首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Abstract

l-6-Hydroxynorleucine was synthesized from 2-keto-6-hydroxyhexanoic acid using branched-chain aminotransferase from Escherichia coli with l-glutamate as an amino donor. Since the branched-chain aminotransferase was severely inhibited by 2-ketoglutarate, the branched-chain aminotransferase reaction was coupled with aspartate aminotransferase and pyruvate decarboxylase. Aspartate aminotransferase converted the inhibitory 2-ketoglutarate back to l-glutamate by using l-aspartate as an amino donor. On the other hand, pyruvate decarboxylase further shifted the reaction equilibrium towards l-6-hydroxynorleucine through decarboxylation of pyruvate to acetaldehyde. The concerted action of the three enzymes significantly enhanced the yield compared to that of branched-chain aminotransferase alone. In the coupled reaction, 90.2 mM l-6-hydroxynorleucine (> 99% ee) was produced from 100 mM 2-keto-6-hydroxyhexanoic acid, whereas in a single branched-chain aminotransferase reaction only 22.5 mM l-6-hydroxynorleucine (> 99% ee) was produced.  相似文献   

2.
3-(N-Methylamino)glutaric acid has been identified as a new free amino acid in extracts from Prochloron didemnii (Lewin), a unique prokaryotic algal symbiont associated with certain didemnid ascidians. Its structure was established by elucidation of the mass spectra of its TMSi and other derivatives and confirmed by synthesis.  相似文献   

3.
An aromatic amino acid aminotransferase (aromAT) was purified over 33 000-fold from the shoots and primary leaves of mung beans (Vigna radiata L. Wilczek). The enzyme was purified by ammonium sulfate precipitation, gel filtration and anion exchange followed by fast protein liquid chromatography using Mono Q and Phenylsuperose. The relative amino transferase activities using the most active amino acid substrates were: tryptophan 100, tyrosine 83 and phenylalanine 75, withK m values of 0.095, 0.08 and 0.07 mM, respectively. The enzyme was able to use 2-oxoglutarate, oxaloacetate and pyruvate as oxo acid substrates at relative activities of 100, 128 and 116 andK m values of 0.65, 0.25 and 0.24 mM, respectively. In addition to the aromatic amino acids the enzyme was able to transaminate alanine, arginine, aspartate, leucine and lysine to a lesser extent. The reverse reactions between glutamate and the oxo acids indolepyruvate and hydroxyphenylpyruvate occurred at 30 and 40% of the forward reactions of tryptophan and tyrosine, withK m, values of 0.1 and 0.8 mM, respectively. The enzyme was not inhibited by indoleacetic acid, although -naphthaleneacetic acid did inhibit slightly. Addition of the cofactor pyridoxal phosphate only slightly increased the activity of the purified enzyme. The aromAT had a molecular weight of 55–59 kDa. The possible role of the aromAT in the biosynthesis of indoleacetic acid is discussed.Abbreviations AAT aspartate aminotransferase - aromAT aromatic amino acid aminotransferase - FPLC fast protein liquid chromatography - IPyA indolepyruvate - OHPhPy hydroxyphenylpyruvate - PLP pyridoxal phosphate - TAT tryptophan aminotransferase  相似文献   

4.
A high-yielding synthesis of the highly fluorescent amino acid l-2-amino-3-(7-methoxy-4-coumaryl)propionic acid (l-Amp) has been developed via (2R)-bornane-10,2-sultam glycinate. l-Amp facilitates the synthesis of sensitive fluorogenic proteinase substrates with N-terminal solubilising or reactive groups.  相似文献   

