首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 796 毫秒
1.
Our aim was to assess the magnitude of peripheral insulin resistance and whether changes in hepatic insulin action were evident in a canine model of late (3rd trimester) pregnancy. A 3-h hyperinsulinemic (5 mU.kg(-1).min(-1)) euglycemic clamp was conducted using conscious, 18-h-fasted pregnant (P; n = 6) and nonpregnant (NP; n = 6) female dogs in which catheters for intraportal insulin infusion and assessment of hepatic substrate balances were implanted approximately 17 days before experimentation. Arterial plasma insulin rose from 11 +/- 2 to 192 +/- 24 and 4 +/- 2 to 178 +/- 5 microU/ml in the 3rd h in NP and P, respectively. Glucagon fell equivalently in both groups. Basal net hepatic glucose output was lower in NP (1.9 +/- 0.1 vs. 2.4 +/- 0.2 mg.kg(-1).min(-1), P < 0.05). Hyperinsulinemia completely suppressed hepatic glucose release in both groups (-0.4 +/- 0.2 and -0.1 +/- 0.2 mg.kg(-1).min(-1) in NP and P, respectively). More exogenous glucose was required to maintain euglycemia in NP (15.2 +/- 1.3 vs. 11.5 +/- 1.1 mg.kg(-1).min(-1), P < 0.05). Nonesterified fatty acids fell similarly in both groups. Net hepatic gluconeogenic amino acid uptake with high insulin did not differ in NP and P. Peripheral insulin action is markedly impaired in this canine model of pregnancy, whereas hepatic glucose production is completely suppressed by high circulating insulin levels.  相似文献   

2.
We assessed basal glucose metabolism in 16 female nonpregnant (NP) and 16 late-pregnant (P) conscious, 18-h-fasted dogs that had catheters inserted into the hepatic and portal veins and femoral artery approximately 17 days before the experiment. Pregnancy resulted in lower arterial plasma insulin (11 +/- 1 and 4 +/- 1 microU/ml in NP and P, respectively, P < 0.05), but plasma glucose (5.9 +/- 0.1 and 5.6 +/- 0.1 mg/dl in NP and P, respectively) and glucagon (39 +/- 3 and 36 +/- 2 pg/ml in NP and P, respectively) were not different. Net hepatic glucose output was greater in pregnancy (42.1 +/- 3.1 and 56.7 +/- 4.0 micromol. 100 g liver(-1).min(-1) in NP and P, respectively, P < 0.05). Total net hepatic gluconeogenic substrate uptake (lactate, alanine, glycerol, and amino acids), a close estimate of the gluconeogenic rate, was not different between the groups (20.6 +/- 2.8 and 21.2 +/- 1.8 micromol. 100 g liver(-1). min(-1) in NP and P, respectively), indicating that the increment in net hepatic glucose output resulted from an increase in the contribution of glycogenolytically derived glucose. However, total glycogenolysis was not altered in pregnancy. Ketogenesis was enhanced nearly threefold by pregnancy (6.9 +/- 1.2 and 18.2 +/- 3.4 micromol. 100 g liver(-1).min(-1) in NP and P, respectively), despite equivalent net hepatic nonesterified fatty acid uptake. Thus late pregnancy in the dog is not accompanied by changes in the absolute rates of gluconeogenesis or glycogenolysis. Rather, repartitioning of the glucose released from glycogen is responsible for the increase in hepatic glucose production.  相似文献   

