首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Cytochrome P-450 from liver microsomes of phenobarbital-treated rabbits catalyzed anaerobic dehalogenation of halothane (2-bromo-2-chloro-1,1,1-trifluoroethane) when combined with NADPH and NADPH-cytochrome P-450 reductase. Cytochromes P-450B1 and P-448 from liver microsomes of untreated rabbits were less active. Triton X-100 accelerated the reaction. Unlike anaerobic dehalogenation of halothane in microsomes, the major product was 2-chloro-1,1,1-trifluoroethane and 2-chloro-1,1-difluoroethylene was negligible. These products were not detected under aerobic conditions, and dehalogenation activity was inhibited by carbon monoxide, phenyl isocyanide and metyrapone.  相似文献   

2.
Under identical experimental conditions, purified preparations of rabbit liver microsomal cytochrome P-450 and beef heart metmyoglobin were equally effective at stimulating the oxidation of aminopyrine to a free radical species by cumene hydroperoxide. Mannitol had no effect on radical levels produced with either hemeprotein-hydroperoxide system; however, specific ligands of the two hemeproteins, substrates of cytochrome P-450, and phospholipid affected the two systems quite differently. Only the metmyo-globindependent oxidation of aminopyrine was significantly inhibited by fluoride and cyanide. Metyrapone, a specific ligand of cytochrome P-450, and benzphetamine, which was N-demethylated by cumene hydroperoxide only in the presence of cytochrome P-450, inhibited only the cytochrome P-450-stimulated oxidation of aminopyrine. Moreover, only with the solubilized liver hemeprotein was aminopyrine radical generation markedly stimulated by phospholipid. Similar properties of aminopyrine N-demethylation and radical formation by the cytochrome P-450-cumene hydroperoxide system have strongly implicated the radical as a requisite intermediate in product formation. Micromolar concentrations of metyrapone caused parallel inhibition, by at least 50%, of both radical generation and formaldehyde production. These results support a radical pathway of N-demethylation proposed for other hemeprotein-hydroperoxide systems (B. W. Griffin and P. L. Ting, 1978, Biochemistry, 17, 2206–2211), in which the substrate undergoes two successive one-electron abstractions, followed by hydrolysis of the iminium cation intermediate. Thus, for this class of substrates, the experimental data are consistent with the oxygen atom of the product arising from H2O and not directly from the hydroperoxide, which has been previously proposed as a general mechanism for cytochrome P-450 peroxidatic activities.  相似文献   

3.
Cytochrome P-450 in microsomes from liver of phenobarbital treated and control rats has been studied by light absorption and by magnetic resonance methods (EPR and NMR). The nuclear relaxation rate of water protons was measured for microsomal suspensions in the presence of various reactants of Type I and II. The change of relaxation rates correlates well with the spin state conversion of the heme iron. No competition between eventual inner-sphere water molecules and the reactants seems to occur. The temperature dependence of the low spin to high spin equilibrium was studied by light absorption and was accounted for in the temperature variation of the molar relaxation rates of the two spin states.  相似文献   

4.
A new cytochrome P-450 model that simulates the unusual spectral and substrate-oxidation properties of cytochrome P-450 is proposed. The complex, consisting of glutathione(GSH), hemin and pyridine(py), exhibits similar optical and EPR spectra to cytochrome P-450 in ferric low-spin state. On omission of py, a ferric high-spin state was produced. On exposure of the GSH-hemin-py complex to CO, a characteristic absorption band appeared at 450nm, like that typical of cytochrome P-450. Two types of spectral changes were observed when aminopyrine or phenobarbital (Type I) and aniline or quinoline (Type II) were added to the GSH-hemin complex. Hydroxylation, dealkylation and aromatic methyl migration activities were observed with the GSH-hemin complex.  相似文献   

5.
A reconstituted mixed-function oxidase system containing cytochrome P-450, cytochrome P-450 reductase, phosphatidylcholine, and NADPH catalyzed the reduction of 13-hydroperoxy-9,11-octadecadienoic acid to 13-hydroxy-9,ll-octadecadienoic acid. Activity was stimulated by the addition of type I substrates, while carbon monoxide and oxygen inhibited the reaction. Perfluoro-n-hexane stimulated the reduction of lipid hydroperoxide to lipid alcohol in the reconstituted system but not by cytochrome P-450 alone. Incubation of cytochrome P-450 with only lipid hydroperoxide resulted in destruction of the hemoprotein. Addition of substrates such as aminopyrine decreased cytochrome P-450 destruction. Addition of reducing equivalents from a reconstituted electron transport system also decreased cytochrome P-450 destruction.  相似文献   

