首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
We investigated the involvement of carbonic anhydrase (CA) in mediating V-H(+)-ATPase translocation into the basolateral membrane in gills of alkalotic Squalus acanthias. Immunolabeling revealed that CA is localized in the same cells as V-H(+)-ATPase. Blood plasma from dogfish injected with acetazolamide [30 mg/kg at time (t) = 0 and 6 h] and infused with NaHCO(3) for 12 h (1,000 microeq.kg(-1).h(-1)) had significantly higher plasma HCO(3)(-) concentration than fish that were infused with NaHCO(3) alone (28.72 +/- 0.41 vs. 6.57 +/- 2.47 mmol/l, n = 3), whereas blood pH was similar in both treatments (8.03 +/- 0.11 vs. 8.04 +/- 0.11 pH units at t = 12 h). CA inhibition impaired V-H(+)-ATPase translocation into the basolateral membrane, as estimated from immunolabeled gill sections and Western blotting on gill cell membranes (0.24 +/- 0.08 vs. 1.00 +/- 0.28 arbitrary units, n = 3; P < 0.05). We investigated V-H(+)-ATPase translocation during a postfeeding alkalosis ("alkaline tide"). Gill samples were taken 24-26 h after dogfish were fed to satiety in a natural-like feeding regime. Immunolabeled gill sections revealed that V-H(+)-ATPase translocated to the basolateral membrane in the postfed fish. Confirming this result, V-H(+)-ATPase abundance was twofold higher in gill cell membranes of the postfed fish than in fasted fish (n = 4-5; P < 0.05). These results indicate that 1) intracellular H(+) or HCO(3)(-) produced by CA (and not blood pH or HCO(3)(-)) is likely the stimulus that triggers the V-H(+)-ATPase translocation into the basolateral membrane in alkalotic fish and 2) V-H(+)-ATPase translocation is important for enhanced HCO(3)(-) secretion during a naturally occurring postfeeding alkalosis.  相似文献   

2.
Carbonic anhydrase (CA) is a zinc metalloenzyme that catalyzes the reversible hydration–dehydration reactions of CO2. It is present in high abundance in the cytoplasm of vertebrate red blood cells, where it contributes to CO2 excretion. A membrane-bound CA isoform (CA IV) is also present in the lungs of mammals and reptiles, but plays little role in CO2 excretion. The gills of teleost fish appear to lack plasma-accessible CA activity. In elasmobranchs, however, evidence gathered using a variety of physiological, biochemical and molecular approaches suggests that CA IV is present in the gills, and that at least in dogfish, this CA IV makes a significant contribution to CO2 excretion by catalyzing the dehydration of plasma HCO3?. The contribution of CA IV to CO2 excretion is favoured by unusually high relative plasma buffering that aids in the provision of protons for HCO3? dehydration. Moreover, reduced emphasis on HCO3? flux through the red blood cell may reflect the occurrence of a slower turnover cytosolic CA in dogfish. This model of CO2 excretion, in which HCO3? dehydration in the red blood cell catalyzed by cytosolic CA and HCO3? dehydration in the plasma catalyzed by membrane-bound CA IV are of comparable importance, has been described for the dogfish. Further work is required to determine whether it applies to elasmobranch fish as a group.  相似文献   

3.
Pendrin is an anion exchanger in the cortical collecting duct of the mammalian nephron that appears to mediate apical Cl(-)/HCO3(-) exchange in bicarbonate-secreting intercalated cells. The goals of this study were to determine 1) if pendrin immunoreactivity was present in the gills of a euryhaline elasmobranch (Atlantic stingray, Dasyatis sabina), and 2) if branchial pendrin immunoreactivity was influenced by environmental salinity. Immunoblots detected pendrin immunoreactivity in Atlantic stingray gills; pendrin immunoreactivity was greatest in freshwater stingrays compared with freshwater stingrays acclimated to seawater (seawater acclimated) and marine stingrays. Using immunohistochemistry, pendrin-positive cells were detected on both gill lamellae and interlamellar regions of freshwater stingrays but were more restricted to interlamellar regions in seawater-acclimated and marine stingray gills. Pendrin immunolabeling in freshwater stingray gills was more apical, discrete, and intense compared with seawater-acclimated and marine stingrays. Regardless of salinity, pendrin immunoreactivity occurred on the apical region of cells rich with basolateral vacuolar-proton-ATPase, and not in Na(+)-K(+)-ATPase-rich cells. We suggest that a pendrin-like transporter may contribute to apical Cl(-)/HCO3(-) exchange in gills of Atlantic stingrays from both freshwater and marine environments.  相似文献   

