首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Genetic studies have suggested that Y-family translesion DNA polymerase IV (DinB) performs error-prone recombination-directed replication (RDR) under conditions of stress due to its ability to promote mutations during double-strand break (DSB) repair in growth-limited E. coli cells. In recent studies we have demonstrated that pol IV is preferentially recruited to D-loop recombination intermediates at stress-induced concentrations and is highly mutagenic during RDR in vitro. These findings verify longstanding genetic data that have implicated pol IV in promoting stress-induced mutagenesis at D-loops. In this Extra View, we demonstrate the surprising finding that A-family pol I, which normally exhibits high-fidelity DNA synthesis, is highly error-prone at D-loops like pol IV. These findings indicate that DNA polymerases are intrinsically error-prone at RecA-mediated D-loops and suggest that auxiliary factors are necessary for suppressing mutations during RDR in non-stressed proliferating cells.  相似文献   

2.
Shigemori Y  Oishi M 《BioTechniques》2007,42(5):622-626
We report a simple method to directly label or modify a specific terminus of linear DNA molecules. The method is based upon our finding that a presumably triple-stranded structure by RecA-mediated formation at the terminus formed with deoxyoligonucleotides, whose sequence is complementary to the 5' terminus of one of the strands of a double-stranded DNA molecule, is quite stable and can serve as a template for DNA polymerase reaction, with the nucleotides being incorporated by an exchange reaction. This novel type of nucleotide incorporation has made it possible to label a specific terminus of target double-stranded DNA molecules by a direct means (without amplification) regardless of its molecular size, a procedure previously unavailable. As an application, we show that large DNA molecules can be fixed to a solid support in a specific orientation, thus being utilized for various analytical purposes of DNA molecules.  相似文献   

3.
DNase I cleavage of branched DNA molecules   总被引:6,自引:0,他引:6  
We report here a potentially useful signature of branched DNA structures. The base 5' to the branch and the five bases flanking the 3' side of the branch site are protected from cleavage by DNase I in both three- and four-arm branched DNA molecules. Our procedure is to measure the cleavage profile for each 5' -labeled strand in a control duplex and compare this with that of the same strand in a branched structure under conditions yielding less than one cut per strand. The resulting cleavage pattern in an immobile four-arm junction is roughly 2-fold symmetric, consistent with the pattern of Fe(II).EDTA-induced cleavage that has been observed previously. In the three-arm junction, the DNase I cleavage pattern is asymmetric, indicating lack of 3-fold symmetry. A variable pattern of protection occurs to the 5' side of the branch in some strands only for both three- and four-arm junctions, extending 2-4 residues 5' to the branch.  相似文献   

4.
The RecA protein ofEscherichia coli catalyzes homologous pairing and strand exchange between a wide range of molecules showing nucleotide sequence complementarity, including a linear duplex and a single-stranded DNA molecule. We demonstrate that RecA can promote formation of joint molecules when the duplex contains an RNA/DNA hairpin and a single-stranded circle serves as the pairing partner. A chimeric RNA/DNA hairpin can be used to form stable joint molecules with as little as 15 bases of shared homology as long as the RNA stretch contains complementarity to the circle. The joint molecule bears some resemblance to a triple helical structure composed of RNA residues surrounded by two DNA strands which are in a parallel orientation. Evidence is presented that supports the notion that short stretches of RNA can be used in homologous pairing reactions at lengths below that required for DNA-DNA heteroduplex formation.  相似文献   

5.
RecA-mediated cleavage of the bacteriophage lambda repressor results in inactivation of the protein and leads to induction of the lambda prophage. Here, we report the identification of three mutations in lambda repressor that significantly increase the rate of RecA-mediated cleavage. These mutations were isolated as intragenic second-site suppressors of a mutation (ind-) which prevents cleavage. Purified repressor proteins that contain both the ind- mutation and one of the second-site mutations undergo cleavage at near wild-type rates. Purified repressors that contain the second-site mutations in otherwise wild-type backgrounds undergo RecA-mediated cleavage at significantly faster rates than wild-type, and form dimers more poorly than the wild-type protein. In related experiments, we found that other repressor mutants that dimerize poorly are also better substrates for RecA-mediated cleavage. Conversely, we show that a covalent disulfide-bonded repressor dimer is resistant to cleavage. These results support a model in which repressor monomers are the only substrate in the cleavage reaction.  相似文献   

