首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Increasing evidence supports the role of atrial natriuretic factor (ANF) in the modulation of gastrointestinal physiology. The effect of ANF on exocrine pancreatic secretion and the possible receptors and pathways involved were studied in vivo. Anesthetized rats were prepared with pancreatic duct cannulation, pyloric ligation, and bile diversion into the duodenum. ANF dose-dependently increased pancreatic secretion of fluid and proteins and enhanced secretin and CCK-evoked response. ANF decreased chloride secretion and increased the pH of the pancreatic juice. Neither cholinergic nor adrenergic blockade affected ANF-stimulated pancreatic secretion. Furthermore, ANF response was not mediated by the release of nitric oxide. ANF-evoked protein secretion was not inhibited by truncal vagotomy, atropine, or Nomega-nitro-l-arginine methyl ester administration. The selective natriuretic peptide receptor-C (NPR-C) receptor agonist cANP-(4-23) mimicked ANF response in a dose-dependent fashion. When the intracellular signaling coupled to NPR-C receptors was investigated in isolated pancreatic acini, results showed that ANF did not modify basal or forskolin-evoked cAMP formation, but it dose-dependently enhanced phosphoinositide hydrolysis, which was blocked by the selective PLC inhibitor U-73122. ANF stimulated exocrine pancreatic secretion in the rat, and its effect was not mediated by nitric oxide or parasympathetic or sympathetic activity. Furthermore, CCK and secretin appear not to be involved in ANF response. Present findings support that ANF exerts a stimulatory effect on pancreatic exocrine secretion mediated by NPR-C receptors coupled to the phosphoinositide pathway.  相似文献   

2.
We previously reported that intravenously administered atrial natriuretic factor (ANF) induced no salivation but enhanced agonist-evoked secretion in submandibular glands. The gene expression of ANF and natriuretic peptide receptors (NPR) was later reported in the glands. In the present study we sought to establish the intracellular signalling mechanisms underlying ANF modulation of salivary secretion. Fasted rats were prepared with submandibular duct and femoral cannulation. Dose–response curves to methacholine (MC) and norepinephrine (NE) were performed in the presence of cANP (4–23 amide) (selective NPR-C agonist) and ANF. Local injection of the agonist or ANF-induced no salivation, but enhanced MC and NE-evoked secretion. ANF and cANP (4–23 amide) enhanced phosphoinositide turnover being the effect abolished by U73122 (PLC inhibitor). Further ANF and cANP (4–23 amide) decreased basal cAMP content but failed to affect isoproterenol or forskolin-evoked cAMP. ANF response was inhibited by pertussis toxin and mimicked by cANP (4–23 amide) strongly supporting NPR-C activation. ANF-induced cAMP reduction was abolished by PLC and PKC inhibitors. The content of cGMP was dose dependently stimulated by ANF but not modified by cANP (4–23 amide). These findings support that ANF through NPR-C receptors coupled to PLC activation and adenylyl cyclase inhibition interacts with sialogogic agonists in the submandibular gland to potentiate salivation.  相似文献   

3.
Several studies show that C-type natriuretic peptide (CNP) has a modulatory role in the digestive system. CNP administration reduces both jejunal fluid and bile secretion in the rat. In the present study we evaluated the effect of CNP on amylase release in isolated pancreatic acini as well as the receptors and intracellular pathways involved. Results showed that all natriuretic peptide receptors were expressed not only in the whole pancreas but also in isolated pancreatic acini. CNP stimulated amylase secretion with a concentration-dependent biphasic response; maximum release was observed at 1 pM CNP, whereas higher concentrations gradually attenuated it. The response was mimicked by a selective natriuretic peptide receptor (NPR-C) agonist and inhibited by pertussis toxin, strongly supporting NPR-C receptor activation. CNP-evoked amylase release was abolished by U-73122 (PLC inhibitor) and 2-aminoethoxydiphenyl borate (2-APB) [an inositol 1,4,5-triphosphate (IP(3)) receptor antagonist], partially inhibited by GF-109203X (PKC inhibitor), and unaltered by ryanodine or protein kinase A (PKA) and protein kinase G (PKG) inhibitors. Phosphoinositide hydrolysis was enhanced by CNP at all concentrations and abolished by U-73122. At 1 and 10 pM, CNP did not affect cAMP or guanosine 3',5'-cyclic monophosphate (cGMP) levels, but at higher concentrations it increased cGMP and diminished cAMP content. Present findings show that CNP stimulated amylase release through the activation of NPR-C receptors coupled to the PLC pathway and downstream effectors involved in exocytosis. The attenuation of amylase release was likely related to cAMP reduction. The augmentation in cGMP supports activation of NPR-A/NPR-B receptors probably involved in calcium influx. Present findings give evidence that CNP is a potential direct regulator of pancreatic function.  相似文献   