4.
In Pacific spiny dogfish (Squalus acanthias), plasma CO(2) reactions have access to plasma carbonic anhydrase (CA) and gill membrane-associated CA. The objectives of this study were to characterise the gill membrane-bound CA and investigate whether extracellular CA contributes significantly to CO(2) excretion in dogfish. A subcellular fraction containing membrane-associated CA activity was isolated from dogfish gills and incubated with phosphatidylinositol-specific phospholipase C. This treatment caused significant release of CA activity from its membrane association, a result consistent with identification of the dogfish gill membrane-bound CA as a type IV isozyme. Inhibition constants (K(i)) against acetazolamide and benzolamide were 4.2 and 3.5 nmol L(-1), respectively. Use of a low dose (1.3 mg kg(-1) or 13 micromol L(-1)) of benzolamide to selectively inhibit extracellular CA in vivo caused a significant 30%-60% reduction in the arterial-venous total CO(2) concentration difference, a significant increase in Pco(2) and an acidosis, without affecting blood flow or ventilation. No effect of benzolamide on any measure of CO(2) excretion was detected in rainbow trout (Oncorhynchus mykiss). These results indicate that extracellular CA contributes substantially to CO(2) excretion in the dogfish, an elasmobranch, and confirm that CA is not available to plasma CO(2) reactions in rainbow trout, a teleost.  相似文献   

5.
In marine teleost fishes, the gill mitochondria-rich cells (MRCs) are responsible for NaCl elimination; however, in elasmobranch fishes, the specialized rectal gland is considered to be the most important site for salt secretion. The role of the gills in elasmobranch ion regulation, although clearly shown to be secondary, is not well characterized. In the present study, we investigated some morphological properties of the branchial MRCs and the localization, and activity of the important ionoregulatory enzyme Na(+)/K(+)-ATPase, under control conditions and following rectal gland removal (1 month) in the spiny dogfish, Squalus acanthias. A clear correlation can be made between MRC numbers and the levels of Na(+)/K(+)-ATPase activity in crude gill homogenates (r(2)=-0.69). Strong Na(+)/K(+)-ATPase immunoreactivity is also clearly associated with the basolateral membrane of these MRCs. In addition, the dogfish were able to maintain ionic balance after rectal gland removal. These results all suggest a possible role of the dogfish gill in salt secretion. MRCs were, however, unresponsive to rectal gland removal in terms of changes in number, fine structure and Na(+)/K(+)-ATPase activity, as might be expected if they were compensating for the loss of salt secretion by the rectal gland. Thus, the specific role that these MRCs play in ion regulation in the dogfish remains to be determined  相似文献   

6.
We recently cloned an NHE3 orthologue from the gills of the euryhaline Atlantic stingray (Dasyatis sabina), and generated a stingray NHE3 antibody to unequivocally localize the exchanger to the apical side of epithelial cells that are rich with Na(+)/K(+)-ATPase (A MRC). We also demonstrated an increase in NHE3 expression when stingrays are in fresh water, suggesting that NHE3 is responsible for active Na(+) absorption. However, the vast majority of elasmobranchs are only found in marine environments. In the current study, immunohistochemistry with the stingray NHE3 antibody was used to localize the exchanger in the gills of the stenohaline marine spiny dogfish shark (Squalus acanthias). NHE3 immunoreactivity was confined to the apical side of cells with basolateral Na(+)/K(+)-ATPase and was excluded from cells with high levels of vacuolar H(+)-ATPase. Western blots detected a single protein of 88 kDa in dogfish gills, the same size as NHE3 in stingrays and mammals. These immunological data demonstrate that the putative cell type responsible for active Na(+) absorption in euryhaline elasmobranchs is also present in stenohaline marine elasmobranchs, and suggest that the inability of most elasmobranchs to survive in fresh water is not due to a lack of the gill ion transporters for Na(+) absorption.  相似文献   