5.
An extracellular metal-chelator-sensitive lytic protease (assigned the trivial name caldolysin) was isolated from a Thermus-like organism, Thermus T-351. Caldolysin was purified by affinity chromatography on Cbz-D-phenylalanine-TETA-Sepharose 4B and by gel filtration. It contained 13% carbohydrate, a single zinc atom, had a molecular weight of approx. 21,000, a pH optimum of 8 (azocasein substrate), and an isoelectric point of about 8.5. It was capable of hydrolysing many soluble and insoluble protein substrates, including collagen and elastin. No esterase activity was detected, and small peptides (less than four amino acids) and low molecular weight chromogenic substrates were not hydrolysed. A specificity for small aliphatic amino acids on either side of the splitting point was indicated. Caldolysin lysed heat-killed Gram-negative bacterial cells, but had little effect on Gram-positive organisms. Caldolysin exhibited a very high degree of thermostability (t 1/2(80 degrees C) approximately 30 h, t 1/2(90 degrees C) = 1 h). The stability (but not activity) was shown to be dependent on the presence of Ca2+ (t 1/2(75 degrees C, 10 mM calcium) greater than 193 h; t 1/2(75 degrees C, no calcium) = 4.8 min). None of the other metal ions tested (Co, Zn, Sr, Mg, Ba and Cu) was as effective as calcium in conferring thermostability of EDTA-treated caldolysin. Caldolysin was stable at room temperature in moderately acid and alkaline (pH 5 to 11) buffers for periods of greater than 90 days. Little loss of enzyme activity was detected after the incubation of caldolysin at 18 degrees C in the presence of 8 M urea, 6 M guanidine hydrochloride or 1% sodium dodecyl sulphate for 24 h. At 75 degrees C, the activity half-life of caldolysin in these denaturing agents was reduced to approx. 1 h, 1 h and more than 5 h, respectively.  相似文献   

6.
Summary A ligh-yielding synthesis of the highly fluorescent amino acidl-2-amino-3-(7-methoxy-4-coumaryl)propionic acid (l-Amp) has been developed via (2R)-bormane-10,2-sultam glycinate.l-Amp facilitates the synthesis of sensitive fluorogenic proteinase substrates with N-terminal solubilising or reactive group.  相似文献   

7.
The Methanococcus jannaschii tRNA(Tyr)/TyrRS pair has been engineered to incorporate unnatural amino acids into proteins in E. coli. To reveal the structural basis for the altered specificity of mutant TyrRS for O-methyl-L-tyrosine (OMeTyr), the crystal structures for the apo wild-type and mutant M. jannaschii TyrRS were determined at 2.66 and 3.0 A, respectively, for comparison with the published structure of TyrRS complexed with tRNA(Tyr) and substrate tyrosine. A large conformational change was found for the anticodon recognition loop 257-263 of wild-type TyrRS upon tRNA binding in order to facilitate recognition of G34 of the anticodon loop through pi-stacking and hydrogen bonding interactions. Loop 133-143, which is close to the tRNA acceptor stem-binding site, also appears to be stabilized by interaction with the tRNA(Tyr). Binding of the substrate tyrosine results in subtle and cooperative movements of the side chains within the tyrosine-binding pocket. In the OMeTyr-specific mutant synthetase structure, the signature motif KMSKS loop and acceptor stem-binding loop 133-143 were surprisingly ordered in the absence of bound ATP and tRNA. The active-site mutations result in altered hydrogen bonding and steric interactions which favor binding of OMeTyr over L-tyrosine. The structure of the mutant and wild-type TyrRS now provide a basis for generating new active-site libraries to evolve synthetases specific for other unnatural amino acids.  相似文献   

8.
Screening for antimetabolites in edible mushrooms showed that the hot water extract of fruiting bodies of Cortinarius claricolor var. tenuipes strongly inhibited the growth of Bacillus subtilis B-50 in a chemically defined minimal medium. 2(S)-Aminohex-5-ynoic acid was isolated as an active compound.  相似文献   