4.
5-Hydroxytryptamine (serotonin, 5-HT) is a hormone and neurotransmitter regulating gastrointestinal functions. 5-HT receptors are widely distributed in gastrointestinal mucosa and the enteric nervous system. Duodenal acidification stimulates not only the release of both 5-HT and secretin but also pancreatic exocrine secretion. We investigated the effect of 5-HT receptor antagonists on the release of secretin and pancreatic secretion of water and bicarbonate induced by duodenal acidification in anesthetized rats. Both the 5-HT(2) receptor antagonist ketanserin and the 5-HT(3) receptor antagonist ondansetron at 1-100 microg/kg dose-dependently inhibited acid-induced increases in plasma secretin concentration and pancreatic exocrine secretion. Neither the 5-HT(1) receptor antagonists pindolol and 5-HTP-DP nor the 5-HT(4) receptor antagonist SDZ-205,557 affected acid-evoked release of secretin or pancreatic secretion. None of the 5-HT receptor antagonists affected basal pancreatic secretion or plasma secretin concentration. Ketanserin or ondansetron at 10 microg/kg or a combination of both suppressed the pancreatic secretion in response to intravenous secretin at 2.5 and 5 pmol x kg(-1) x h(-1) by 55-75%, but not at 10 pmol x kg(-1) x h(-1). Atropine (50 microg/kg) significantly attenuated the inhibitory effect of ketanserin on pancreatic secretion but not on the release of secretin. These observations suggest that 5-HT(2) and 5-HT(3) receptors mediate duodenal acidification-induced release of secretin and pancreatic secretion of fluid and bicarbonate. Also, regulation of pancreatic exocrine secretion through 5-HT(2) receptors may involve a cholinergic pathway in the rat.  相似文献   

5.
The relationship between natriuretic peptides and adenylyl cyclase/cAMP signal transduction has generally been shown to be an inhibitory one, mediated via the NPR-C receptor coupled to adenylyl cyclase by inhibitory G proteins (Gi). In the present studies, we have investigated the modulation of cAMP by natriuretic peptides in a long-term culture of human thyroid cells. Competition of [125I] rat ANF binding to human thyrocytes (HTU-5) by rat ANF (99-126) and by the NPR-C-specific analog C-ANF (4-23) indicated that greater than 97% of the ANF binding sites on HTU-5 cells are of the NPR-C type. However, rather than inhibiting intracellular cAMP in these cells, ANF increased maximal cAMP to 200-300% of control value. The ANF-induced increase in cAMP was duplicated by C-ANF (4-23). Basal cAMP content was reduced, and the response to ANF was abolished when the cells were grown in low (0.5%) serum without the addition of pituitary and hypothalamic extracts. CNP-22 also increased cAMP above control in HTU-5 cells identically to ANF. Neither ANF nor C-ANF (4-23) had any effect on cAMP in a culture of rat aortic smooth muscle cells. These results provide the first evidence for a positive effect of natriuretic peptides on cAMP mediated through the NPR-C, suggesting the possibility of an alternative mode of signaling by this receptor subtype.  相似文献   