7.
A novel relationship between branchial carbonic anhydrase II (CAII) and anion exchanger 1 (AE1) was investigated in the euryhaline spotted green pufferfish (Tetraodon nigroviridis). The immunoblots revealed that AE1 was only detected in the membrane fraction of gills while CAII can be probed both in the membrane and cytosol fractions of gills. CAII protein abundance in the membrane fraction is salinity dependent. Immunological detection of the membrane fraction CAII protein in gills showed 3.9-fold higher in the hyposmotic (freshwater) group than the hyperosmotic (seawater;35 per thousand) group. In contrast, there was no change in the protein level of cytosolic CAII between seawater and freshwater groups. The whole-mount immunocytochemical staining demonstrated that both AE1 and CAII were colocalized to the Na(+)/K(+)-ATPase-immunoreactive cells in gill epithelium of the pufferfish. The interaction between CAII and AE1 was further identified by co-immunoprecipitation because AE1 was detected in the immunoprecipitates of CAII and vice versa. Our results showed that in pufferfish gills CAII was not only expressed in the cytosol to produce the substrate for AE1 transport during Cl(-) influx but also associated with the plasma membrane via AE1. Obviously, it is essential for the physiological function of AE1 to interact with CAII in the membrane of gill Na(+)/K(+)-ATPase-immunoreactive cells. To our knowledge, this is the first study to demonstrate the interaction of branchial CAII and AE1 in fish. The novel correlation proposed a new model of Cl(-)/HCO(3) (-) transport in gills of the teleosts.  相似文献   

8.
9.
10.
The high intraluminal concentrations of HCO(3)(-) in the human pancreatic ducts have suggested the existence of a membrane protein supplying the Cl(-)/HCO(3)(-) exchanger. Membrane-bound carbonic anhydrase IV (CA IV) is one of the potential candidates for this protein. The difficulties in isolating human pancreatic ducts have led the authors to study the molecular mechanisms of HCO(3)(-) secretion in cancerous cell lines. In this work, we have characterized the CA IV expressed in Capan-1 cells. A 35-kDa CA IV was detected in cell homogenates and purified plasma membranes. Treatment of purified plasma membranes with phosphatidylinositol-phospholipase-C indicated that this CA IV was not anchored by a glycosylphosphatidylinositol (GPI). In contrast, its detection on purified plasma membranes by an antibody specifically directed against the carboxyl terminus of human immature GPI-anchored CA IV indicated that it was anchored by a C-terminal hydrophobic segment. Immunoelectron microscopy and double-labeling immunofluorescence revealed that this CA IV was present on apical plasma membranes, and in the rough endoplasmic reticulum, the endoplasmic reticulum-Golgi intermediate compartment, the Golgi complex, and secretory granules, suggesting its transport via the classical biosynthesis/secretory pathway. The expression in Capan-1 cells of a 35-kDa CA IV anchored in the apical plasma membrane through a hydrophobic segment, as is the case in the healthy human pancreas, should make the study of its role in pancreatic HCO(3)(-) secretion easier.  相似文献   

11.
Abrupt transfer of rainbow trout from freshwater to 65% seawater caused transient disturbances in extracellular fluid ionic composition, but homeostasis was reestablished 48 h posttransfer. Intestinal fluid chemistry revealed early onset of drinking and slightly delayed intestinal water absorption that coincided with initiation of NaCl absorption and HCO(3)(-) secretion. Suggestive of involvement in osmoregulation, relative mRNA levels for vacuolar H(+)-ATPase (V-ATPase), Na(+)-K(+)-ATPase, Na(+)/H(+) exchanger 3 (NHE3), Na(+)-HCO(3)(-) cotransporter 1, and two carbonic anhydrase (CA) isoforms [a general cytosolic isoform trout cytoplasmic CA (tCAc) and an extracellular isoform trout membrane-bound CA type IV (tCAIV)], were increased transiently in the intestine following exposure to 65% seawater. Both tCAc and tCAIV proteins were localized to apical regions of the intestinal epithelium and exhibited elevated enzymatic activity after acclimation to 65% seawater. The V-ATPase was localized to both basolateral and apical regions and exhibited a 10-fold increase in enzymatic activity in fish acclimated to 65% seawater, suggesting a role in marine osmoregulation. The intestinal epithelium of rainbow trout acclimated to 65% seawater appears to be capable of both basolateral and apical H(+) extrusion, likely depending on osmoregulatory status and intestinal fluid chemistry.  相似文献   