6.
M H Lee  A Guzzo    G C Walker 《Journal of bacteriology》1996,178(24):7304-7307
Disulfide-cross-linked UmuD2 derivatives were cleaved poorly upon incubation with activated RecA. Reducing the disulfide bonds prior to incubating the derivatives with RecA dramatically increased their extent of cleavage. These observations suggest that the UmuD monomer is a better substrate for the RecA-mediated cleavage reaction than the dimer.  相似文献   

7.
Specific DNA cleavage and binding by vaccinia virus DNA topoisomerase I   总被引:12,自引:0,他引:12  
Cleavage of a defined linear duplex DNA by vaccinia virus DNA topoisomerase I was found to occur nonrandomly and infrequently. Approximately 12 sites of strand scission were detected within the 5372 nucleotides of pUC19 DNA. These sites could be classified as having higher or lower affinity for topoisomerase based on the following criteria. Higher affinity sites were cleaved at low enzyme concentration, were less sensitive to competition, and were most refractory to religation promoted by salt, divalent cations, and elevated temperature. Cleavage at lower affinity sites required higher enzyme concentration and was more sensitive to competition and induced religation. Cleavage site selection correlated with a pentameric sequence motif (C/T)CCTT immediately preceding the site of strand scission. Noncovalent DNA binding by topoisomerase predominated over covalent adduct formation, as revealed by nitrocellulose filter-binding studies. The noncovalent binding affinity of vaccinia topoisomerase for particular subsegments of pUC19 DNA correlated with the strength and/or the number of DNA cleavage sites contained therein. Thus, cleavage site selection is likely to be dictated by specific noncovalent DNA-protein interactions. This was supported by the demonstration that a mutant vaccinia topoisomerase (containing a Tyr----Phe substitution at the active site) that was catalytically inert and did not form the covalent intermediate, nevertheless bound DNA with similar affinity and site selectivity as the wild-type enzyme. Noncovalent binding is therefore independent of competence in transesterification. It is construed that the vaccinia topoisomerase is considerably more stringent in its cleavage and binding specificity for duplex DNA than are the cellular type I enzymes.  相似文献   

8.
In this paper, we report on the isolation and sequence analysis of mutations that confer an induction-deficient phenotype to lambda repressor. A total of 16 different mutations, which occur at 13 different sites in the repressor gene, have been characterized. For most of the mutant lysogens, frequencies of spontaneous induction in a recA+ strain were reduced dramatically in comparison with those for a wild-type phage, and these mutant lysogens showed little or no prophage induction after UV irradiation. The immunity properties of cells containing the mutant repressors show that all of the mutants but one exhibit operator-binding properties indistinguishable from wild-type repressor.  相似文献   

9.
RecA protein from Escherichia coli promotes homologous pairing and strand exchange between duplex DNA molecules if one is partially single-stranded. Using linear duplexes and circles with a single-stranded gap as the substrates, this reaction generates nicked circular heteroduplex DNA and linear molecules with single-stranded ends. The completion of strand exchange can be demonstrated by the production of nicked circular heteroduplex DNA detected by gel electrophoresis and autoradiography using radiolabeled linear molecules. When the effect of ultraviolet damage to the substrate DNA was tested, strand exchange was found to pass 30 or more pyrimidine dimers in each duplex. In contrast, exchanges were blocked or severely slowed by interstrand cross-links and monoadducts produced by psoralen and 360 nm light. Deletions and insertions of from 4 to 38 base pairs in the DNA substrates had little effect on the production of nicked circular heteroduplex DNA. However, those of 120 base pairs, or greater, reduced the product yield to a level below the threshold of detection. These results contrast with those obtained in related three-stranded reactions (Bianchi, M. E., and Radding, C. M. (1984) Cell 35, 511-520), in which stable heteroduplex products with 500 or 1300 unpaired bases were obtained when the insert was located within a single-stranded circular substrate.  相似文献   