6.
Cytochromes P-450f, P-450g, P-450h, and P-450i are four hepatic microsomal hemoproteins that have been purified from adult rats. Whereas cytochromes P-450g and P-450h appear to be male-specific hemoproteins, cytochrome P-450i is apparently a female-specific enzyme purified from untreated adult female rats. Cytochrome P-450f has been purified from adult male and female rats with equivalent recoveries. Amino-terminal sequence analyses of the first 15-20 amino acid residues of each of these cytochromes P-450 has been accomplished in the current investigation. Each protein possesses a hydrophobic leader sequence consisting of 65-87% hydrophobic amino acids, and only one charged amino acid (Asp) in the amino-terminal region. Although differences in the amino-terminal sequences of cytochromes P-450f, P-450g, P-450h, and P-450i are identified, these hemoproteins all begin with Met-Asp, and marked structural homology is observed among certain of these enzymes. Cytochromes P-450g and P-450h, two male-specific proteins, have 11-12/15 identical residues with cytochrome P-450i, a female-specific isozyme. Cytochromes P-450f and P-450h have 16/20 identical amino-terminal residues. Only limited sequence homology is observed between the amino-terminal sequences of cytochromes P-450f-i compared to rat liver cytochromes P-450a-e. The results demonstrate that cytochromes P-450f, P-450g, P-450h, and P-450i are isozymic to each other and five additional rat hepatic microsomal cytochrome P-450 isozymes (P-450a-e).  相似文献   

7.
8.
Superoxide generation, assessed as the rate of acetylated cytochrome c reduction inhibited by superoxide dismutase, by purified NADPH cytochrome P-450 reductase or intact rat liver microsomes was found to account for only a small fraction of their respective NADPH oxidase activities. DTPA-Fe3+ and EDTA-FE3+ greatly stimulated NADPH oxidation, acetylated cytochrome c reduction, and O(2) production by the reductase and intact microsomes. In contrast, all ferric chelates tested caused modest inhibition of acetylated cytochrome c reduction and O(2) generation by xanthine oxidase. Although both EDTA-Fe3+ and DTPA-Fe3+ were directly reduced by the reductase under anaerobic conditions, ADP-Fe3+ was not reduced by the reductase under aerobic or anaerobic conditions. Desferrioxamine-Fe3+ was unique among the chelates tested in that it was a relatively inert iron chelate in these assays, having only minor effects on NADPH oxidation and/or O(2) generation by the purified reductase, intact microsomes, or xanthine oxidase. Desferrioxamine inhibited microsomal lipid peroxidation promoted by ADP-Fe3+ in a concentration-dependent fashion, with complete inhibition occurring at a concentration equal to that of exogenously added ferric iron. The participation of O(2) generated by the reductase in NADPH-dependent lipid peroxidation was also investigated and compared with results obtained with a xanthine oxidase-dependent lipid peroxidation system. NADPH-dependent peroxidation of either phospholipid liposomes or rat liver microsomes in the presence of ADP-Fe3+ was demonstrated to be independent of O(2) generation by the reductase.  相似文献   

9.
A study has been carried out on the association of aldolase with the human erythrocyte membrane. It has been shown that the conditions employed during hypotonic hemolysis affect the amount of aldolase that remains bound to the cell membrane. Thus, the in vivo nature of this binding cannot be ascertained by this technique. Therefore, a method has been developed in which aldolase is crosslinked with glutaraldehyde to the inner surface of the membrane in intact red blood cells. Under the specified conditions, over 90% of the intracellular aldolase can be crosslinked to the membrane with less than 10% of the hemoglobin becoming bound. These results suggest that the localization of aldolase in situ is on or near the inner surface of the membrane. The amount of aldolase bound to the membrane following crosslinking can be decreased by preincubating the cells with cytoskeletal agents such as cytochalasin B, colchicine, and vinblastine sulfate. The in vitro binding of aldolase to the purified spectrin-actin and F-actin complexes was studied. Aldolase bound both complexes very tightly (KD ? 10?9m) and this binding could be inhibited by cytochalasin B, but not by colchicine. A competition binding study was carried out to determine if the binding of aldolase to F-actin involved specific interactions. Neither bovine serum albumin nor cytochrome c significantly inhibited the binding of aldolase to F-actin when each was present at equimolar concentrations with aldolase. However, glyceraldehyde 3-phosphate dehydrogenase inhibited aldolase binding to F-actin and when present at equimolar concentrations with aldolase completely blocked the association. The association of aldolase and other glycolytic enzymes with the erythrocyte membrane is discussed and it is postulated that aldolase could be localized in vivo on the inner surface of the membrane by attachment to actin or a spectrin-actin complex.  相似文献   