6.
We have recently shown that atrial natriuretic factor (ANF) inhibits adenylate cyclase activity in rat platelets where only one population of ANF receptors (ANF-R2) is present, indicating that ANF-R2 receptors may be coupled to the adenylate cyclase/cAMP system. In the present studies, we have used ring-deleted peptides which have been reported to interact with ANF-R2 receptors also called clearance receptors (C-ANF) without affecting the guanylate cyclase/cGMP system, to examine if these peptides can also inhibit the adenylate cyclase/cAMP system. Ring-deleted analog C-ANF4-23 like ANF99-126 inhibited the adenylate cyclase activity in a concentration-dependent manner in rat aorta, brain striatum, anterior pituitary, and adrenal cortical membranes. The maximal inhibition was about 50-60% with an apparent Ki between 0.1 and 1 nM. In addition, C-ANF4-23 also decreased the cAMP levels in vascular smooth muscle cells in a concentration-dependent manner without affecting the cGMP levels. The maximal decrease observed was about 60% with an apparent Ki of about 1 nM. Furthermore, C-ANF4-23 was also able to inhibit cAMP levels and progesterone secretion stimulated by luteinizing hormone in MA-10 cell line. Other smaller fragments of ANF with ring deletions were also able to inhibit the adenylate cyclase activity as well as cAMP levels. Furthermore, the stimulatory effects of various agonists such as 5'-(N-ethyl)carboxamidoadenosine, dopamine, and forskolin on adenylate cyclase activity and cAMP levels were also significantly inhibited by C-ANF4-23. The inhibitory effect of C-ANF4-23 on adenylate cyclase was dependent on the presence of GTP and was attenuated by pertussis toxin treatment. These results indicate that ANF-R2 receptors or so-called C-ANF receptors are coupled to the adenylate cyclase/cAMP signal transduction system through inhibitory guanine nucleotide regulatory protein.  相似文献   

7.
8.
Atrial natriuretic factor (ANF) is stored in atrial myocytes as a prohormone (ANF-(1-126] and is cosecretionally processed to the circulating ANF-related peptides, ANF-(1-98) and ANF-(99-126). Recently, we have shown that the cosecretional processing of ANF can be replicated in primary cultures of neonatal rat atrial myocytes maintained under serum-free conditions and that glucocorticoids are responsible for supporting this processing activity. Activators of protein kinase C (phorbol esters and alpha-adrenergic agonists) and of protein kinase A (cAMP analogs, forskolin, and beta-adrenergic agonists) were tested for their abilities to alter the rate of ANF secretion from the primary cultures. ANF secretion was stimulated approximately 4-fold after a 1-h incubation of the cultures with the phorbol ester 12-O-tetradecanoylphorbol 13-acetate (TPA); maximal release occurred at about 100 nM TPA. Reversed-phase high performance liquid chromatography analysis of secreted material indicated that the cells efficiently cosecretionally processed ANF under both basal and TPA-stimulated conditions. However, incubating the cultures for more than 1 h with TPA resulted in a blunted secretory response to further TPA challenge and a 40-50% decrease in the quantity of ANF in the cells. The alpha-adrenergic receptor agonist phenylephrine was also capable of stimulating ANF secretion by about 4-fold at a half-maximal dose of about 1 microM. Phenylephrine-stimulated ANF secretion was inhibited by the alpha 1-adrenergic antagonist prazosin with half-maximal inhibition occurring at approximately 1 nM. Forskolin, 8-bromoadenosine 3':5'-cyclic monophosphate, and N6-2(1)-O-dibutyryladenosine 3':5'-cyclic monophosphate inhibited basal, TPA- and phenylephrine-stimulated ANF secretion. The beta-adrenergic agonist isoproterenol partially inhibited phenylephrine-stimulated ANF secretion with the maximal effect occurring at 1 nM. These results indicate that ANF secretion from the neonatal rat atrial cultures is enhanced by activators of protein kinase C, and decreased by activators of protein kinase A, and that these secretory effects may be mediated through the actions of alpha- and beta-adrenergic receptors, respectively.  相似文献   

9.
Human secretin receptor is a G protein-coupled receptor that is functionally linked to the cAMP second messenger system by stimulation of adenylate cyclase. To functionally characterize the receptor and evaluate its signal transduction pathway, the full-length human secretin receptor cDNA was subcloned into the mammalian expression vector pRc/CMV and expressed in cultured CHO cells. Intracellular cAMP accumulation of the stably transfected cells was measured by a radioimmunoassay (RIA), while the extracellular acidification rate was measured by the Cytosensor microphysiometer. Human secretin and biotinylated human secretin were equipotent in both assays in a dose-dependent manner. The EC50 values of stimulating the intracellular cAMP accumulation and the extracellular acidification rate were 0.2-0.5 nM and 0.1 nM, respectively, indicating that microphysiometry is more sensitive than the cAMP assay in monitoring ligand stimulation of the human secretin receptor. The secretin-stimulated response could be mimicked by forskolin and augmented by the phosphodiesterase inhibitor 3-isobutyl-1-methylxanthine, indicating that the extracellular acidification response is positively correlated with intracellular cAMP level. The response could be abolished by the protein kinase A inhibitor H-89, suggesting that protein kinase A plays an essential role in the intracellular signaling of the receptor. Upon repeated stimulation by the ligand, the peak acidification responses did not change significantly at both physiological (0.03 nM and 3 nM) and pharmacological (0.3 microM) concentrations of human secretin, suggesting that the human secretin receptor did not exhibit robust homologous desensitization.  相似文献   

