality for each species. Such comparison can be insightful if covariation with external factors known to influence the occurrence, density, or persistence of each species over space and time can be controlled. We used systematically‐distributed DNA hair‐trap stations to sample the occurrence of black bears (Ursus americanus) and grizzly bears (U. arctos) across 5496 km2 in southeastern British Columbia, Canada. We describe interspecific landscape partitioning according to terrain, vegetation and land‐cover variables at 2 spatial scales. We developed multivariate models to predict the potential distribution of each species. At sampling site‐session combinations that detected either species, we then investigated whether the expected or actual occurrence of each influenced the likelihood of detecting the other while controlling for human influence and inherent landscape quality. Black bears were more likely than grizzly bears to occur in gentle, valley bottom terrain with lower proportions of open habitats. Each species also was detected less frequently with the other species than predicted by their respective models; however, the strength of this relationship decreased as landscapes became more characteristic of black bear habitat. As landscapes showed higher inherent potential to support grizzly bears, black bears occurred more than model prediction in areas with higher human access and proximity to major highways but less in national parks. As potential to support black bears increased, grizzly bears occurred more than model prediction only in national parks and less with increasing human access and proximity to major highways. Results suggest that competition is occurring between the species, and that the differential response of each species to human disturbance or excessive mortality may influence the outcome and hence landscape partitioning. Moreover, black bears are more likely to benefit from human encroachment into landscapes of high inherent value for grizzly bears than vice versa. Conservation implications relate to potential mediating effects of habitat and human influence on competitive interactions between the species.  相似文献   

7.
Reintroductions and translocations are increasingly used to repatriate or increase probabilities of persistence for animal and plant species. Genetic and demographic characteristics of founding individuals and suitability of habitat at release sites are commonly believed to affect the success of these conservation programs. Genetic divergence among multiple source populations of American martens (Martes americana) and well documented introduction histories permitted analyses of post‐introduction dispersion from release sites and development of genetic clusters in the Upper Peninsula (UP) of Michigan <50 years following release. Location and size of spatial genetic clusters and measures of individual‐based autocorrelation were inferred using 11 microsatellite loci. We identified three genetic clusters in geographic proximity to original release locations. Estimated distances of effective gene flow based on spatial autocorrelation varied greatly among genetic clusters (30–90 km). Spatial contiguity of genetic clusters has been largely maintained with evidence for admixture primarily in localized regions, suggesting recent contact or locally retarded rates of gene flow. Data provide guidance for future studies of the effects of permeabilities of different land‐cover and land‐use features to dispersal and of other biotic and environmental factors that may contribute to the colonization process and development of spatial genetic associations.  相似文献   

8.
Predicting population-level effects of landscape change depends on identifying factors that influence population connectivity in complex landscapes. However, most putative movement corridors and barriers have not been based on empirical data. In this study, we identify factors that influence connectivity by comparing patterns of genetic similarity among 146 black bears (Ursus americanus), sampled across a 3,000-km(2) study area in northern Idaho, with 110 landscape-resistance hypotheses. Genetic similarities were based on the pairwise percentage dissimilarity among all individuals based on nine microsatellite loci (average expected heterozygosity=0.79). Landscape-resistance hypotheses describe a range of potential relationships between movement cost and land cover, slope, elevation, roads, Euclidean distance, and a putative movement barrier. These hypotheses were divided into seven organizational models in which the influences of barriers, distance, and landscape features were statistically separated using partial Mantel tests. Only one of the competing organizational models was fully supported: patterns of genetic structure are primarily related to landscape gradients of land cover and elevation. The alternative landscape models, isolation by barriers and isolation by distance, are not supported. In this black bear population, gene flow is facilitated by contiguous forest cover at middle elevations.  相似文献   