12.
This main purpose of this study was to examine the subcellular distribution and isozyme characteristics of branchial carbonic anhydrase (CA) in Chaenocephalus aceratus, an Antarctic icefish that lacks erythrocytes. The Antarctic fish, Notothenia coriiceps, which possesses erythrocytes, was also studied for comparative purposes. The gills of both species were found to have measurable activity of CA. N. coriiceps also had normal levels of blood CA activity. In contrast, the icefish, C. aceratus, lacked blood CA activity, but was found to possess an endogenous plasma CA inhibitor. The large majority of branchial CA in the gills of these species was located in the cytoplasmic fraction whereas less than 3% was associated with the membrane fraction. In both species, CA from the cytoplasmic gill fraction and membrane fraction differed markedly in terms of their sensitivity to the plasma CA inhibitor from C. aceratus. In addition, treatment with the cleaving enzyme phosphatidylinositol-specific phospholipase C indicated that CA from the branchial membrane fraction of both species is anchored to the membrane via a phosphatidylinositol-glycan linkage. Taken together, these results provide evidence for a CA IV-like isozyme in the gills of Antarctic fish. At present, the functional significance of this membrane-bound CA is unknown, but the relative amount of this isozyme appeared to be greater in the gills of C aceratus, the species that lacked erythrocytes.  相似文献   

13.
Two subcellular fractions of gill tissue, cytoplasm and basolateral membranes, from two species of euryhaline decapod crustaceans, Callinectes sapidus and Carcinus maenas, acclimated to low salinity, were isolated via differential centrifugation. Carbonic anhydrase activity from both fractions was titrated against a variety of heavy metals in vitro. The metals Ag(+), Cd(2+), Cu(2+) and Zn(+) showed inhibitory action against the enzyme. Ki values for these metals against cytoplasmic CA from C. sapidus were in the range of 0.05-0.5 microM (for Ag(+), Cd(2+) and Cu(2+)) and 2-6 microM for Zn(+), some of the highest sensitivities reported for CA from an aquatic organism. The Ki values for these same metals were approximately 2-3 orders of magnitude higher for cytoplasmic CA from C. maenas, indicating that there are significant differences in heavy metal sensitivity in branchial CA from the two species, and that C. maenas possesses a metal-resistant CA isoform. It required concentrations of metals in the millimolar range, however, to inhibit CA activity from the membrane fraction of the gill of both species. There were no effects on either mortality or on hemolymph osmotic and ionic concentrations in C. maenas that were exposed to 10 microM Cd or Zn(+) at 32 per thousand salinity and subsequently transferred to 10 per thousand. The presence of a metal-resistant CA isoform in the gills of C. maenas suggests that this species would not be restricted from its normal estuarine environment by heavy metal pollution.  相似文献   

14.
Symbiotic cnidarians absorb inorganic carbon from seawater to supply intracellular dinoflagellates with CO(2) for their photosynthesis. To determine the mechanism of inorganic carbon transport by animal cells, we used plasma membrane vesicles prepared from ectodermal cells isolated from tentacles of the sea anemone, Anemonia viridis. H(14)CO(-)(3) uptake in the presence of an outward NaCl gradient or inward H(+) gradient, showed no evidence for a Cl(-)- or H(+)- driven HCO(-)(3) transport. H(14)CO(-)(3) and (36)Cl(-) uptakes were stimulated by a positive inside-membrane diffusion potential, suggesting the presence of HCO(-)(3) and Cl(-) conductances. A carbonic anhydrase (CA) activity was measured on plasma membrane (4%) and in the cytoplasm of the ectodermal cells (96%) and was sensitive to acetazolamide (IC(50) = 20 nM) and ethoxyzolamide (IC(50) = 2.5 nM). A strong DIDS-sensitive H(+)-ATPase activity was observed (IC(50) = 14 microM). This activity was also highly sensitive to vanadate and allyl isothiocyanate, two inhibitors of P-type H(+)-ATPases. Present data suggest that HCO(-)(3) absorption by ectodermal cells is carried out by H(+) secretion by H(+)-ATPase, resulting in the formation of carbonic acid in the surrounding seawater, which is quickly dehydrated into CO(2) by a membrane-bound CA. CO(2) then diffuses passively into the cell where it is hydrated in HCO(-)(3) by a cytosolic CA.  相似文献   