10.
The role of endothelin (ET) receptors was tested in volume-stimulated atrial natriuretic factor (ANF) secretion in conscious rats. Mean ANF responses to slow infusions (3 x 3.3 ml/8 min) were dose dependently reduced (P < 0.05) by bosentan (nonselective ET-receptor antagonist) from 64.1 +/- 18.1 (SE) pg/ml (control) to 52.6 +/- 16.1 (0.033 mg bosentan/rat), 16.1 +/- 7.6 (0. 33 mg/rat), and 11.6 +/- 6.5 pg/ml (3.3 mg/rat). The ET-A-receptor antagonist BQ-123 (1 mg/rat) had no effect relative to DMSO controls, whereas the putative ET-B antagonist IRL-1038 (0.1 mg/rat) abolished the response. In a second protocol, BQ-123 (>/=0.5 mg/rat) nonsignificantly reduced the peak ANF response (106.1 +/- 23.0 pg/ml) to 74.0 +/- 20.5 pg/ml for slow infusions (3.5 ml/8.5 min) but reduced the peak response (425.3 +/- 58.1 pg/ml) for fast infusions (6.6 ml/1 min) by 49.9% (P < 0.001) and for 340 pmoles ET-1 (328.8 +/- 69.5 pg/ml) by 83.5% (P < 0.0001). BQ-123 abolished the ET-1-induced increase in arterial pressure (21.8 +/- 5.2 mmHg at 1 min). Changes in central venous pressure were similar for DMSO and BQ-123 (slow: 0.91 and 1.14 mmHg; fast: 4.50 and 4.13 mmHg). The results suggest 1) ET-B receptors mainly mediate the ANF secretion to slow volume expansions of <1.6%/min; and 2) ET-A receptors mainly mediate the ANF response to acute volume overloads.  相似文献   

11.
The role of atrial natriuretic factor (ANF) in regulation of osmotic water permeability was studied in isolated frog Rana temporaria L. urinary bladder. It was found that ANF (rANF, 1-28) added to the serosal solution at concentrations 5 x 10(-8) M and higher dosedependently stimulated the arginine-vasotocin (AVT)-induced increase of osmotic water permeability. The effect of ANF was revealed only in presence of 3-isobuthyl-1-methylxantine (180 microM) and was accompanied by significant elevation of cGMP level in urinary bladder homogenate and isolated mucosal epithelial cells. C-ANF (des[Gln18, Ser19, Gly20, Leu21, Gly22]-ANF-(4-23)-NH2), a specific agonist of NPR-C receptor, exerted no effect on osmotic water permeability. ANF induced a significant increase of cAMP in urinary bladder homogenates (AVT, 5 x 10(-11) M: 52.3 +/- 10.6; AVT + ANF, 10(-7) M: 114.2 +/- 26.9 pmol/mg protein, n = 5, p < 0.05). The activity of adenylate cyclase in crude plasmatic membrane fraction was not changed. Milrinone, a specific inhibitor of phosphodiesterase 3, at concentrations from 25 to 80 microM, enhanced both the hydroosmotic response to AVT and AVT-stimulated cAMP production. Altogether these data demonstrate that, in the frog urinary bladder, ANF stimulates the AVT-induced increase of osmotic water permeability acting probably through NPR-A receptor-coupled mobilization of cGMP and cGMP-dependent inhibition of phosphodiesterase 3.  相似文献   

