首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Neuronal ceroid lipofuscinoses (NCLs) are neurodegenerative storage diseases characterized by mental retardation, visual failure, and brain atrophy as well as accumulation of storage material in multiple cell types. The diseases are caused by mutations in the ubiquitously expressed genes, of which six are known. Herein, we report that three NCL disease forms with similar tissue pathology are connected at the molecular level: CLN5 polypeptides directly interact with the CLN2 and CLN3 proteins based on coimmunoprecipitation and in vitro binding assays. Furthermore, disease mutations in CLN5 abolished interaction with CLN2, while not affecting association with CLN3. The molecular characterization of CLN5 revealed that it was synthesized as four precursor forms, due to usage of alternative initiator methionines in translation. All forms were targeted to lysosomes and the longest form, translated from the first potential methionine, was associated with membranes. Interactions between CLN polypeptides were shown to occur with this longest, membrane-bound form of CLN5. Both intracellular targeting and posttranslational glycosylation of the polypeptides carrying human disease mutations were similar to wild-type CLN5.  相似文献   

2.
3.
4.
Infantile and classical late infantile neuronal ceroid lipofuscinoses (NCL) are two recent additions to the expanding spectrum of lysosomal storage disorders caused by deficiencies in lysosomal hydrolases. They are latecomers to the lysosomal storage disorders, probably because of the heterogeneous nature of the storage material, which precluded meaningful biochemical analysis. Infantile NCL is caused by deficiency in palmitoyl-protein thioesterase, an enzyme that hydrolyzes fatty acids from cysteine residues in lipid-modified proteins. Classical late-infantile NCL is caused by a deficiency in tripeptidyl amino peptidase-I, a lysosomal peptidase that removes three amino acids from the free amino terminus of peptides or small proteins. Late-onset forms of these disorders have been described. The clinical, biochemical, and molecular genetic aspects of these two latest lysosomal storage disorders are discussed in this review. In addition, approaches to treatment and future directions for research are examined.  相似文献   

5.
Juvenile neuronal ceroid lipofuscinosis (JNCL) is caused by mutations in the CLN3 gene, which encodes for a putative lysosomal transmembrane protein with thus far undescribed structure and function. Here we investigate the membrane topology of human CLN3 protein with a combination of advanced molecular cloning, spectroscopy, and in silico computation. Using the transposomics cloning method we first created a library of human CLN3 cDNA clones either with a randomly inserted eGFP, a myc-tag, or both. The functionality of the clones was evaluated by assessing their ability to revert a previously reported lysosomal phenotype in immortalized cerebellar granular cells derived from Cln3 Δex7/8 mice (CbCln3 Δex7/8). The double-tagged clones were expressed in HeLa cells, and FRET was measured between the donor eGFP and an acceptor DyLight547 coupled to a monoclonal α-myc antibody to assess their relative membrane orientation. The data were used together with previously reported experimental data to compile a constrained membrane topology model for hCLN3 using TOPCONS consensus membrane prediction algorithm. Our model with six transmembrane domains and cytosolic N- and C-termini largely agrees with those previously suggested but differs in terms of the transmembrane domain positions as well as in the size of the luminal loops. This finding improves understanding the function of the native hCLN3 protein.  相似文献   

6.
7.
F R Cross  A H Tinkelenberg 《Cell》1991,65(5):875-883
The CLN1, CLN2, and CLN3 genes of S. cerevisiae form a redundant family essential for the G1-to-S phase transition. CLN1 and CLN2 mRNAs were previously shown to be negatively regulated by mating pheromone and by cell cycle progression out of G1, whereas CLN3 mRNA is not. The CLN3-2 (DAF1-1) allele prevents both cell cycle arrest and the turnoff of CLN1 and CLN2 mRNAs in response to mating pheromone, but only in the presence of an active CDC28 gene. An internally deleted nonfunctional cln2 gene was used as a reporter gene to demonstrate that in the absence of mating pheromone, efficient expression of cln2 mRNA requires both an active CDC28 gene and at least one functional CLN gene. mRNA from a nonfunctional cln1 gene was regulated similarly. Thus, CLN function and CDC28 activity jointly stimulate CLN1 and CLN2 mRNA levels, potentially forming a positive feedback loop for CLN1 and CLN2 expression.  相似文献   

8.
F Cvrckov  K Nasmyth 《The EMBO journal》1993,12(13):5277-5286
Cyclin-dependent protein kinases have a central role in cell cycle regulation. In Saccharomyces cerevisiae, Cdc28 kinase and the G1 cyclins Cln1, 2 and 3 are required for DNA replication, duplication of the spindle pole body and bud emergence. These three independent processes occur simultaneously in late G1 when the cells reach a critical size, an event known as Start. At least one of the three Clns is necessary for Start. Cln3 is believed to activate Cln1 and Cln2, which can then stimulate their own accumulation by means of a positive feedback loop. They (or Cln3) also activate another pair of cyclins, Clb5 and 6, involved in initiating S phase. Little is known about the role of Clns in spindle pole body duplication and budding. We report here the isolation of a gene (CLA2/BUD2/ERC25) that codes for a homologue of mammalian Ras-associated GTPase-activating proteins (GAPs) and is necessary for budding only in cln1 cln2 cells. This suggests that Cln1 and Cln2 may have a direct role in bud formation.  相似文献   