3.
Insulin resistance (IR) is a hallmark of pregnancy. Because increased visceral fat (VF) is associated with IR in nonpregnant states, we reasoned that fat accretion might be important in the development of IR during pregnancy. To determine whether VF depots increase in pregnancy and whether VF contributes to IR, we studied three groups of 6-mo-old female Sprague-Dawley rats: 1) nonpregnant sham-operated rats (Nonpreg; n = 6), 2) pregnant sham-operated rats (Preg; n = 6), and 3) pregnant rats in which VF was surgically removed 1 mo before mating (PVF-; n = 6). VF doubled by day 19 of pregnancy (Nonpreg 5.1 +/- 0.3, Preg 10.0 +/- 1.0 g, P < 0.01), and PVF- had similar amounts of VF compared with Nonpreg (PVF- 4.6 +/- 0.8 g). Insulin sensitivity was measured by hyperinsulinemic-euglycemic clamp in late gestation in chronically catheterized unstressed rats. Glucose IR (mg.kg(-1).min(-1)) was highest in Nonpreg (19.4 +/- 2.0), lowest in Preg (11.1 +/- 1.4), and intermediate in PVF- (14.7 +/- 0.6; P < 0.001 between all groups). During the clamp, Nonpreg had greater hepatic insulin sensitivity than Preg [hepatic glucose production (HGP): Nonpreg 4.5 +/- 1.3, Preg 9.3 +/- 0.5 mg.kg(-1).min(-1); P < 0.001]. With decreased VF, hepatic insulin sensitivity was similar to nonpregnant levels in PVF- (HGP 4.9 +/- 0.8 mg.kg(-1).min(-1)). Both pregnant groups had lower peripheral glucose uptake compared with Nonpreg. In parallel with hepatic insulin sensitivity, hepatic triglyceride content was increased in pregnancy (Nonpreg 1.9 +/- 0.4 vs. Preg 3.2 +/- 0.3 mg/g) and decreased with removal of VF (PVF- 1.3 +/- 0.4 mg/g; P < 0.05). Accretion of visceral fat is an important component in the development of hepatic IR in pregnancy, and accumulation of hepatic triglycerides is a mechanism by which visceral fat may modulate insulin action in pregnancy.  相似文献   

4.
The impact of pregnancy on the counterregulatory response to insulin-induced hypoglycemia was examined in six nonpregnant (NP) and six pregnant (P; 3rd trimester) conscious dogs by tracer and arteriovenous difference techniques. After basal sampling, insulin was infused intraportally at 30 pmol.kg(-1).min(-1) for 180 min. Insulin rose from 70 +/- 15 to 1,586 +/- 221 pmol/l and 27 +/- 4 to 1,247 +/- 61 pmol/l in the 3rd h in NP and P, respectively. Arterial glucose fell from 5.9 +/- 0.2 to 2.3 +/- 0.2 mmol/l in P. Glucose was infused in NP to equate the rate of fall of glucose and the steady-state concentrations in the groups (5.9 +/- 0.2 to 2.3 +/- 0.1 mmol/l in NP). Glucagon was 32 +/- 6, 69 +/- 11, and 48 +/- 10 ng/l (basal and 1st and 3rd h) in NP, but the response was attenuated in P (34 +/- 5, 46 +/- 6, 41 +/- 9 ng/l). Cortisol and epinephrine rose similarly in both groups, but norepinephrine rose more in NP (Delta3.01 +/- 0.46 and Delta1.31 +/- 0.13 nmol/l, P < 0.05). Net hepatic glucose output (NHGO; micromol.kg(-1).min(-1)) increased from 10.6 +/- 1.8 to 21.2 +/- 3.3 in NP (3rd h) but did not increase in P (15.1 +/- 1.5 to 15.3 +/- 2.8 micromol.kg(-1).min(-1), P < 0.05 between groups). The glycogenolytic contribution to NHGO in NP increased from 5.8 +/- 0.7 to 10.4 +/- 2.5 micromol.kg(-1).min(-1) by 90 min but steadily declined in P. The increase in glycerol levels and the gluconeogenic contribution to NHGO were 50% less in P than in NP, but ketogenesis did not differ. The glucagon and norepinephrine responses to insulin-induced hypoglycemia are blunted in late pregnancy in the dog, impacting on the magnitude of the metabolic responses to the fall in glucose.  相似文献   

5.
The pancreas releases insulin in a pulsatile manner; however, studies assessing the liver's response to insulin have used constant infusion rates. Our aims were to determine whether the secretion pattern of insulin [continuous (CON) vs. pulsatile] in the presence of hyperglycemia 1) influences net hepatic glucose uptake (NHGU) and 2) entrains NHGU. Chronically catheterized conscious dogs fasted for 42 h received infusions including peripheral somatostatin, portal insulin (0.25 mU x kg(-1) x min(-1)), peripheral glucagon (0.9 ng x kg(-1) x min(-1)), and peripheral glucose at a rate double the glucose load to the liver. After the basal period, insulin was infused for 210 min at either four times the basal rate (1 mU x kg(-1) x min(-1)) or an identical amount in pulses of 1 and 4 min duration, followed by intervals of 11 and 8 min (CON, 1/11, and 4/8, respectively) in which insulin was not infused. A variable peripheral glucose infusion containing [3H]glucose clamped glucose levels at twice the basal level ( approximately 200 mg/dl) throughout each study. Hepatic metabolism was assessed by combining tracer and arteriovenous difference techniques. Arterial plasma insulin (microU/ml) either increased from basal levels of 6 +/- 1 to a constant level of 22 +/- 4 in CON or oscillated from 5 +/- 1 to 416 +/- 79 and from 6 +/- 1 to 123 +/- 43 in 1/11 and 4/8, respectively. NHGU (-0.8 +/- 0.3, 0.4 +/- 0.2, and -0.9 +/- 0.4 mg x kg(-1) x min(-1)) and net hepatic fractional extraction of glucose (0.04 +/- 0.01, 0.04 +/- 0.01, and 0.05 +/- 0.01 mg x kg(-1) x min(-1)) were similar during the experimental period. Spectral analysis was performed to assess whether a correlation existed between the insulin secretion pattern and NHGU. NHGU was not augmented by pulsatile insulin delivery, and there is no evidence of entrainment in hepatic glucose metabolism. Thus the loss of insulin pulsatility per se likely has little or no impact on the effectiveness of insulin in regulating liver glucose uptake.  相似文献   