15.
In this study, the correlation between Cl(-) influx in freshwater tilapia and various transporters or enzymes, the Cl(-)/HCO(3)(-) exchanger, Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase were examined. The inhibitors 2x10(-4) M ouabain (a Na(+),K(+)-ATPase inhibitor), 10(-5) M NEM (a V-type H(+)-ATPase inhibitor), 10(-2) M ACTZ (acetazolamide, a carbonic anhydrase inhibitor), and 6x10(-4) M DIDS (a Cl(-)/HCO(3)(-) exchanger inhibitor) caused 40%, 60%-80%, 40%-60%, and 40%-60% reduction in Cl(-) influx of freshwater tilapia, respectively. The inhibitor 2x10(-4) M ouabain also caused 50%-65% inhibition in gill Na(+),K(+)-ATPase activity. Western blot results showed that protein levels of gill Na(+),K(+)-ATPase, V-type H(+)-ATPase, and carbonic anhydrase in tilapia acclimated in low-Cl(-) freshwater were significantly higher than those acclimated to high-Cl(-) freshwater. Based on these data, we conclude that Na(+),K(+)-ATPase, V-H(+)-ATPase, the Cl(-)/HCO(3)(-) exchanger, and carbonic anhydrase may be involved in the active Cl(-) uptake mechanism in gills of freshwater-adapted tilapia.  相似文献   

16.
Supporting evidence for the contractile nature of fish branchial pillar cells was provided by demonstrating the presence of actin fibers and a novel four-and-a-half LIM (FHL) protein in which expression is specific for contractile tissues and sensitive to the tension applied to the pillar cell. When eel gill sections were stained with rhodamine-phalloidin, a selective fluorescent probe for fibrous actin, a strong bundle-like staining was observed around collagen columns in pillar cells, suggesting the presence of abundant actin fibers. A cDNA clone encoding a novel member of the actin-binding FHL family, FHL5, was isolated from a subtracted cDNA library of eel gill. Northern analysis revealed that FHL5 mRNA is highly expressed only in gills, heart, and skeletal muscle. In gills, FHL5 was found to be confined to pillar cells by immunohistochemistry. Confocal fluorescence microscopy showed that FHL5 is present in both cytosol and nucleus; within the cytosol, a large portion of FHL5 is colocalized with the phalloidin-positive actin bundles. Furthermore, transfection of myogenic C2C12 cells with FHL5 cDNA demonstrated, in addition to its interaction with actin stress fibers, a nuclear shuttling activity of FHL5. The mRNA and protein levels were found to be elevated on 1) transfer of eels from seawater to freshwater, 2) volume expansion by infusion of isotonic dextran-saline, and 3) constriction of gill vasculature by bolus injection of endothelin-1. These results suggest contractile nature of pillar cells and a role of FHL5 in maintaining the integrity and regulating the dynamics of pillar cells.  相似文献   

17.
Summary The activity of carbonic anhydrase (CA), which catalyses the equilibrium CO2H++HCO 3 - , was investigated in various tissues implicated in the excretion of CO2 by Birgus latro. Carbonic anhydrase was detected in the water-soluble fraction of gill tissue but also occurred in association with lipids (membrane bound). This is consistent with a CO2 excretory role and an ion regulation function for the gills. In the lungs (branchial chamber lining) CA activity was found in the membrane bound fraction but was not detected in the soluble fraction, suggesting that the lung CA is not important for ion regulation. The specific CA activity of gill tissue homogenate (A=1.8±0.7·mg-1) was higher than that measured for lung homogenates (A=0.4±0.2·mg-1), but when the whole organ was considered the total CA activity in the lungs was not significantly different from total CA activity in the gills. In comparison to aquatic and amphibious crustaceans the specific activity of carbonic anhydrase in the lungs was high (25% cf. gill activity). This CA activity in the lungs could be correlated with significant CO2 excretion by the lungs. CA may be retained in the branchial tissue as an adjunct to ion reabsorption by the gills.  相似文献   