10.
Utilizing two-dimensional gel electrophoresis, the polypeptide composition of a purified microsomal cytochrome P-450 preparation isolated from phenobarbital-treated Long-Evans rats obtained from Charles River Laboratories has been examined. The purified protein consists of three polypeptides with nearly identical subunit molecular weights (approximately 52,000) but differing in net charge. These three polypeptides can be detected in liver microsomes isolated from phenobarbital-treated rats by immunoblot analysis but are virtually absent in microsomes isolated from untreated rats. All three polypeptides appear to be products of distinct mRNAs since they can be immunoprecipitated from rabbit reticulocyte lysates programmed with poly(A+)-RNA isolated from phenobarbital-treated rats. The amount of functional mRNA specific for the P-450 polypeptides increases dramatically in response to an acute administration of phenobarbital; however, in untreated rats the amount of functional mRNA was below the level of detection by the translational assay. These data are consistent with the very low level of the phenobarbital-inducible cytochromes P-450 in liver microsomes isolated from untreated rats. Finally, the data indicate that all three cytochrome P-450 mRNAs increase rapidly in response to phenobarbital administration and are regulated coordinately.  相似文献   

11.
We report the existence of a microsomal, heat-stable, trypsin-sensitive factor that stimulates the O-demethylation of methoxyflurane (CHCl2CF2OCH3) by partially purified preparations of rabbit hepatic cytochrome P-450. The factor is able to stimulate by five to twelve-fold the methoxyflurane metabolizing activity of cytochrome P-450. In contrast, the metabolism of benzphetamine is not affected by the presence of the factor. The factor is inactivated by extraction with methanol, chloroform, butanol and ethanol. It remains intact after treatment with 6M guanidine hydrochloride and is soluble in trifluoroethanol. Thus, the weight of evidence indicates that this factor is a rather hydrophobic protein.  相似文献   

12.
Administration of cobalt chloride and 3-amino-1,2,4-triazole leads to a suppression of phenobarbitone-mediated increase in total cytochrome P-450 as well as cytochrome P-450b contents of the liver. This suppression is due to a decrease in the content of the protein species which is the result of a decrease in its rate of synthesis as measured in vivo and in vitro. Cobalt chloride as well as 3-amino-1,2,4-triazole treatments lead to a decrease in the translatability of cytochrome P-450b RNA without affecting total protein synthesis. It is a possibility that a small pool of heme regulates the RNA levels for the cytochrome P-450 species.  相似文献   

13.
The major phenobarbital-inducible form of cytochrome P-450 (cytochrome P-450 PB) was purified to homogeneity from rat liver microsomes and rabbit antibodies prepared against the purified enzyme. Using these antibodies, an enzyme-linked immunosorbent assay (ELISA) was developed for the detection of cytochrome P-450 PB in microsomes which was sensitive at the nanogram level. The content of cytochrome P-450 PB was determined in hepatic microsomes from rats treated with various xenobiotics. Phenobarbital and Aroclor 1254 pretreatments resulted in several-fold increases in immunoreactive cytochrome P-450 PB over control levels. ELISA measurements of cytochrome P-450 PB were also carried out over a 48-h time course of phenobarbital induction in liver microsomes. Significant increases over control levels were seen at 16 h and beyond. Measurements of ELISA-detectable cytochrome P-450 PB were made in microsomes following the administration of CCl4 to phenobarbital-pretreated rats. Immunoreactive cytochrome P-450 PB was observed to decrease less rapidly than the spectrally detectable enzyme in the microsomal membranes. Inhibition of heme synthesis was carried out by the administration of 3-amino-1,2,4-triazole (AT) to rats. Concomitant pretreatment with phenobarbital and AT resulted in levels of ELISA-detectable cytochrome P-450 PB which were significantly increased over control levels, while spectrally detectable levels of total holoenzyme remained unchanged. These results support the idea that this cytochrome P-450 may exist, at least partly, in the microsomal membrane in an inactive or apoprotein form.  相似文献   