9.
Potential declines in native pollinator communities and increased reliance on pollinator‐dependent crops have raised concerns about native pollinator conservation and dispersal across human‐altered landscapes. Bumble bees are one of the most effective native pollinators and are often the first to be extirpated in human‐altered habitats, yet little is known about how bumble bees move across fine spatial scales and what landscapes promote or limit their gene flow. In this study, we examine regional genetic differentiation and fine‐scale relatedness patterns of the yellow‐faced bumble bee, Bombus vosnesenskii, to investigate how current and historic habitat composition impact gene flow. We conducted our study across a landscape mosaic of natural, agricultural and urban/suburban habitats, and we show that B. vosnesenskii exhibits low but significant levels of differentiation across the study system (FST = 0.019, Dest = 0.049). Most importantly, we reveal significant relationships between pairwise FST and resistance models created from contemporary land use maps. Specifically, B. vosnesenskii gene flow is most limited by commercial, industrial and transportation‐related impervious cover. Finally, our fine‐scale analysis reveals significant but declining relatedness between individuals at the 1–9 km spatial scale, most likely due to local queen dispersal. Overall, our results indicate that B. vosnesenskii exhibits considerable local dispersal and that regional gene flow is significantly limited by impervious cover associated with urbanization.  相似文献   

10.
11.
Landscape structure, which can be manipulated in agricultural landscapes through crop rotation and modification of field edge habitats, can have important effects on connectivity among local populations of insects. Though crop rotation is known to influence the abundance of Colorado potato beetle (CPB; Leptinotarsa decemlineata Say) in potato (Solanum tuberosum L.) fields each year, whether crop rotation and intervening edge habitat also affect genetic variation among populations is unknown. We investigated the role of landscape configuration and composition in shaping patterns of genetic variation in CPB populations in the Columbia Basin of Oregon and Washington, and the Central Sands of Wisconsin, USA. We compared landscape structure and its potential suitability for dispersal, tested for effects of specific land cover types on genetic differentiation among CPB populations, and examined the relationship between crop rotation distances and genetic diversity. We found higher genetic differentiation between populations separated by low potato land cover, and lower genetic diversity in populations occupying areas with greater crop rotation distances. Importantly, these relationships were only observed in the Columbia Basin, and no other land cover types influenced CPB genetic variation. The lack of signal in Wisconsin may arise as a consequence of greater effective population size and less pronounced genetic drift. Our results suggest that the degree to which host plant land cover connectivity affects CPB genetic variation depends on population size and that power to detect landscape effects on genetic differentiation might be reduced in agricultural insect pest systems.  相似文献   

12.
Identification of landscape features that correlate with genetic structure permits understanding of factors that may influence gene flow in a species. Comparing effects of the landscape on a parasite and host provides potential insights into parasite‐host ecology. We compared fine‐scale spatial genetic structure between big brown bats (Eptesicus fuscus) and their cimicid ectoparasite (Cimex adjunctus; class Insecta) in the lower Great Lakes region of the United States, in an area of about 160,000 km2. We genotyped 142 big brown bat and 55 C. adjunctus samples at eight and seven microsatellite loci, respectively, and inferred effects of various types of land cover on the genetic structure of each species. We found significant associations between several land cover types and genetic distance in both species, although different land cover types were influential in each. Our results suggest that even in a parasite that is almost entirely reliant on its hosts for dispersal, land cover can affect gene flow differently than in the hosts, depending on key ecological aspects of both species.  相似文献   

13.
Urban colonization by wildlife involves a combination of several different mechanisms, including phenotype or genotype sorting, phenotypic plasticity and microevolutionary adaptation. Combination of these processes can produce a rapid phenotypic, but also genetic divergence of urban versus rural populations. Here, we examined the pattern of genetic differentiation between urban and rural populations of a colonial migratory bird, the black‐headed gull Chroicocephalus ridibundus. To this end, we sampled ca 170 individuals from six (two urban and four rural) colonies in northern Poland, and genotyped them at ten microsatellite loci. Our analysis provided evidence for negligible genetic divergence of urban and rural colonies, as assessed with fixation index FST and Nei's unbiased genetic distance D (mean pairwise urban‐rural comparisons: FST = 0.003 ± 0.001 [SE] and D = 0.012 ± 0.006 [SE]). Bayesian clustering methods provided support for homogeneous genetic structure across all urban and rural populations. Also, we found no support for reduced allelic diversity in urban versus rural colonies. These results stand in a stark contrast to the previous findings on the genetic consequences of urbanization in birds. We hypothesize that this pattern could possibly be attributed to the important life‐history characters of the black‐headed gull, including coloniality, migratoriness, and high dispersal propensity. Our study provides a novel insight into the urban landscape genetics, underlining large variation in the mechanisms of urban colonization and its genetic consequences in wild animal populations.  相似文献   