9.
AIM: Purification and characterization of an aminotransferase (AT) specific for the degradation of branched-chain amino acids from Lactobacillus paracasei subsp. paracasei CHCC 2115. METHODS AND RESULTS: The purification protocol consisted of anion exchange chromatography, affinity chromatography and hydrophobic interaction chromatography. The enzyme was found to exist as a monomer with a molecular mass of 40-50 kDa. The AT converted isoleucine, leucine and valine at a similar rate with alpha-ketoglutarate as the amino group acceptor; minor activity was shown for methionine. The enzyme had pH and temperature optima of 7.3 and 43 degrees C, respectively, and activity was detected at the pH and salt conditions found in cheese (pH 5.2, 4% NaCl). Hg2+ completely inhibited the enzyme, and the inhibition pattern was similar to that for pyridoxal-5'-phosphate-dependent enzymes, when studying the effect of other metal ions, thiol- and carbonyl-binding agents. The N-terminal sequence of the enzyme was SVNIDWNNLGFDYMQLPYRYVAHXKDGVXD, and had at the amino acid level, 60 and 53% identity to a branched-chain amino acid AT of Lact. plantarum and Lactococcus lactis, respectively. CONCLUSIONS: The results suggest that Lact. paracasei subsp. paracasei CHCC 2115 may contribute to development of flavour in cheese. SIGNIFICANCE AND IMPACT OF THE STUDY: The findings of this work contribute to the knowledge of transamination performed by cheese-related bacteria, and in the understanding and control of amino acid catabolism and the production of aroma compounds.  相似文献   

10.
In all organisms synthesising phenylalanine and/or tyrosine via arogenate, a prephenate aminotransferase is required for the transamination of prephenate into arogenate. The identity of the gene encoding this enzyme in the organisms where this activity occurs is still unknown. Glutamate/aspartate-prephenate aminotransferase (PAT) is thus the last homeless enzyme in the aromatic amino acids pathway. We report on the purification, mass spectrometry identification and biochemical characterization of Arabidopsis thaliana prephenate aminotransferase. Our data revealed that this activity is housed by the prokaryotic-type plastidic aspartate aminotransferase (At2g22250). This represents the first identification of a gene encoding PAT.  相似文献   

11.
Resolution of (2RS,3RS)-2-[alpha-(2-methoxymethoxyphenoxy)phenylmethyl]morpholine, 11, with (+) mandelic acid led to the formation of (+)-(2S,3S)-2-[alpha-(2-methoxymethoxyphenoxy)phenyl methyl] morpholine (11a). Compound 11 was synthesized in seven steps from (2RS,3RS)-cinnamyl alcohol-2,3-epoxide (4), with an overall yield of 17%. Cleavage of the methoxymethyl group of the Fmoc derivative 12 with catalytic amounts of p-toluenesulfonic acid in methanol afforded (+)-(2S,3S)-2-(2-morpholin-2-yl-2-phenylmethoxy)phenol 2. The synthetic utility as well as the configuration of compound 2 has been demonstrated by converting (S,S)-2-(2-morpholin-2-yl-2-phenylmethoxy)phenol 2 to (2S,3S)-2-[alpha-(2-ethoxyphenoxy)phenylmethyl]morpholine (1) and (2S,3S)-2-(2-methoxyphenoxy) benzyl)morpholine (16), two potential norepinephrine reuptake inhibitors under clinical evaluation.  相似文献   

12.
A new amino acid has been discovered in uncombined form in extracts of the fruiting bodies of the mushroom, Phyllotopsis nidulans. Chemical and spectroscopic data support formulation of the structure as l-3-(3-carboxyfuran-4-yl)alanine.  相似文献   

13.
Since 1993, alanine aminotransferase (ALT) testing has been mandatory for blood donor screening in China. This study aimed to evaluate the significance of ALT testing for transfusion safety. Between January 2012 and December 2018, 122236 blood donor samples were routinely screened by the enzyme-linked immunosorbent assay method for transfusion-transmitted disease markers (TTDM) and by the kinetics method for ALT. Out of 2705 (2.21%) seropositive donors, 291 (10.76%) tested positive for ALT alone and were categorized as ALT-only positive donors. Fourteen ALT-only positive donors who all tested negative in subsequent TTDM and nucleic acid testing (NAT) screening were followed up. The return rate for ALT-only positive donors was reduced by 4.1 times as compared with qualified blood donors (P<0.000). The results suggest that ALT testing does not make a significant contribution to reducing the risk of transfusion-transmitted diseases. Furthermore, being disqualified even once owing to elevated ALT levels has a significant impact on donors' return behavior. Therefore, a suitable cutoff value for ALT testing should be considered based on the evaluated risk in both blood safety and supply.  相似文献   