14.
R- and S-warfarin metabolite profiles (regio- and stereoselectivity) have been determined with hepatic microsomes from untreated rats and rats treated with nine individual polybrominated biphenyl (PBB) congeners, a commercial mixture of PBBs, and, for comparison with phenobarbital and 3-methylcholanthrene. The metabolic rates have been correlated with cytochrome P-450 (P-450) isozyme concentrations in the microsomes determined by immunochemical quantitation techniques (G. A. Dannan, F. P. Guengerich, L. S. Kaminsky, and S. D. Aust, (1983) J. Biol. Chem., 258, 1282–1288). The warfarin hydroxylase activities of the P-450 isozyme components of the various microsomal preparations (F. P. Guengerich, G. A. Dannan, S. T. Wright, M. V. Martin, and L. S. Kaminsky (1982) Biochemistry, 21, 6019–6030) were multiplied by the corresponding isozyme concentrations to obtain an assessment of the potential warfarin hydroxylase capacity of the microsomes, and the results were compared with actual activities. The results of these studies and comparisons indicate that substrate regio- and stereoselectivities of microsomal-bound P-450s are essentially retained on purification of the isozymes to homogeneity and reconstitution, that warfarin metabolism by microsomal preparations can be used to predict microsomal P-450 isozyme compositions, and that microsomal warfarin hydroxylase activity is greater than would be predicted based on the approx 20:1 ratio of P-450 to NADPH-P-450 reductase in the microsomes and on the known activities of constituent isozymes. Two P-450 isozymes which are induced by treatment of rats with phenobarbital appear to be more tightly linked to NADPH-P-450 reductase than does an isozyme induced by β-naphthoflavone.  相似文献   

15.
Uninduced rat liver microsomes and NADPH-Cytochrome P-450 reductase, purified from phenobarbital-treated rats, catalyzed an NADPH-dependent oxidation of hydroxyl radical scavenging agents. This oxidation was not stimulated by the addition of ferric ammonium sulfate, ferric citrate, or ferric-adenine nucleotide (AMP, ADP, ATP) chelates. Striking stimulation was observed when ferric-EDTA or ferric-diethylenetriamine pentaacetic acid (DTPA) was added. The iron-EDTA and iron-DTPA chelates, but not unchelated iron, iron-citrate or iron-nucleotide chelates, stimulated the oxidation of NADPH by the reductase in the absence as well as in the presence of phenobarbital-inducible cytochrome P-450. Thus, the iron chelates which promoted NADPH oxidation by the reductase were the only chelates which stimulated oxidation of hydroxyl radical scavengers by reductase and microsomes. The oxidation of aminopyrine, a typical drug substrate, was slightly stimulated by the addition of iron-EDTA or iron-DTPA to the microsomes. Catalase inhibited potently the oxidation of scavengers under all conditions, suggesting that H2O2 was the precursor of the hydroxyl radical in these systems. Very high amounts of superoxide dismutase had little effect on the iron-EDTA-stimulated rate of scavenger oxidation, whereas the iron-DTPA-stimulated rate was inhibited by 30 or 50% in microsomes or reductase, respectively. This suggests that the iron-EDTA and iron-DTPA chelates can be reduced directly by the reductase to the ferrous chelates, which subsequently interact with H2O2 in a Fenton-type reaction. Results with the reductase and microsomal systems should be contrasted with results found when the oxidation of hypoxanthine by xanthine oxidase was utilized to catalyze the production of hydroxyl radicals. In the xanthine oxidase system, ferric-ATP and -DTPA stimulated oxidation of scavengers by six- to eightfold, while ferric-EDTA stimulated 25-fold. Ferric-desferrioxamine consistently was inhibitory. Superoxide dismutase produced 79 to 86% inhibition in the absence or presence of iron, indicating an iron-catalyzed Haber-Weiss-type of reaction was responsible for oxidation of scavengers by the xanthine oxidase system. These results indicate that the ability of iron to promote hydroxyl radical production and the role that superoxide plays as a reductant of iron depends on the nature of the system as well as the chelating agent employed.  相似文献   