14.
ABSTRACT Understanding landscape structure and the role of habitat linkages is important to managing wildlife populations in fragmented landscapes. We present a data-based method for identifying local- and regional-scale habitat linkages for American black bears (Ursus americanus) on the Albemarle-Pamlico Peninsula of North Carolina, USA. We used weights-of-evidence, a discrete multivariate technique for combining spatial data, to make predictions about bear habitat use from 1,771 telemetry locations on 2 study areas (n = 35 bears). The model included 3 variables measured at a 0.2-km2 scale: forest cohesion, forest diversity, and forest-agriculture edge density, adequately describing important habitat characteristics for bears on our study area. We used 2 categories of unique habitat conditions to delineate favorable bear habitat, which correctly classified 79.5% of the bear locations in a 10-fold model validation. Forest cohesion and forest-agriculture edge density were the most powerful predictors of black bear habitat use. We used predicted probabilities of bear occurrence from the model to delineate habitat linkages among local and regional areas where bear densities were relatively high. Our models clearly identified 2 of the 3 sites previously recommended for wildlife underpasses on a new, 4-lane highway in the study area. Our approach yielded insights into how landscape metrics can be integrated to identify linkages suitable as habitat and dispersal routes.  相似文献   

15.
American black bears (Ursus americanus) have recolonized parts of their former range in the Trans-Pecos region of western Texas after a >40-year absence. Assessment of genetic variation, structuring, gene flow, and dispersal among bear populations along the borderlands of Mexico and Texas is important to gain a better understanding of recolonization by large carnivores. We evaluated aspects of genetic diversity and gene flow for 6 sampling areas of black bears in southwestern North America using genotypic data from 7 microsatellite loci. Our results indicated that genetic diversity generally was high in the metapopulation of black bears in northern Mexico and western Texas. The episodic gene flow occurring via desert corridors between populations in northern Mexico and those in western Texas has permitted the establishment of only moderate levels of genetic structuring. Bayesian clustering analyses and assignment testing depicted the presence of 3 subpopulations among our 6 sampling areas and attested to the generally panmictic nature of bear populations in the borderlands region. The potentially ephemeral nature of the small populations in western Texas and genotypic characteristics of bears recolonizing these habitats attest to the importance of linkages along this portion of the borderlands of the United States and Mexico to effectively conserve and manage the species in this part of its range.  相似文献   

16.
Spatial genetic structure (SGS) of plants mainly depends on the effective population size and gene dispersal. Maternally inherited loci are expected to have higher genetic differentiation between populations and more intensive SGS within populations than biparentally inherited loci because of smaller effective population sizes and fewer opportunities of gene dispersal in the maternally inherited loci. We investigated biparentally inherited nuclear genotypes and maternally inherited chloroplast haplotypes of microsatellites in 17 tree populations of three wild cherry species under different conditions of tree distribution and seed dispersal. As expected, interpopulation genetic differentiation was 6–9 times higher in chloroplast haplotypes than in nuclear genotypes. This difference indicated that pollen flow 4–7 times exceeded seed flow between populations. However, no difference between nuclear and chloroplast loci was detected in within‐population SGS intensity due to their substantial variation among the populations. The SGS intensity tended to increase as trees became more aggregated, suggesting that tree aggregation biased pollen and seed dispersal distances toward shorter. The loss of effective seed dispersers, Asian black bears, did not affect the SGS intensity probably because of mitigation of the bear loss by other vertebrate dispersers and too few tree generations after the bear loss to alter SGS. The findings suggest that SGS is more variable in smaller spatial scales due to various ecological factors in local populations.  相似文献   

17.
Understanding how landscape heterogeneity mediates the effects of fire on biodiversity is increasingly important under global changes in fire regimes. We used a simulation experiment to investigate how fire regimes interact with topography and weather to shape neutral and selection‐driven genetic diversity under alternative dispersal scenarios, and to explore the conditions under which microrefuges can maintain genetic diversity of populations exposed to recurrent fire. Spatial heterogeneity in simulated fire frequency occurred in topographically complex landscapes, with fire refuges and fire‐prone “hotspots” apparent. Interannual weather variability reduced the effect of topography on fire patterns, with refuges less apparent under high weather variability. Neutral genetic diversity was correlated with long‐term fire frequency under spatially heterogeneous fire regimes, being higher in fire refuges than fire‐prone areas, except under high dispersal or low fire severity (low mortality). This generated different spatial genetic structures in fire‐prone and fire‐refuge components of the landscape, despite similar dispersal. In contrast, genetic diversity was only associated with time since the most recent fire in flat landscapes without predictable refuges and hotspots. Genetic effects of selection driven by fire‐related conditions depended on selection pressure, migration distance and spatial heterogeneity in fire regimes. Allele frequencies at a locus conferring higher fitness under successional environmental conditions followed a pattern of “temporal adaptation” to contemporary conditions under strong selection pressure and high migration. However, selected allele frequencies were correlated with spatial variation in long‐term mean fire frequency (relating to environmental predictability) under weak dispersal, low selection pressure and strong spatial heterogeneity in fire regimes.  相似文献   