6.
We examined the extent to which priming the liver with a pulse of Humulin or the insulin analog hexyl-insulin monoconjugate 2 (HIM2) reduces postprandial hyperglycemia. Somatostatin (0.5 microg.kg(-1).min(-1)) was given with basal intraportal insulin and glucagon for 4.5 h into three groups of 42-h-fasted conscious dogs. From 0-5 min, group 1 (BI, n = 6) received saline, group 2 (HI, n = 6) received a Humulin pulse (10 mU.kg(-1).min(-1)), and group 3 (HIM2, n = 6) received a HIM2 pulse (10 mU.kg(-1).min(-1)). Duodenal glucose was infused (5.0 mg.kg(-1).min(-1)) from 15 to 270 min. Arterial insulin in BI remained basal (6 +/- 1 microU/ml) and peaked at 52 +/- 15 (HI) and 164 +/- 44 microU/ml (HIM2) and returned to baseline by 30 and 60 min, respectively. Arterial plasma glucose plateaued at 265 +/- 20, 214 +/- 15, and 193 +/- 14 mg/dl in BI, HI, and HIM2. Glucose absorption was similar in all groups. Significant net hepatic glucose uptake occurred at 85, 55, and 25 min in BI, HI, and HIM2, respectively. Nonhepatic glucose clearance at 270 min differed among groups (BI, HI, HIM2): 0.62 +/- 0.11, 0.76 +/- 0.26, and 1.61 +/- 0.29 ml.kg(-1).min(-1) (P < 0.05). A brief (5-min) insulin pulse improved postprandial glycemia, stimulating hepatic glucose uptake and prolonging enhancement of nonhepatic glucose clearance. HIM2 was more effective than Humulin, perhaps because its lowered clearance caused higher levels at the liver and periphery and its biological activity was not reduced proportionally to its decreased clearance.  相似文献   

7.
We evaluated the effect of chronic (3 wk) subcutaneous treatment with progesterone and estradiol (PE; producing serum levels observed in the 3rd trimester of pregnancy) or placebo (C) on hepatic and whole body insulin sensitivity and response to hypoglycemia in conscious, overnight-fasted nonpregnant female dogs, using tracer and arteriovenous difference techniques. Insulin was infused peripherally for 3 h at 1.8 mU x kg(-1) x min(-1). Glucose was allowed to fall to 3 mM (Hypo) or maintained at 6 mM (Eugly) by peripheral glucose infusion. Insulin concentrations were significantly higher in Eugly-PE (n = 7) and Hypo-PE (n = 7) than in Eugly-C (n = 6) and Hypo-C groups (n = 7), but there were no significant differences in hepatic insulin extraction. Concentrations of glucagon, cortisol, epinephrine, and norepinephrine did not differ significantly between Eugly groups or between Hypo groups. Whole body glucose disposal, adjusted for the differences in insulin between groups, was 35% higher in Eugly-C vs. Eugly-PE groups (P < 0.05). Eugly-C and Eugly-PE groups exhibited similar rates of net hepatic glucose uptake, but the rate of glucose appearance was greater in Eugly-PE in the last hour (P < 0.05). Net hepatic glucose output was greater (P < 0.05) in Hypo-PE than in Hypo-C groups, and the glucose infusion rate required to maintain equivalent hypoglycemia was less (P < 0.05). The rate of gluconeogenic flux did not differ between Hypo groups. Chronic progesterone and estradiol exposure caused whole body (primarily skeletal muscle) insulin resistance and enhanced the liver's response to hypoglycemia without altering counterregulatory hormone concentrations.  相似文献   