16.
Effects of pH on the ligand-binding reactions of ferric heme in cytochrome P-450 from Pseudomonas putida (camphor 5-monooxygenase, EC 1.14.15.1) were studied by using cyanide, N-methylimidazole, pyridine, and ethylisocyanide as ligands. In all cases, affinity of the ferric heme for the ligand was found to increase as pH of the medium was raised from around 6 to 9. Depending on the ligand, the increase was 10- to 1000-fold and the shapes of their pH-affinity curves were remarkably different. Analyses such pH profiles disclosed the presence of a dissociable group in the enzyme with a pK value of approximately 9.5 and that its ionization greatly enhanced the affinity of the heme for ligands. When a dissociable ligand such as hydrogen cyanide and N-methylimidazole was used, the dissociated form of the ligand had a higher affinity toward the heme than the undissociated form. The shapes of the pH-affinity curves were successfully simulated as overlapping curves of ionization reactions of the ligand and the dissociable group. In addition, size of the ligand molecule was shown to be also important in the binding reaction: relatively large molecules such as pyridine, ethylisocyanide, and N-methylimidazole bound to the enzyme in a competitive manner against d-camphor concentration, whereas the binding of a smaller molecule such as cyanide was inhibited by the substrate in a noncompetitive manner. On the basis of these findings, control mechanisms for the ligand-binding reactions of the cytochrome P-450 from P. putida are discussed.  相似文献   

17.
Nine distinct monoclonal antibodies raised against purified rat liver cytochrome P-450c react with six different epitopes on the antigen, and one of these epitopes is shared by cytochrome P-450d. None of these monoclonal antibodies recognize seven other purified rat liver isozymes (cytochromes P-450a, b, and e-i) or other proteins in the cytochrome P-450 region of "Western blots" of liver microsomes. Each of the monoclonal antibodies was used to probe "Western blots" of liver microsomes from untreated, or 3-methylcholanthrene-, or isosafrole-treated animals to determine if laboratory animals other than rats possess isozymes immunochemically related to cytochromes P-450c and P-450d. Two protein-staining bands immunorelated to cytochromes P-450c and P-450d were observed in all animals treated with 3-methylcholanthrene (rabbit, hamster, guinea pig, and C57BL/6J mouse) except the DBA/2J mouse, where no polypeptide immunorelated to cytochrome P-450c was detected. The conservation of the number of rat cytochrome P-450c epitopes among these species varied from as few as two (guinea pig) to as many as five epitopes (C57BL/6J mouse and rabbit). The relative mobility in sodium dodecyl sulfate-gels of polypeptides immunorelated to cytochromes P-450c and P-450d was similar in all species examined except the guinea pig, where the polypeptide related to cytochrome P-450c had a smaller Mr than cytochrome P-450d. With the use of both monoclonal and polyclonal antibodies, we were able to establish that purified rabbit cytochromes P-450 LM4 and P-450 LM6 are immunorelated to rat cytochromes P-450d and P-450c, respectively.  相似文献   

18.
An altered cytochrome P-450 (SG1 P-450) was partially purified from Saccharomyces cerevisiae mutant SG1 which is defective in lanosterol 14 alpha-demethylation. Oxidized SG1 P-450 showed a Soret peak at 422 nm and the alpha peak was lower than the beta peak. This spectrum was considerably different from those of known low-spin P-450s, indicating a unique ligand structure of SG1 P-450. The absorption spectrum of ferric SG1 P-450 was superimposable on that of the imidazole complex of ferric P-450, suggesting the presence of a nitrogenous ligand such as histidine of the apoprotein at the 6th coordination position. SG1 P-450 was immunochemically indistinguishable from cytochrome P-450 of S. cerevisiae catalyzing lanosterol 14 alpha-demethylation (P-45014DM) but had no lanosterol 14 alpha-demethylase activity.  相似文献   

19.
20.
An easy purification of rat liver microsomal cytochrome P448 was performed by using 3,4,5,3′,4′-pentachlorobiphenyl as an inducer. The cytochrome P448, a high spin form, was purified to 18.1 nmoles/mg protein with a good yield by ω-aminooctyl Sepharose 4B column chromatography followed by a hydroxyapatite column chromatography. This hemoprotein cross-reacted with antibody to cytochrome P448 from β-naphthoflavone-treated rats, but not with antibody to cytochrome P450 from phenobarbital-treated rats at all. The results of amino acid analyses suggested that this cytochrome P448 is similar to cytochrome P448 of 3-methylcholanthrene-treated rats.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号