18.
Anion exchanger 1 (AE1) is the plasma membrane Cl(-)/HCO(3)(-) exchanger of erythrocytes. Carbonic anhydrases (CA) provide substrate for AE1 by catalyzing the reaction, H(2)O + CO(2) ? HCO(3)(-) + H(+). The physical complex of CAII with AE1 has been proposed to maximize anion exchange activity. To examine the effect of CAII catalysis on AE1 transport rate, we fused either CAII-wild type or catalytically inactive CAII-V143Y to the cytoplasmic COOH terminus of AE1 to form AE1.CAII and AE1.CAII-V143Y, respectively. When expressed in transfected human embryonic kidney 293 cells, AE1.CAII had a similar Cl(-)/HCO(3)(-) exchange activity to AE1 alone, as assessed by the flux of H(+) equivalents (87 ± 4% vs. AE1) or rate of change of intracellular Cl(-) concentration (93 ± 4% vs. AE1), suggesting that CAII does not activate AE1. In contrast, AE1.CAII-V143Y displayed transport rates for H(+) equivalents and Cl(-) of 55 ± 2% and of 40 ± 2%, versus AE1. Fusion of CAII to AE1 therefore reduces anion transport activity, but this reduction is compensated for during Cl(-)/HCO(3)(-) exchange by the presence of catalytically active CAII. Overexpression of free CAII-V143Y acts in a dominant negative manner to reduce AE1-mediated HCO(3)(-) transport by displacement of endogenous CAII-wild type from its binding site on AE1. To examine whether AE1.CAII bound endogenous CAII, we coexpressed CAII-V143Y along with AE1 or AE1.CAII. The bicarbonate transport activity of AE1 was inhibited by CAII-V143Y, whereas the activity of AE1.CAII was unaffected by CAII-V143Y, suggesting impaired transport activity upon displacement of functional CAII from AE1 but not AE1.CAII. Taken together, these data suggest that association of functional CAII with AE1 increases Cl(-)/HCO(3)(-) exchange activity, consistent with the HCO(3)(-) transport metabolon model.  相似文献   

19.
In fresh water fishes, ammonia is excreted across the branchial epithelium via passive NH(3) diffusion. This NH(3) is subsequently trapped as NH(4)(+) in an acidic unstirred boundary layer lying next to the gill, which maintains the blood-to-gill water NH(3) partial pressure gradient. Whole animal, in situ, ultrastructural and molecular approaches suggest that boundary layer acidification results from the hydration of CO(2) in the expired gill water, and to a lesser extent H(+) excretion mediated by apical H(+)-ATPases. Boundary layer acidification is insignificant in highly buffered sea water, where ammonia excretion proceeds via NH(3) diffusion, as well as passive NH(4)(+) diffusion due to the greater ionic permeability of marine fish gills. Although Na(+)/H(+) exchangers (NHE) have been isolated in marine fish gills, possible Na(+)/NH(4)(+) exchange via these proteins awaits evaluation using modern electrophysiological and molecular techniques. Although urea excretion (J(Urea)) was thought to be via passive diffusion, it is now clear that branchial urea handling requires specialized urea transporters. Four urea transporters have been cloned in fishes, including the shark kidney urea transporter (shUT), which is a facilitated urea transporter similar to the mammalian renal UT-A2 transporter. Another urea transporter, characterized but not yet cloned, is the basolateral, Na(+) dependent urea antiporter of the dogfish gill, which is essential for urea retention in ureosmotic elasmobranchs. In ureotelic teleosts such as the Lake Magadi tilapia and the gulf toadfish, the cloned mtUT and tUT are facilitated urea transporters involved in J(Urea). A basolateral urea transporter recently cloned from the gill of the Japanese eel (eUT) may actually be important for urea retention during salt water acclimation. A multi-faceted approach, incorporating whole animal, histological, biochemical, pharmacological, and molecular techniques is required to learn more about the location, mechanism of action, and functional significance of urea transporters in fishes.  相似文献   

20.
At the gross anatomical level, hagfish gills show unusual features not seen in any other fish gills. Our study was undertaken to determine if peculiarities also characterize the microscopic anatomy and ultrastructure of hagfish gills. To the contrary, branchial respiratory lamellae of Pacific hagfish were found to resemble the lamellae of lampreys, elasmobranchs, and teleosts, often down to the finest subcellular details. As in other fish, hagfish lamellae are lined by epithelium containing pavement cells with organelles indicative of a secretory function, basal cells showing undifferentiated cell features, and branchial ionocytes. The ionocytes are identical to chloride cells of teleosts in cytostructure, distribution, and abundance. There are pillar and marginal capillaries in hagfish gill lamellae. Pillar cells contain bundles of 5-nm microfilaments, and they associate with collagen columns as in other fish. Hagfish pillar cells do exhibit odd features, however: They cluster (groups of up to nine were seen), and their extracellular collagen columns are rarer than in other fish gills (averaging only two columns per three pillar cells). Other special features of hagfish gills are the following: lipid droplets and smooth endoplasmic reticulum are well developed in all cell types; pavement cells secrete a lipomucous product (stains with periodic acid-Schiff, Alcian blue, and Sudan black B); and goblet cells are absent. The presence of "chloride cells" in hagfish is puzzling, as hagfish body fluids are iso-osmotic to seawater and there is no need to osmoregulate for sodium chloride; the ionocytes contain carbonic anhydrase, suggesting a function in acid/base regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号