8.
Endothelial dysfunction is a hallmark of Type 2 diabetes related to hyperglycemia and oxidative stress. Nitric oxide-dependent vasodilator actions of insulin may augment glucose disposal. Thus endothelial dysfunction may worsen insulin resistance. Intra-arterial administration of vitamin C improves endothelial dysfunction in diabetes. In the present study, we investigated effects of high-dose oral vitamin C to alter endothelial dysfunction and insulin resistance in Type 2 diabetes. Plasma vitamin C levels in 109 diabetic subjects were lower than healthy (36 +/- 2 microM) levels. Thirty-two diabetic subjects with low plasma vitamin C (<40 microM) were subsequently enrolled in a randomized, double-blind, placebo-controlled study of vitamin C (800 mg/day for 4 wk). Insulin sensitivity (determined by glucose clamp) and forearm blood flow in response to ACh, sodium nitroprusside (SNP), or insulin (determined by plethysmography) were assessed before and after 4 wk of treatment. In the placebo group (n = 17 subjects), plasma vitamin C (22 +/- 3 microM), fasting glucose (159 +/- 12 mg/dl), insulin (19 +/- 7 microU/ml), and SI(Clamp) [2.06 +/- 0.29 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)] did not change significantly after placebo treatment. In the vitamin C group (n = 15 subjects), basal plasma vitamin C (23 +/- 2 microM) increased to 48 +/- 6 microM (P < 0.01) after treatment, but this was significantly less than that expected for healthy subjects (>80 microM). No significant changes in fasting glucose (156 +/- 11 mg/dl), insulin (14 +/- 2 microU/ml), SI(Clamp) [2.71 +/- 0.46 x 10(-4) dl x kg(-1) x min(-1)/(microU/ml)], or forearm blood flow in response to ACh, SNP, or insulin were observed after vitamin C treatment. We conclude that high-dose oral vitamin C therapy, resulting in incomplete replenishment of vitamin C levels, is ineffective at improving endothelial dysfunction and insulin resistance in Type 2 diabetes.  相似文献   

9.
The present study was conducted to test the hypothesis that pregnancy in sheep alters the effects of insulin on glucose utilization and glucose production. Euglycemic, hyperinsulinemic glucose clamp experiments were performed in chronically catheterized, unstressed, fed or 24-hr fasted, nonpregnant sheep and fed, pregnant sheep. Endogenous glucose production rate for the whole sheep and glucose utilization rate of the uterine and nonuterine maternal tissues were measured in control and high-insulin periods by tracer technique using [6-3H]glucose. Control glucose utilization rate in the fed, nonpregnant sheep was significantly (P less than 0.05) greater than that in the fasted, nonpregnant sheep, 2.29 +/- 0.17 and 1.86 +/- 0.11 mg/min/kg, respectively, and also in the nonuterine maternal tissues of the pregnant sheep (1.71 +/- 0.18 mg/min/kg). Insulin stimulated glucose utilization 116.4 +/- 14.8% in the fed, nonpregnant sheep but only 82.8 +/- 11.0% in the fasted, nonpregnant sheep and 94.2 +/- 14.3% in the nonuterine tissues of the fed, pregnant sheep. Also, insulin suppressed endogenous glucose production to 53.2 +/- 5.6% in the fed, nonpregnant sheep, to 3.9 +/- 3.1% in the fasted, nonpregnant sheep, and to 9.0 +/- 3.7% in the fed, pregnant sheep. In the pregnant animals, uterine glucose uptake and uterine glucose utilization were not different and were not altered by changes in maternal insulin concentration. The results indicate that during late pregnancy glucose utilization is reduced and resistance to the effect of insulin to enhance glucose utilization is present in the nonuterine maternal tissues compared with nonpregnant, fed sheep. In contrast, the effectiveness of insulin to suppress glucose production in the pregnant sheep is greater than that in nonpregnant, fed sheep. These results also demonstrate that differential changes in the effect of insulin can exist simultaneously between peripheral (glucose consuming) and central (glucose producing) tissues. The changes in glucose utilization and in insulin effect in the pregnant sheep are both qualitatively and quantitatively similar to those of the nonpregnant sheep when fasted, suggesting that similar substrate and/or hormonal factors may be involved.  相似文献   