10.
A method has been developed for specific enzymic cleavage of polypeptides at the N-terminal side of modified cysteine residues. Lysine residues are blocked by trifluoroacetylation and cysteine residues subsequently converted to the 2-aminoethyl derivatives. Digestion of the modified polypeptide with the lysine-specific protease from Armillaria mellea (patented by Walton et al., 1972) occurs only at 2-aminoethylcysteine residues. With the beta chain of human haemoglobin, which contains 2 cysteine and 11 lysine residues, cleavage was observed at both modified cysteines but at none of the lysines. In the case of a polypeptide from bee venom which contains 4 half-cystine and 5 lysine residues, cleavage occurred at only 2 of the modified cysteines and also at 2 lysine residues. The pattern of cleavage in the latter case can be interpreted in terms of the amino acid sequence of the polypeptide.  相似文献   

11.
We have developed a fast and general method to obtain an enriched, full-length cDNA expression library with subtractively enriched cDNA fragments. The procedure relies on RecA-mediated triple-helix formation of single-stranded cDNA fragments with a double-stranded cDNA plasmid library. The complexes were then captured from the solutions using the digoxigenin-antidigoxigenin paramagnetic beads followed by recovery of the enriched double-stranded cDNA expression library. We have observed a linear relation between the capture of full-length cDNAs in the library and the fold enrichment in the subtracted cDNA population.  相似文献   

12.
The presence of either deoxyguanylyl-(3'----5')-deoxyguanosine (d(G-G] or deoxyadenylyl-(3'----5')-deoxyguanosine (d(A-G] greatly stimulates cleavage of the phage phi 80 cI repressor mediated by the Escherichia coli RecA protein in vitro. No other deoxydinucleoside monophosphate or riboguanylyl-(3'----5')-guanosine (r(G-G] affects the cleavage reaction. Neither the cleavage site of the phi 80 cI repressor nor the requirement for single-stranded DNA and ATP for cleavage is altered by d(G-G). Photoaffinity labeling experiments with 32P-labeled 5'-phosphoryl deoxyguanylyl deoxyguanosine (pd(G-G], which also stimulates cleavage, show that pd(G-G) bound to the repressor under the conditions in which the repressor is cleaved by RecA protein. The binding increases the affinity of the repressor for RecA protein and thus greatly stimulates repressor cleavage. The cleavage reactions of LexA and lambda cI repressors by RecA protein are not affected by d(G-G).  相似文献   

13.
A V Efimov 《FEBS letters》1992,298(2-3):261-265
A novel super-secondary structure of beta-proteins, denoted here as a triple-strand corner, is considered in this paper. This structure can be represented as an antiparallel triple-strand beta-sheet folded on itself so that the two beta-beta-hairpins are packed approximately orthogonally in different layers and the central strand bends by 90 degrees in the right-handed direction when passing from one layer to the other. In all the triple-strand corners observed in proteins, the first beta-beta-hairpins are right-handed and the second ones are left-handed when viewed from the concave sides of the corners. Arrangement of other beta-strands in the proteins involving the triple-strand corners is also examined.  相似文献   