18.
ABSTRACT The distribution of grizzly (Ursus arctos) and American black bears (U. americanus) overlaps in western North America. Few studies have detailed activity patterns where the species are sympatric and no studies contrasted patterns where populations are both sympatric and allopatric. We contrasted activity patterns for sympatric black and grizzly bears and for black bears allopatric to grizzly bears, how human influences altered patterns, and rates of grizzly-black bear predation. Activity patterns differed between black bear populations, with those sympatric to grizzly bears more day-active. Activity patterns of black bears allopatric with grizzly bears were similar to those of female grizzly bears; both were crepuscular and day-active. Male grizzly bears were crepuscular and night-active. Both species were more night-active and less day-active when ≤1 km from roads or developments. In our sympatric study area, 2 of 4 black bear mortalities were due to grizzly bear predation. Our results suggested patterns of activity that allowed for intra- and inter-species avoidance. National park management often results in convergence of locally high human densities in quality bear habitat. Our data provide additional understanding into how bears alter their activity patterns in response to other bears and humans and should help park managers minimize undesirable bear-human encounters when considering needs for temporal and spatial management of humans and human developments in bear habitats.  相似文献   

19.
Despite increasing evidence that landscape features strongly influence the abundance and dispersal of insect populations, landscape composition has seldom been explicitly linked to genetic structure. We conducted a genetic study of the melon aphid, Aphis gossypii, in two counties of Beijing, China during spring migration using samples from watermelon. We performed aphid genetic analysis using restriction site associated DNA sequencing (2b‐RAD) and investigated the relationship between land cover and the genetic diversity. The percentage area of land cover (cropland, vegetable, orchard, grassland, woodland) was quantified in each particular scale (ranging from 0.5 km to 3 km) and was used as a predictor variable in our generalized linear models. We found a moderate level of genetic differentiation among nine sampled populations. Geographic distance and genetic distance were not significantly associated, indicating that geographic location was not a barrier to migration. These nine populations could be clustered depending on their level of genetic diversity (high and low). The genetic diversity (Shannon’s information index) was positively correlated with grassland at the spatial scales of 1 and 2 km and negatively with orchard and vegetable at 0.5 and 1 km. Genetic diversity was best predicted by the grassland + orchard + vegetable model at a spatial scale of 1 km. Based on the method of relative weights, orchard land had the greatest relative importance, followed by grassland and vegetable land, in that order. This study contributes to our understanding of the genetic variation of aphids in agricultural landscapes.  相似文献   

20.
Habitat loss represents one of the main threats to tropical forests, which have reached extremely high rates of species extinction. Forest loss negatively impacts biodiversity, affecting ecological (e.g., seed dispersal) and genetic (e.g., genetic diversity and structure) processes. Therefore, understanding how deforestation influences genetic resources is strategic for conservation. Our aim was to empirically evaluate the effects of landscape‐scale forest reduction on the spatial genetic structure and gene flow of Euterpe edulis Mart (Arecaceae), a palm tree considered a keystone resource for many vertebrate species. This study was carried out in nine forest remnants in the Atlantic Forest, northeastern Brazil, located in landscapes within a gradient of forest cover (19–83%). We collected leaves of 246 adults and 271 seedlings and performed genotyping using microsatellite markers. Our results showed that the palm populations had low spatial genetic structure, indicating that forest reduction did not influence this genetic parameter for neither seedlings nor adults. However, forest loss decreased the gene flow distance, which may negatively affect the genetic diversity of future generations by increasing the risk of local extinction of this keystone palm. For efficient strategies of genetic variability conservation and maintenance of gene flow in E. edulis, we recommend the maintenance of landscapes with intermediary to high levels of forest cover, that is, forest cover above 40%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号