10.
Owing to the fermentative nature of their digestion, ruminant animals are highly dependent upon gluconeogenesis to meet their glucose needs. The role of hormones in regulating this process is not clear. The purpose of this study was to examine the effect of insulin on the utilization of lactate in glucose synthesis in sheep. The euglycemic model was used in sheep. [U-14C]Lactate and [6-3H]glucose were infused to monitor lactate and glucose fluxes. Hepatic metabolism was measured using radioisotopic and venoarterial concentration difference techniques. Insulin concentrations increased from basal concentrations of 16 +/- 2 to 95 +/- 9 microU/mL. Insulin reduced the net hepatic utilization of lactate (303 +/- 43 vs. 120 +/- 27 mumol/min), hepatic extraction efficiency of lactate (29 +/- 4 vs. 9 +/- 2%), hepatic output of glucose (338 +/- 33 vs. 103 +/- 21 mumol/min), and incorporation of lactate into glucose (90 +/- 5 vs. 46 +/- 8 mumol/min). Insulin at physiological levels can inhibit hepatic gluconeogenesis in ruminants.  相似文献   

11.
To elucidate insulin action on hepatic glucose output (glycogenolysis) in the state exposed to an excess glucocorticoid, the fed rat liver was isolated and cyclically perfused with a medium containing 5 mM glucose and various concentrations of insulin. The rat was subcutaneously injected with 1 mg/kg of dexamethasone (Dex) for 7 days. Dex-treated rats showed marked increases of serum insulin and plasma glucose level compared with those in control rats. Hepatic glycogen contents in Dex group were markedly increased compared with those in control (115 +/- 5 and 28 +/- 4 mg/g, respectively). Insulin extraction rate in the perfused liver was not different between control and Dex group. Perfusate glucose level after 60 min perfusion was much higher in the Dex-treated rat liver than that of the control at 0 microU/ml insulin (34.5 +/- 2.5 vs 23.0 +/- 2.0 mM, P less than 0.01), and reduced to the nadir level (19.0 +/- 3.0 and 13.0 +/- 1.5 mM, respectively) at 100 microU/ml insulin in both groups, i.e., the decreasing rate in perfusate glucose level was not different between Dex and control group (43% and 44%, respectively). These results suggest that Dex-treatment augments hepatic glucose output, but does not affect the sensitivity and responsiveness of that to insulin.  相似文献   

12.
The traditional methods for the assessment of insulin sensitivity yield only a single index, not the whole dose-response curve information. This curve is typically characterized by a maximally insulin-stimulated glucose clearance (Cl(max)) and an insulin concentration at half-maximal response (EC(50)). We developed an approach for estimating the whole dose-response curve with a single in vivo test, based on the use of tracer glucose and exogenous insulin administration (two steps of 20 and 200 mU x min(-1) x m(-2), 100 min each). The effect of insulin on plasma glucose clearance was calculated from non-steady-state data by use of a circulatory model of glucose kinetics and a model of insulin action in which glucose clearance is represented as a Michaelis-Menten function of insulin concentration with a delay (t(1/2)). In seven nondiabetic subjects, the model predicted adequately the tracer concentration: the model residuals were unbiased, and their coefficient of variation was similar to the expected measurement error (approximately 3%), indicating that the model did not introduce significant systematic errors. Lean (n = 4) and obese (n = 3) subjects had similar half-times for insulin action (t(1/2) = 25 +/- 9 vs. 25 +/- 8 min) and maximal responses (Cl(max) = 705 +/- 46 vs. 668 +/- 259 ml x min(-1) x m(-2), respectively), whereas EC(50) was 240 +/- 84 microU/ml in the lean vs. 364 +/- 229 microU/ml in the obese (P < 0.04). EC(50) and the insulin sensitivity index (ISI, initial slope of the dose-response curve), but not Cl(max), were related to body adiposity and fat distribution with r of 0.6-0.8 (P < 0.05). Thus, despite the small number of study subjects, we were able to reproduce information consistent with the literature. In addition, among the lean individuals, t(1/2) was positively related to the ISI (r = 0.72, P < 0.02). We conclude that the test here presented, based on a more elaborate representation of glucose kinetics and insulin action, allows a reliable quantitation of the insulin dose-response curve for whole body glucose utilization in a single session of relatively short duration.  相似文献   