12.
Since many isoforms of adenylyl cyclase and adenosine 3', 5'-monophosphate (cAMP) phosphodiesterase have been cloned, it is likely that receptors of each hormone have a specific combination of these isoforms. Types I, III and VIII adenylyl cyclases are reported to be stimulated by Ca(2+)-calmodulin, type I phosphodiesterase by Ca(2+)-calmodulin, but types IV and VII (cAMP-specific) phosphodiesterases by Co2+. In the present study, we examined different effects of Ca2+ and Co2+ on hormone-induced cAMP response in the isolated perfused rat liver.The removal of Ca2+ from the perfusion medium (0 mM CaCl(2 ) + 0.5 mM EGTA) did not affect glucagon (0.1 nM)-responsive cAMP but reduced secretin (1 nM)-, vasoactive intestinal polypeptide (VIP, 1-10 nM)- and forskolin (1 microM)-responsive cAMP considerably. The addition of 1 mM CoCl2 reduced glucagon- and secretin-responsive cAMP considerably, forskolin-responsive cAMP partly, did not affect 1 nM VIP-responsive cAMP, but enhanced 10 nM VIP-responsive cAMP. Forskolin- and VIP-responsive cAMP was greater in the combination (0 mM CaCl(2) + 0.5 mM EGTA + 3 mM CoCl2) than in the Ca(2+)-free perfusion alone.These results suggest that secretin, VIP1 and VIP2 receptors are linked to Ca(2+)-calmodulin-sensitive adenylyl cyclase; glucagon receptor to Ca(2+)-calmodulin-insensitive adenylyl cyclase; VIP1 receptor to Ca(2+)-calmodulin-dependent phosphodiesterase; glucagon, secretin and VIP2 receptors to cAMP-specific phosphodiesterase, respectively, in the rat liver.  相似文献   

13.
The present study shows for the first time that in proopiomelanocortin cells of the rat intermediate pituitary gland ANF binds to two receptor forms, with apparent molecular weights of 150K and 70K. Scatchard plots revealed specific and high affinity non-interacting sites, with a KD value of about 3 nM and a density of 7,000 sites/cell. The presence of these binding sites was further confirmed by autoradiographic studies. Activation of these receptors led to an increase in cellular content of cGMP, with half-maximal effect being elicited with about 5 nM ANF, while cAMP formation was unaltered. Alpha-MSH secretion of intermediate pituitary cells was unaffected by ANF, whether the cells were incubated in the absence or presence of corticotropin-releasing factor or bromocryptine. These data thus indicate the presence of multiple ANF receptor sites in the intermediate pituitary which are coupled to cell production of cGMP, but independent of alpha-MSH secretion.  相似文献   

14.
We have previously reported that atrial natriuretic factor (ANF) increased neuronal norepinephrine (NE) uptake and reduced basal and evoked neuronal NE release. Changes in NE uptake and release are generally associated to modifications in the synthesis and/or turnover of the amine. On this basis, the aim of the present work was to study ANF effects in the rat hypothalamus on the following processes: endogenous content, utilization and turn-over of NE; tyrosine hydroxylase (TH) activity; cAMP and cGMP accumulation and phosphatidylinositol hydrolysis. Results showed that centrally applied ANF (100 ng/microl/min) increased the endogenous content of NE (45%) and diminished NE utilization. Ten nM ANF reduced the turnover of NE (53%). In addition, ANF (10 nM) inhibited basal and evoked (with 25 mM KCl) TH activity (30 and 64%, respectively). Cyclic GMP levels were increased by 10 nM ANF (100%). However, neither cAMP accumulation nor phosphatidylinositol breakdown were affected in the presence of 10 nM ANF. The results further support the role of ANF in the regulation of NE metabolism in the rat hypothalamus. ANF is likely to act as a negative putative neuromodulator inhibiting noradrenergic neurotransmission by signaling through the activation of guanylate cyclase. Thus, ANF may be involved in the regulation of several central as well as peripheral physiological processes such as cardiovascular function, electrolyte and fluid homeostasis, endocrine and neuroendocrine synthesis and secretion, behavior, thirst, appetite and anxiety that are mediated by central noradrenergic activity.  相似文献   