14.
A bacterium tentatively classified as Arthrobacter strain Py1 being capable to degrade pyrrole-2-carboxylate as only source of carbon, nitrogen, and energy was isolated from soil. In contrast to many other N-heterocyclic compounds, growth of the isolate on pyrrole-2-carboxylate was not affected by molybdate or its specific inhibitor tungstate, indicating a molybdoenzyme-independent breakdown. The latter was initiated by a hydroxylation reaction catalyzed by a pyrrole-2-carboxylate oxygenase, which also exhibited an NADH-cytochrome c reductase activity. The pyrrole-2-carboxylate oxygenase reaction as examined in cell extracts depended on NADH, FAD, and pyrrole-2-carboxylate; the apparent K m values were 44, 6, and 43 M, respectively. A degradation pathway for pyrrole-2-carboxylate is proposed which involves 5-hydroxy-pyrrole-2-carboxylate and 2-oxoglutarate.  相似文献   

15.
The production of auxins, such as indole-3-acetic acid (IAA), by rhizobacteria has been associated with plant growth promotion, especially root initiation and elongation. Six indole-producing bacteria isolated from the rhizosphere of legumes grown in Saskatchewan soils and identified as Pantoea agglomerans spp. were examined for their ability to promote the growth of canola, lentil and pea under gnotobiotic conditions and for tryptophan (Trp)-dependent IAA production. Five of the isolates enhanced root length, root weight or shoot weight by 15–37% in at least one of the plant species, but isolates 3–117 and 5–51 were most consistent in enhancing plant growth across the three species. Indole concentrations in the rhizosphere of plants grown under gnotobiotic conditions increased in the presence of the rhizosphere isolates and when Trp was added 3 days prior to plant harvest. Isolates 3–117, 5–51 and 5–105 were most effective in increasing rhizosphere indole concentrations. Colony hybridization confirmed that all of the isolates possessed the ipdC gene which codes for a key enzyme in the Trp-dependent IAA synthetic pathway. The activity of amino acid aminotransferase (AAT), catalyzing the first step in the Trp-dependent synthetic pathway, was examined in the presence of Trp and other aromatic amino acids. All of the isolates accumulated Trp internally and released different amounts of IAA. The production of IAA from the isolates was greatest in the presence of Trp, ranging from 2.78 to 16.34 μg mg protein−1 in the presence of 250 μg of Trp ml−1. The specific activity of AAT was correlated with the concentration of IAA produced in the presence of Trp but not when tyrosine (Tyr), phenylalanine (Phe) or aspartate (Asp) was used as a sole nitrogen source. Isolate 3–117, which produced significant concentrations of IAA in the presence and absence of Trp, was able to use aromatic amino acids as sole sources of nitrogen and was most consistent in enhancing the growth of canola, lentil and pea may have potential for development as a plant growth-promoting inoculant. Responsible Editor: Peter A. H. Bakker.  相似文献   

16.
In our previous study, we showed that a chimeric isopropylmalate dehydrogenase, 2T2M6T, between an extreme thermophile, Thermus thermophilus, and a mesophile, Bacillus subtilis, isopropylmalate dehydrogenases (the name roughly denotes the primary structure; the first 20% from the N-terminal is coded by the thermophile leuB gene, next 20% by mesophile, and the rest by the thermophile gene) denatured in two steps with a stable intermediate, suggesting that in the chimera some of the interdomain interaction was lost by amino acid substitutions in the "2M" part. To identify the residues involved in the interdomain interactions, the first and the second halves of the 2M part of the chimera were substituted with the corresponding sequence of the thermophile enzyme. Both chimeras, 3T1M6T and 2T1M7T, apparently showed one transition in the thermal denaturation without any stable intermediate state, suggesting that the cooperativity of the conformational stability was at least partly restored by the substitutions. The present study also suggested involvement of one or more basic residues in the unusual stability of the thermophile enzyme. Received: September 29, 1998 / Accepted: June 25, 1999  相似文献   