13.
Insulin has been shown to alter long-chain fatty acid (LCFA) metabolism and malonyl-CoA production in muscle. However, these alterations may have been induced, in part, by the accompanying insulin-induced changes in glucose uptake. Thus, to determine the effects of insulin on LCFA metabolism independently of changes in glucose uptake, rat hindquarters were perfused with 600 microM palmitate and [1-(14)C]palmitate and with either 20 mM glucose and no insulin (G) or 6 mM glucose and 250 microU/ml of insulin (I). As dictated by our protocol, glucose uptake was not significantly different between the G and I groups (10.3 +/- 0.6 vs. 11.0 +/- 0.5 micromol x g(-1) x h(-1); P > 0.05). Total palmitate uptake and oxidation were not significantly different (P > 0.05) between the G (10.1 +/- 1.0 and 0.8 +/- 0.1 nmol x min(-1) x g(-1)) and I (10.2 +/- 0.6 and 1.1 +/- 0.2 nmol. min(-1) x g(-1)) groups. Preperfusion muscle triglyceride and malonyl-CoA levels were not significantly different between the G and I groups and did not change significantly during the perfusion (P > 0.05). Similarly, muscle triglyceride synthesis was not significantly different between groups (P > 0.05). These results demonstrate that the presence of insulin under conditions of similar glucose uptake does not alter LCFA metabolism and suggest that cellular mechanisms induced by carbohydrate availability, but independent of insulin, may be important in the regulation of muscle LCFA metabolism.  相似文献   

14.
We tested the hypothesis that regular endurance exercise prevents the age-related decline in insulin action typically observed in healthy, sedentary adults. An index of whole body insulin sensitivity (ISI), obtained from minimal model analysis of insulin and glucose concentrations during a frequently sampled intravenous glucose tolerance test, was determined in 126 healthy adults: 25 young [27 +/- 1 (SE) yr; 13 men/12 women] and 43 older (59 +/- 1 yr; 20/13) sedentary and 25 young (29 +/- 1 yr; 12/13) and 33 older (60 +/- 1 yr; 20/13) endurance trained. ISI values were lower in the older vs. young adults in both sedentary (-53%; 3.9 +/- 0.3 vs. 7.0 +/- 0.7 x10(-4) x min(-1) x microU(-1) x ml(-1); P < 0.01) and endurance-trained (-36%; 7.9 +/- 0.6 vs. 12.4 +/- 1.0 x 10(-4) min(-1) x microU(-1) x ml(-1); P < 0.01) groups, but the value was 72-102% higher in the trained subjects at either age (P < 0.01). In subgroup analysis of sedentary and endurance-trained adults with similar body fat levels (n = 62), the age-related reduction in ISI persisted only in the endurance-trained subjects (12.9 +/- 1.9 vs. 8.7 +/- 1.2 x 10(-4) x min(-1) x microU(-1) x ml(-1); P < 0.01). The results of the present study suggest that habitual endurance exercise does not prevent the age-associated decline insulin action. Moreover, the age-related reduction in ISI in endurance-trained adults appears to be independent of adiposity.  相似文献   

15.
Physiological increases in circulating insulin level significantly increase myocardial glucose uptake in vivo. To what extent this represents a direct insulin action on the heart or results indirectly from reduction in circulating concentrations of free fatty acids (FFA) is uncertain. To examine this, we measured myocardial glucose, lactate, and FFA extraction in 10 fasting men (ages 49-76 yr) with stable coronary artery disease during sequential intracoronary (10 mU/min, coronary plasma insulin = 140 +/- 20 microU/ml) and intravenous (100 mU/min, systemic plasma insulin = 168 +/- 26 microU/ml) insulin infusion. Basally, hearts extracted 2 +/- 2% of arterial glucose and extracted 27 +/- 6% of FFA. Coronary insulin infusion increased glucose extraction to 5 +/- 3% (P < 0.01 vs. basal) without changing plasma FFA or heart FFA extraction. Conversion to intravenous infusion lowered plasma FFA by approximately 50% and heart FFA extraction by approximately 75%, increasing heart glucose extraction still further to 8 +/- 3% (P < 0. 01 vs. intracoronary). This suggests the increase in myocardial glucose extraction observed in response to an increment in systemic insulin concentration is mediated equally by a reduction in circulating FFA and by direct insulin action on the heart itself. Coronary insulin infusion increased myocardial lactate extraction as well (from 20 +/- 10% to 29 +/- 9%, P < 0.05), suggesting the local action may include stimulation of a metabolic step distal to glucose transport and glycolysis.  相似文献   