15.
We studied the modulation by protein kinase C (PKC) of the cyclic AMP (cAMP) accumulation induced by prostaglandin (PG) E2 in rat neonatal microglial cultures. Short pretreatment of microglia with phorbol 12-myristate 13-acetate (PMA) or 4beta-phorbol 12,13-didecanoate, which activate PKC, but not with the inactive 4alpha-phorbol 12,13-didecanoate, substantially reduced cAMP accumulation induced by 1 microM PGE2. The action of PMA was dose and time dependent, and the maximal inhibition (approximately 85%) was obtained after 10-min preincubation with 100 nM PMA. The inhibitory effect of PMA was mimicked by diacylglycerol and was prevented by the PKC inhibitor calphostin C. As PMA did not affect isoproterenol- or forskolin-stimulated cAMP accumulation, we investigated whether activation of PKC decreased cAMP production by acting directly at PGE2 EP receptors. Neither sulprostone (10(-9)-10(-5) M), a potent agonist at EP3 receptors (coupled to adenylyl cyclase inhibition), nor 17-phenyl-PGE2 (10(-6)-10(-5) M), an agonist of EP1 receptors, modified cAMP accumulation induced by forskolin. On the contrary, 11-deoxy-16,16-dimethyl PGE2, which does not discriminate between EP2 and EP4 receptors, both coupled to the activation of adenylyl cyclase, and butaprost, a selective EP2 agonist, induced a dose-dependent elevation of cAMP that was largely reduced by PMA pretreatment, as in the case of PGE2. These results indicated EP2 receptors as a possible target of PKC and suggest that PKC-activating agents present in the pathological brain may prevent the cAMP-mediated microglia-deactivating function of PGE2.  相似文献   

16.
A secretin releasing peptide exists in dog pancreatic juice   总被引:1,自引:0,他引:1  
Li P  Song Y  Lee KY  Chang TM  Chey WY 《Life sciences》2000,66(14):1307-1316
Canine pancreatic juice has been shown to stimulate exocrine pancreatic secretion in the dog. In the present study we investigated whether there is a secretin-releasing peptide in canine pancreatic juice. Pancreatic juice was collected from the dogs with Thomas gastric and duodenal cannulas while pancreatic secretion was stimulated by intravenous administration of secretin at 0.5 microg/kg/h and CCK-8 at 0.2 microg/kg/h, respectively. The pancreatic juice was separated into three different molecular weight (MW) fractions (Fr) by ultrafiltration (Fr 1; MW > 10,000, Fr 2; MW=10,000-4,000 and Fr 3; MW < 4,000), respectively. All the fractions were bioassayed in anesthetized rats. Fraction 3 dose-dependently and significantly stimulated pancreatic juice flow volume from 78.0% to 99.4% (p<0.05) and bicarbonate output from 128.9% to 202.1% (p<0.01), respectively. Plasma secretin concentration also increased from 1.2 +/- 0.5 pM to 5.0 +/- 0.8 pM and 6.0 +/- 1.0 pM (p<0.05). None of these fractions increased pancreatic protein secretion or plasma CCK level. The stimulatory effect of Fraction 3 on pancreatic secretion and the release of secretin was completely abolished by treatment with trypsin (1 mg/ml for 60 min at 37 degrees C) but not by heating (100 degrees C, 10 min). Intravenous injection of a rabbit anti-secretin serum, which rendered plasma secretin almost undetectable in rat plasma, also abolished Fr 3-stimulated pancreatic secretion of fluid and bicarbonate secretion. These observations suggest that a secretin-releasing peptide exists in the canine pancreatic juice. It is trypsin-sensitive and heat-resistant. This peptide may play a significant physiological role on the release of secretin and regulation of exocrine pancreatic secretion.  相似文献   

17.
Based upon the existence of high density of ET-receptors on catecholaminergic neurons of the hypothalamus, we studied the effects of endothelin-1 (ET-1) and endothelin-3 (ET-3) on neuronal norepinephrine (NE) release in the rat posterior hypothalamus. The intracellular pathways and receptors involved were also investigated. Neuronal NE release was enhanced by ET-1 and ET-3 (10 etaM). The selective antagonists of subtype A and B ET receptors (ETA, ETB) (100 etaM BQ-610 and 100 etaM BQ-788, respectively) abolished the increase induced by ET-1 but not by ET-3. The PLC inhibitor, U73122 (10 microM), abolished ET-1 and ET-3 response. GF-109203X (100 etaM) (PKC inhibitor) blocked the increase in NE release produced by ET-3 and partially blocked ET-1 response. The inositol 1,4,5-trisphosphate-induced calcium release inhibitor, 42 microM 2-APB, inhibited the stimulatory effect induced by ET-3 but not by ET-1. The PKA inhibitor, 500 etaM H-89, blocked the increase in neuronal NE release evoked by ET-1 but not by ET-3. Our results showed that ET-1 as well as ET-3 displayed an excitatory neuromodulatory effect on neuronal NE release in the rat posterior hypothalamus. ET-1 through an atypical ETA or ETB receptor activated the PLC/PKC signalling pathway as well as the cAMP pathway, whereas ET-3 through a non-ETA/non-ETB receptor activated the phosphoinositide pathway. Both ETs would enhance the sympathoexcitatory response elicited by the posterior hypothalamus and thus participate in cardiovascular regulation.  相似文献   