14.
Solutions of native Type III collagen (chain composition, [α1(III)]3) exhibit a rapid and dramatic decrease in relative viscosity when incubated with trypsin. Cleavage products of the reaction were precipitated with ammonium sulfate and isolated in denatured form by molecular sieve chromatography. They were found to be comprised of: α1(III)-T1 (molecular weight, 71,000) derived from the NH2-terminal portion of the Type III molecule; and α1(III)-T2 (molecular weight, 24,000) from the COOH-terminal portion of the molecule. Determination of the amino acid sequence at the NH2-terminal portion of α1(III)-T2 as well as at the COOH-terminus of α(III)-T1 demonstrated that the products arose from specific cleavage of the type III molecule at an arginine-glycine bond corresponding to residues 780–781 in the repetitive triplet sequence of the α1(III) chain. The results suggest that the trypsin-susceptible bond in the native Type III collagen molecule resides in a region characterized by a relative lack of the normal collagen helicity.  相似文献   

15.
Using DNA molecules to construct a structural scaffold for nanotechnology is largely accepted. In this article, we report on two methods for constructing a figure-eight structure of DNA molecules having a relatively high yield that could be used further as a scaffold for nanotechnology applications. In the first method, two plasmids were constructed that, on digestion with a restriction endonuclease producing nicks in the corresponding sites and after heating, produced complementary single-stranded sequences, enabling the plasmids to hybridize to each other and forming a figure-eight structure. The formation of the figure-eight structure was analyzed by restriction analysis and gel electrophoresis as well as by atomic force microscopy. The second method makes use of the bacteriophage M13 that is obtained as either a single- or double-stranded circular DNA molecule. Two M13 molecules harboring complementary sequences were constructed and produced a figure-eight structure on hybridization. The methods described here could be used further for the construction of nanoelectronic devices.  相似文献   

16.
The structure of replicating adenovirus 2 DNA molecules   总被引:40,自引:0,他引:40  
R L Lechner  T J Kelly 《Cell》1977,12(4):1007-1020
Adenovirus 2 (Ad2)-infected KB cells were exposed to a 2.5 min pulse of 3H-thymidine at 19 hr after infection. The labeled DNA molecules were separated from cell DNA and mature Ad2 DNA by sucrose gradient sedimentation and CsCI equilibrium centrifugation under conditions designed to minimize branch migration and hybridization of single strands. Electron microscopy-of fractions containing radioactivity revealed two basic types of putative replicating molecules: Ad2 length duplex DNA molecules with one or more single-stranded branches (type I) and Ad2 length linear DNA molecules with a single-stranded region extending a variable distance from one end (type II). Length measurements, partial denaturation studies and 3′ terminal labeling experiments were consistent with the following model for Ad2 DNA replication. Initiation of DNA synthesis occurs at or near an end of the Ad2 duplex. Following initiation, a daughter strand is synthesized in the 5′ to 3′ direction, displacing the parental strand with the same polarity. This results in the formation of a branched replicating molecule (type I). Initiations at the right and left molecular ends are approximately equal in frequency, and multiple initiations on the same replicating molecule are common. At any given displacement fork in a type I molecule, only one of the two parental strands is replicated. Two nonexclusive mechanisms are proposed to account for the replication of the other parental strand. In some cases, before completion of a round of displacement synthesis initiated at one end of the Ad2 duplex, a second initiation will occur at the opposite end. In these doubly initiated molecules, both parental strands serve as templates for displacement synthesis. Two type II molecules are generated when the oppositely moving displacement forks meet. Alternatively, displacement synthesis may proceed to the end of the Ad2 duplex, resulting in the formation of a daughter duplex and a parental single strand. Replication of the displaced parental strand is then initiated at or near its 3′ terminus, producing a type II molecule. Daughter strand synthesis proceeds in the 5′ to 3′ direction in type II molecules generated by either mechanism, and completion of synthesis results in the formation of a daughter duplex.  相似文献   