16.
Defects in insulin secretion and/or action contribute to the hyperglycemia of stressed and diabetic patients, and we hypothesize that failure to suppress glucagon also plays a role. We examined the chronic impact of glucagon on glucose uptake in chronically catheterized conscious depancreatized dogs placed on 5 days of nutritional support (NS). For 3 days of NS, a variable intraportal infusion of insulin was given to maintain isoglycemia (approximately 120 mg/dl). On day 3 of NS, animals received a constant low infusion of insulin (0.4 mU.kg-1.min-1) and either no glucagon (CONT), basal glucagon (0.7 ng.kg-1.min-1; BasG), or elevated glucagon (2.4 ng.kg-1.min-1; HiG) for the remaining 2 days. Glucose in NS was varied to maintain isoglycemia. An additional group (HiG+I) received elevated insulin (1 mU.kg-1.min-1) to maintain glucose requirements in the presence of elevated glucagon. On day 5 of NS, hepatic substrate balance was assessed. Insulin and glucagon levels were 10+/-2, 9+/-1, 7+/-1, and 24+/-4 microU/ml, and 24+/-5, 39+/-3, 80+/-11, and 79+/-5 pg/ml, CONT, BasG, HiG, and HiG+I, respectively. Glucagon infusion decreased the glucose requirements (9.3+/-0.1, 4.6+/-1.2, 0.9+/-0.4, and 11.3+/-1.0 mg.kg-1.min-1). Glucose uptake by both hepatic (5.1+/-0.4, 1.7+/-0.9, -1.0+/-0.4, and 1.2+/-0.4 mg.kg-1.min-1) and nonhepatic (4.2+/-0.3, 2.9+/-0.7, 1.9+/-0.3, and 10.2+/-1.0 mg.kg-1.min-1) tissues decreased. Additional insulin augmented nonhepatic glucose uptake and only partially improved hepatic glucose uptake. Thus, glucagon impaired glucose uptake by hepatic and nonhepatic tissues. Compensatory hyperinsulinemia restored nonhepatic glucose uptake and partially corrected hepatic metabolism. Thus, persistent inappropriate secretion of glucagon likely contributes to the insulin resistance and glucose intolerance observed in obese and diabetic individuals.  相似文献   

17.
The effect of one bout of acute exercise on impaired glucose metabolism was studied in obese (480 +/- 20 g), untrained rats, at rest (n = 10) and after 60 min of swimming (n = 5). Using the euglycemic, hyperinsulinemic (10 mU.kg-1 x min-1) clamp, glucose clearance rate increased from 7.6 +/- 0.9 at rest to 9.7 +/- 0.5 mL.kg-1 x min-1 after exercise (p < 0.05). Glucose (3-O-[14C]methylglucose) transport (GT) into epididymal adipocytes were incubated with or without insulin. In the absence of insulin, GT was 0.13 +/- 0.02 and 0.26 +/- 0.07 fmol.cell-1 x min-1 at rest and after exercise, respectively. In the presence of insulin (25-1000 microU.mL-1) GT increased at rest from 0.97 +/- 0.08 to 1.13 +/- 0.07 fmol.cell-1 x min-1, and after exercise from 1.35 +/- 0.05 to 1.87 +/- 0.11 fmol.cell-1 x min-1. GT was significantly higher after exercise compared with rest (p < 0.004). At rest, maximal insulin effect was achieved at 100 microU.mL-1, whereas with exercise, GT increased gradually with the insulin dosage. The following may be concluded: (i) the biological effect of insulin is amplified in obese rats by one bout of exercise and (ii) exercise affects GT into enlarged adipocytes by enhancing tissue responsiveness to insulin and by a cellular mechanism unrelated to the insulin action.  相似文献   