18.
The effect of capsaicin on basal and pentagastrin-stimulated gastric acid secretion was investigated in the urethane anaesthetized acute gastric fistula rat. Gastric acid secretion was measured by flushing of the gastric lumen with saline every 15 min or by continuous gastric perfusion. Capsaicin given into the rat stomach at 120 ng x mL(-1) prior to pentagastrin (25 microg x kg(-1), iv) reduced gastric acid secretory response to pentagastrin by 24%. Intravenous (iv) capsaicin (0.5 microg x kg(-1)) did not reduce the pentagastrin-stimulated gastric acid secretion. After topical capsaicin desensitization (3 mg x mL(-1)), basal gastric acid secretion and that in response to pentagastrin (25 microg x kg(-1), intraperitonaeally) was unaltered compared with the control group. Data indicate that topical capsaicin inhibits gastric acid secretion stimulated with pentagastrin in anaesthetized rats.  相似文献   

19.
We have found that atrial natriuretic factor (ANF) has a profound effect on testicular cells in altering intracellular cyclic nucleotide levels as well as progesterone secretion. Using clonal cultured Leydig tumor cells we found that 1 X 10(-8)M ANF caused a two thousand-fold elevation in the accumulation of cellular cGMP and inhibited cAMP in treated cells by more than 90% as compared to the controls. ANF (1 X 10(-8)M) also significantly inhibited gonadotropin-stimulated accumulation of cAMP in response to bovine luteinizing hormone (bLH) or human chorionic gonadotropin (hCG). Gonadotropin-stimulated progesterone secretion was inhibited by ANF (1 X 10(-10) - 1 X 10(-9)M) in these cultured Leydig tumor cells. Approximately 50% inhibition of progesterone secretion was observed at the peptide concentration of 1 X 10(-9) M.  相似文献   

20.
The black carp, Mylopharyngodon piceus, is a late-maturing cyprinid reaching sexual maturity at the age of 6-7 years. The present work attempted to define nonfunctional sites along the pituitary-gonadal axis in immature fish utilizing in vivo and in vitro challenge experiments. Two- and 3-year old fish injected with salmon gonadotropin-releasing hormone analog (sGnRHa; 10 microg/kg) and metoclopramide (20 mg/kg) did not reveal any increase in circulating gonadotropin (cGtH) or estradiol (E(2)) level. Furthermore, cGtH release from cultured pituitary cells of fish at these ages did not increase in response to sGnRH (0.1 nM - 1 microM) but was augmented when exposed to TPA (12.5 nM). However, 4-year old female fish did respond to the above treatments both in vivo and in vitro. These results suggest the existence of nonfunctional site(s) proximal to the activation of PKC in the immature black carp gonadotrophs, probably at the level of GnRH receptors. These site(s) start to become functional in 4-year old fish. Two- and 3-year old fish injected with common carp pituitary extract (CPE) containing 350 microg cGtH/kg did not show any increase in circulating E(2). In addition, the estrogen secretion from fragments of the rudimentary gonads did not increase after exposure to CPE containing cGtH (0.5-4 microg/ml) but was elevated dose-dependently by exposure to dbcAMP (0.3-3 mM). However, the ovaries of 4-year old fish did respond to the gonadotropic stimulation, both in vivo and in vitro. These results suggest the existence of other non-functional site(s) in the immature black carp, proximal to the formation of cAMP in the gonads, probably at the level of GtH receptors. These site(s) start to become functional in 4-year old females. Another source of E(2) was discovered in the immature black carp: namely, the fat pad adjacent to the gonads. In contrast to the visceral adipose tissue, the fat pad secretes estrogen in response to cAMP elevation in 2- and 3-year old fish while in 4-year old fish it also responds to gonadotropic stimulation. Due to its large mass and high steroidogenic potency, it is assumed that the gonadal fat pad is involved in the process of puberty in the black carp. J. Exp. Zool. 286:405-413, 2000.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号