9.
10.
CLN7 is a polytopic lysosomal membrane glycoprotein of unknown function and is deficient in variant late infantile neuronal ceroid lipofuscinosis. Here we show that full-length CLN7 is proteolytically cleaved twice, once proximal to the used N-glycosylation sites in lumenal loop L9 and once distal to these sites. Cleavage occurs by cysteine proteases in acidic compartments and disruption of lysosomal targeting of CLN7 results in inhibition of proteolytic cleavage. The apparent molecular masses of the CLN7 fragments suggest that both cleavage sites are located within lumenal loop L9. The known disease-causing mutations, p.T294K and p.P412L, localized in lumenal loops L7 and L9, respectively, did not interfere with correct lysosomal targeting of CLN7 but enhanced its proteolytic cleavage in lysosomes. Incubation of cells with selective cysteine protease inhibitors and expression of CLN7 in gene-targeted mouse embryonic fibroblasts revealed that cathepsin L is required for one of the two proteolytic cleavage events. Our findings suggest that CLN7 is inactivated by proteolytic cleavage and that enhanced CLN7 proteolysis caused by missense mutations in selected luminal loops is associated with disease.  相似文献   

11.
12.
Membrane topology of CLN3, the protein underlying Batten disease   总被引:5,自引:0,他引:5  
Mao Q  Foster BJ  Xia H  Davidson BL 《FEBS letters》2003,541(1-3):40-46
Juvenile neuronal ceroid lipofuscinosis, or Batten disease, is an autosomal recessive disorder characterized by progressive loss of motor and cognitive functions, loss of vision, progressively severe seizures, and death. The disease is associated with mutations in the gene CLN3, which encodes a novel 438 amino acid protein, the function of which is currently unknown. Protein secondary structure prediction programs suggest that the CLN3 protein has five to seven membrane-spanning domains (MSDs). To distinguish among a number of hypothetical models for the membrane topology of CLN3 we used in vitro translation of native, Flag epitope-labeled and glycosylation site-mutated CLN3 protein in the presence or absence of canine pancreatic microsomes. These were immunoprecipitated using antibodies specific for Flag or peptide sequences within CLN3 or left untreated. The results indicate that CLN3 contains five MSDs, an extracellular/intraluminal amino-terminus, and a cytoplasmic carboxy-terminus.  相似文献   

13.
14.
目的建立利用高分辨率熔解曲线(HRM)分析快速鉴定CLN6(神经元蜡样脂褐质沉积症,ceroid—lipofuscinosis,neurona16)小鼠(c2硒基因移码突变)基因型的方法。方法根据NCBI公布的小鼠cln6序列(NC00075)设计HRM引物和测序引物,然后采用HRM技术获得高分辨熔解曲线鉴定实验小鼠基因型,同时通过直接测序法进行验证,评价其灵敏性和准确性。结果181只实验小鼠经HRM检测,共有野生型11只、Cln6基因突变杂合子73只和纯合子97只,HRM结果和直接测序结果完全一致,准确性为100%。结论HRM方法检测DNA微小突变时具有操作简便、快速、灵敏,单管避免污染以及准确度高等优点,值得推广。  相似文献   

15.
16.
Batten disease (juvenile-onset neuronal ceroid lipofuscinosis [JNCL]) is an autosomal recessive condition characterized by accumulation of lipopigments (lipofuscin and ceroid) in neurons and other cell types. The Batten disease gene, CLN3, was recently isolated, and four disease-causing mutations were identified, including a 1.02-kb deletion that is present in the majority of patients (The International Batten Disease Consortium 1995). One hundred eighty-eight unrelated patients with JNCL were screened in this study to determine how many disease chromosomes carried the 1.02-kb deletion and how many carried other mutations in CLN3. One hundred thirty-nine patients (74%) were found to have the 1.02-kb deletion on both chromosomes, whereas 49 patients (41 heterozygous for the 1.02-kb deletion) had mutations other than the 1.02-kb deletion. SSCP analysis and direct sequencing were used to screen for new mutations in these individuals. Nineteen novel mutations were found: six missense mutations, five nonsense mutations, three small deletions, three small insertions, one intronic mutation, and one splice-site mutation. This report brings the total number of disease-associated mutations in CLN3 to 23. All patients homozygous for mutations predicted to give rise to truncated proteins were found to have classical JNCL. However, a proportion of the patients (n = 4) who were compound heterozygotes for a missense mutation and the 1.02-kb deletion were found to display an atypical phenotype that was dominated by visual failure rather than by severe neurodegeneration. All missense mutations were found to affect residues conserved between the human protein and homologues in diverse species.  相似文献   

17.
18.
19.
20.
A heritable neurodegenerative disease of English Setters has long been studied as a model of human neuronal ceroid-lipofuscinosis (NCL). Megablast searches of the first build of the canine genome for potential causative genes located the CLN8 gene near the q telomere of canine chromosome 37, close to a marker previously linked to English Setter NCL. Sequence analysis of the coding region from affected dogs revealed a T-to-C transition in the CLN8 gene that predicts a p.L164P missense mutation. Leucine 164 is conserved in four other mammalian species. The C allele co-segregated with the disease phenotype in a two-generation English Setter family in a pattern consistent with autosomal recessive inheritance. All four NCL-affected family members were C/C homozygotes and all four obligate carriers were C/T heterozygotes; whereas, 103 unrelated dogs were all T/T homozygotes. These findings indicate that the CLN8 T-to-C transition is the likely cause of English Setter NCL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号