18.
Insulin resistance in acromegaly causes glucose intolerance and diabetes, but it is unknown whether it involves protein metabolism, since both insulin and growth hormone promote protein accretion. The effects of acromegaly and of its surgical cure on the insulin sensitivity of glucose and amino acid/protein metabolism were evaluated by infusing [6,6-(2)H(2)]glucose, [1-(13)C]leucine, and [2-(15)N]glutamine during a euglycemic insulin (1 mU x kg(-1) x min(-1)) clamp in 12 acromegalic patients, six studied again 6 mo after successful adenomectomy, and eight healthy controls. Acromegalic patients, compared with postsurgical and control subjects, had higher postabsorptive glucose concentration (5.5 +/- 0.3 vs. 4.9 +/- 0.2 micromol/l, P < 0.05, and 5.1 +/- 0.1 micromol/l) and flux (2.7 +/- 0.1 vs. 2.0 +/- 0.2 micromol x kg(-1) x min(-1), P < 0.01, and 2.2 +/- 0.1 micromol x kg(-1) x min(-1), P < 0.05) and reduced insulin-stimulated glucose disposal (+15 +/- 9 vs. +151 +/- 18%, P < 0.01, and 219 +/- 58%, P < 0.001 from basal). Postabsorptive leucine metabolism was similar among groups. In acromegalic and postsurgical subjects, insulin suppressed less than in controls the endogenous leucine flux (-9 +/- 1 and -12 +/- 2 vs. -18 +/- 2%, P < 0.001 and P < 0.05), the nonoxidative leucine disposal (-4 +/- 3 and -1 +/- 3 vs. -18 +/- 2%, P < 0.01 and P < 0.05), respectively, indexes of proteolysis and protein synthesis, and leucine oxidation (-17 +/- 6% in postsurgical patients vs. -26 +/- 6% in controls, P < 0.05). Within 6 mo, surgery reverses insulin resistance for glucose but not for protein metabolism. After adenomectomy, more leucine is oxidized during hyperinsulinemia.  相似文献   

19.
Insulin action and secretion in endurance-trained and untrained humans   总被引:7,自引:0,他引:7  
To evaluate insulin sensitivity and responsiveness, a two-stage hyperinsulinemic euglycemic clamp procedure (insulin infusions of 40 and 400 mU.m-2.min-1) was performed on 11 endurance-trained and 11 untrained volunteers. A 3-h hyperglycemic clamp procedure (plasma glucose approximately 180 mg/dl) was used to study the insulin response to a fixed glycemic stimulus in 15 trained and 12 untrained subjects. During the 40-mU.m-2.min-1 insulin infusion, the glucose disposal rate was 10.2 +/- 0.5 mg.kg fat-free mass (FFM)-1.min-1 in the trained group compared with 8.0 +/- 0.6 mg.kg FFM-1.min-1 in the untrained group (P less than 0.01). In contrast, there was no significant difference in maximally stimulated glucose disposal: 17.7 +/- 0.6 in the trained vs. 16.7 +/- 0.7 mg.kg FFM-1.min-1 in the untrained group. During the hyperglycemic clamp procedure, the incremental area for plasma insulin was lower in the trained subjects for both early (0-10 min: 140 +/- 18 vs. 223 +/- 23 microU.ml-1.min; P less than 0.005) and late (10-180 min: 4,582 +/- 689 vs. 8,895 +/- 1,316 microU.ml-1.min; P less than 0.005) insulin secretory phases. These data demonstrate that 1) the improved insulin action in healthy trained subjects is due to increased sensitivity to insulin, with no change in responsiveness to insulin, and 2) trained subjects have a smaller plasma insulin response to an identical glucose stimulus than untrained individuals.  相似文献   

20.
We tested the hypothesis that hepatic nitric oxide (NO) and glutathione (GSH) are involved in the synthesis of a putative hormone referred to as hepatic insulin-sensitizing substance HISS. Insulin action was assessed in Wistar rats using the rapid insulin sensitivity test (RIST). Blockade of hepatic NO synthesis with N(G)-nitro-l-arginine methyl ester (l-NAME, 1.0 mg/kg intraportal) decreased insulin sensitivity by 45.1 +/- 2.1% compared with control (from 287.3 +/- 18.1 to 155.3 +/- 10.1 mg glucose/kg, P < 0.05). Insulin sensitivity was restored to 321.7 +/- 44.7 mg glucose/kg after administration of an NO donor, intraportal SIN-1 (5 mg/kg), which promotes GSH nitrosation, but not after intraportal sodium nitroprusside (20 nmol x kg(-1) x min(-1)), which does not nitrosate GSH. We depleted hepatic GSH using the GSH synthesis inhibitor l-buthionine-[S,R]-sulfoximine (BSO, 2 mmol/kg body wt ip for 20 days), which reduced insulin sensitivity by 39.1%. Insulin sensitivity after l-NAME was not significantly different between BSO- and sham-treated animals. SIN-1 did not reverse the insulin resistance induced by l-NAME in the BSO-treated group. These results support our hypothesis that NO and GSH are essential for insulin action.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号