17.
Specific cleavage of hyper-edited dsRNAs   总被引:2,自引:0,他引:2  
Scadden AD  Smith CW 《The EMBO journal》2001,20(15):4243-4252
Extended double-stranded DNA (dsRNA) duplexes can be hyper-edited by adenosine deaminases that act on RNA (ADARs). Long uninterrupted dsRNA is relatively uncommon in cells, and is frequently associated with infection by DNA or RNA viruses. Moreover, extensive adenosine to inosine editing has been reported for various viruses. A number of cellular antiviral defence strategies are stimulated by dsRNA. An additional mechanism to remove dsRNA from cells may involve hyper-editing of dsRNA by ADARs, followed by targeted cleavage. We describe here a cytoplasmic endonuclease activity that specifically cleaves hyper-edited dsRNA. Cleavage occurs at specific sites consisting of alternating IU and UI base pairs. In contrast, unmodified dsRNA and even deaminated dsRNAs that contain four consecutive IU base pairs are not cleaved. Moreover, dsRNAs in which alternating IU and UI base pairs are replaced by isomorphic GU and UG base pairs are not cleaved. Thus, the cleavage of deaminated dsRNA appears to require an RNA structure that is unique to hyper-edited RNA, providing a molecular target for the disposal of hyper-edited viral RNA.  相似文献   

18.
In order to study the sequence specificity of double-strand DNA cleavage by Drosophila topoisomerase II, we have mapped and sequenced 16 strong and 47 weak cleavage sites in the recombinant plasmid p pi 25.1. Analysis of the nucleotide and dinucleotide frequencies in the region near the site of phosphodiester bond breakage revealed a nonrandom distribution. The nucleotide frequencies observed would occur by chance with a probability less than 0.05. The consensus sequence we derived is 5'GT.A/TAY decrease ATT.AT..G 3', where a dot means no preferred nucleotide, Y is for pyrimidine, and the arrow shows the point of bond cleavage. On average, strong sites match the consensus better than weak sites.  相似文献   

19.
The conjugative transposon Tn916 encodes a protein called INT(Tn916) which, based on DNA sequence comparisons, is a member of the integrase family of site-specific recombinases. Integrase proteins such as INT(lambda), FLP, and XERC/D that promote site-specific recombination use characteristic, conserved amino acid residues to catalyze the cleavage and ligation of DNA substrates during recombination. The reaction proceeds by a two-step transesterification reaction requiring the formation of a covalent protein-DNA intermediate. Different requirements for homology between recombining DNA sites during integrase-mediated site-specific recombination and Tn916 transposition suggest that INT(Tn916) may use a reaction mechanism different from that used by other integrase recombinases. We show that purified INT(Tn916) mediates specific cleavage of duplex DNA substrates containing the Tn916 transposon ends and adjacent bacterial sequences. Staggered cleavages occur at both ends of the transposon, resulting in 5' hydroxyl protruding ends containing coupling sequences. These are sequences that are transferred with the transposon from donor to recipient during conjugative transposition. The nature of the cleavage products suggests that a covalent protein-DNA linkage occurs via a residue of INT(Tn916) and the 3'-phosphate group of the DNA. INT(Tn916) alone is capable of executing the strand cleavage step required for recombination during Tn916 transposition, and this reaction probably occurs by a mechanism similar to that of other integrase family site-specific recombinases.  相似文献   

20.
We have examined the cleavage of several synthetic DNA sequences by iron(II)-bleomycin. We find that, although bleomycin cuts mixed sequence DNAs with a preference for GC = GT > GA >> GG, it efficiently cleaves regions of (AT)n cutting exclusively at ApT, not TpA. Isolated ApT steps show very little cleavage while blocks of three or more contiguous ATs are cut as efficiently as GpT. This cleavage is specific for (AT)n, since sequences of the type (TAA)n.(TTA)n and (ATT)n.(AAT)n are hardly cut at all. No cleavage is observed at ApC or CpA within sequences of the type (AC)n.(GT)n; regions of An.Tn are also not cut. Although the cobalt-bleomycin complex (which binds to but does not cleave DNA) yields good DNase I footprints at GT and GC sites, no footprints are observed within (AT)n, suggesting that although the cleavage reaction is efficient, the binding affinity is relatively weak. We propose a model in which bleomycin cleavage is determined by local DNA structure, while strong binding requires the presence of a guanine residue.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号