17.
A gene (leuB) coding for 3-isopropylmalate dehydrogenase [EC 1.1.1.85] from an extreme thermophile, Thermus aquaticus YT-1 was cloned in Escherichia coli and the nucleotide sequence was determined. It contains an open reading frame of 1,035 bp encoding 344 amino acid residues. The homology with that from T. thermophilus HB8 is 87.0% in nucleotide and 91.3% in amino acid sequences. No overlapped gene was found in the present leuB gene, in contrast to the previous prediction that Thermus leuD gene is overlapped with leuB [Croft et al. (1987) Mol. Gen. Genet. 210, 490-497]. Substitutions in the primary structure which are unique for the thermophile sequences are discussed in relation to the unusual stability of the thermophile dehydrogenase based on amino acid sequence comparison of 9 microorganisms including thermophiles and mesophiles.  相似文献   

18.
(RS)-β-Ionol and (RS)-2-methyl-4-octanol were resolved by using (S)-2-methoxy-2-(1-naphthyl)propanoic acid [(S)-MαNP acid]. The specific stereochemistry of each MαNP ester was elucidated by 2D NMR analyses, and shielding by the 1-naphthyl group was observed in both the 1H- and 13C-NMR spectra. Solvolysis of the individual (S)-MαNP esters gave four single-enantiomer alcohols. The normal-phase HPLC elution order of each MαNP ester is also discussed.  相似文献   

19.
We have isolated uracil auxotrophic mutants of an extreme thermophile, Thermus thermophilus. A part of the pyrimidine biosynthetic operon including genes for orotate phosphoribosyltransferase (pyrE) and for orotidine-5'-monophosphate decarboxylase (pyrF) was cloned and sequenced. The pyrE gene can be a bidirectional marker for the gene manipulation system of the thermophile.  相似文献   

20.
褐飞虱体内类酵母共生菌与氨基酸营养的关系   总被引:8,自引:0,他引:8  
利用全纯人工饲料饲喂技术,研究了缺失不同氨基酸对高温(35℃)处理后的缺菌褐飞虱Nilaparvata lugens Stål相对生长速度、体内共生菌数量的影响,发现10种必需氨基酸对缺菌褐飞虱生长的影响明显大于10种非必需氨基酸,饲料中必需氨基酸的缺少对褐飞虱(特别是高温处理褐飞虱)体内共生菌数量有一定的刺激作用。分析了缺菌试虫体内氨基酸组成和转氨酶活性的变化规律,发现在摄取的氨基酸营养相同的条件下(用全纯饲料D-97饲养),高温处理试虫体内蛋白质氨基酸组成无明显变化,而游离氨基酸总量明显上升,且必需氨基酸所占比例显著下降,其中组氨酸(His)、异亮氨酸(Ile)、亮氨酸(Leu)、赖氨酸(Lys)、蛋氨酸(Met)和苯丙氨酸(Phe)摩尔百分含量均显著下降,表明必需氨基酸的相对缺乏可能是体内蛋白质合成受阻的一个重要原因,推测这可能是由于试虫体内共生菌数减少致使所合成的必需氨基酸减少而引起。处理试虫体内谷氨酰胺合成酶(GS)和丙氨酸氨基转移酶(ALT)活性明显提高,天冬氨酸氨基转移酶(AST)活性显著降低,结合游离氨基酸中谷氨酰胺(Gln)显著增多,推测类酵母共生菌可能利用谷氨酰胺等为原料进行必需氨基酸的合成。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号