首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Jahn R 《Neuron》2010,68(1):6-8
Vesicular glutamate transporters (VGLUTs) load glutamate into synaptic vesicles. In this issue of Neuron, Juge et?al. report that ketone bodies compete with chloride-dependent activation of VGLUTs, leading to suppression of glutamate release and seizures. These findings provide a surprising explanation for the efficacy of the ketogenic diet in controlling epilepsy.  相似文献   

2.
Earlier, it was questioned whether gap junctions (GJs) were necessary for cell-cell communication in smooth muscle, and GJs were not seen in some smooth muscles. We reexamined this question in the myometrium and in intestinal smooth muscle, in light of current knowledge of the presence and function of GJs. In the uterus, numerous studies show that an increase in GJ number is associated with the onset of delivery and is required for effective parturition. In all cases, this increase in GJ number and the changes in uterine contractility were correlated with increased electrical and metabolic coupling. Evidence for the much smaller, but detectable, degree of electrical coupling in the preterm uterus is explained by the small (but again detectable) number of GJs present. In the intestine, GJs are readily detected in the circular muscle layer but have not been described in the adjacent longitudinal layer. While our immunohistochemical studies failed to detect GJs in the longitudinal layer, this may not be adequate to prove their absence. Therefore, current knowledge of GJ number and function is adequate to explain cell-cell coupling in the uterus. Although it remains uncertain whether GJs are absent from the longitudinal muscle of the intestine, there is no definitive evidence that cell-cell coupling can occur by means other than GJs.  相似文献   

3.
Cardiovascular diseases remain an important cause of morbi-mortality. Atherosclerosis, which predisposes to cardiovascular disorders such as myocardial infarction and stroke, develops silently over several decades. Identification of circulating biomarkers to evaluate cardiovascular event risk and pathology prognosis is of particular importance. Microparticles (MPs) are small vesicles released from cells upon apoptosis or activation. Microparticles are present in blood of healthy individuals. Studies showing a modification of their concentrations in patients with cardiovascular risk factors and after cardiovascular events identify MPs as potential biomarkers of disease. Moreover, the pathophysiological properties of MPs may contribute to atherosclerosis development. In addition, pharmacological compounds, used in the treatment of cardiovascular disease, can reduce plasma MP concentrations. Nevertheless, numerous issues remain to be solved before MP measurement can be applied as routine biological tests to improve cardiovascular risk prediction. In particular, prospective studies to identify the predictive values of MPs in pathologies such as cardiovascular diseases are needed to demonstrate whether MPs are useful biomarkers for the early detection of the disease and its progression.  相似文献   

4.
5.

Pyroptosis is a newly discovered form of programmed cell death mediated by the gasdermin protein, that is accompanied by inflammation and immune response. A growing body of evidence suggests that pyroptosis is closely related to cancer, and it is becoming a new cancer research topic. Studies have suggested that different cancer cells activate pyroptosis in different ways and that the effects of pyroptosis vary in different cancer backgrounds. In this article, we briefly introduce the definition, characteristics, and activation pathways of pyroptosis. Then we review the complex effects of pyroptosis on cancer development, which generally include inhibition of cancer cell viability, impacts on the invasion and migration of cancer cells, improvement of antitumor immunity, and enhancement of chemotherapy sensitivity. We also discuss drugs and compounds that can induce pyroptosis, as well as the interaction between pyroptosis and apoptosis. Elucidating the mechanisms of the complex effects of pyroptosis is likely to pave the way for therapeutic approaches for cancer in the future.

  相似文献   

6.
Plants respond to shading through an adaptive syndrome termed shade avoidance. In high-density crop plantings, shade avoidance generally increases extension growth at the expense of yield and can be at odds with the agronomic performance of the crop as a whole. Studies in Arabidopsis are beginning to reveal the essential role phytochromes play in regulating this process and to identify genes underlying the response. In this article, we focus on how phytochrome signaling networks have been targeted in cereal breeding programs in the past and discuss the potential to alter these pathways through breeding and transgenic manipulation to develop crops that perform better under typical high density conditions.  相似文献   

7.
The ADAMs are transmembrane proteins implicated in proteolysis and cell adhesion. Forty gene members of the family have been identified, of which 21 are believed to be functional in humans. As proteases, their main substrates are the ectodomains of other transmembrane proteins. These substrates include precursor forms of growth factors, cytokines, growth factor receptors, cytokine receptors and several different types of adhesion molecules. Although altered expression of specific ADAMs has been implicated in different diseases, their best-documented role is in cancer formation and progression. ADAMs shown to play a role in cancer include ADAM9, ADAM10, ADAM12, ADAM15 and ADAM17. Two of the ADAMs, i.e., ADAM10 and 17 appear to promote cancer progression by releasing HER/EGFR ligands. The released ligands activate HER/EGFR signalling that culminates in increased cell proliferation, migration and survival. Consistent with a causative role in cancer, several ADAMs are emerging as potential cancer biomarkers for aiding cancer diagnosis and predicting patient outcome. Furthermore, a number of selective ADAM inhibitors, especially against ADAM10 and ADAM17, have been shown to have anti-cancer effects. At least one of these inhibitors is now undergoing clinical trials in patients with breast cancer.  相似文献   

8.
Interferon (IFN-) has been widely used in the treatment of human solid and haematologic malignancies. Although the antitumour activity of IFN- is well recognised at present, no major advances have been achieved in the last few years. Recent findings have provided new information on the molecular mechanisms of the antitumour activity of the cytokine. In fact, IFN- appears to block cell proliferation, at least in part, through the induction of apoptotic effects. This cytokine can also regulate the progression of tumour cells through the different phases of the cell cycle inducing an increase of the expression of the cyclin-dependent kinase inhibitors p21 and p27. However, it must be considered that IFN- is a physiologic molecule with ubiquitously expressed receptors that is likely to activate survival mechanisms in the cell. We have recently identified an epidermal growth factor (EGF) Ras-dependent protective response to the apoptosis induced by IFN- in epidermoid cancer cells. The identification of tissue- and/or tumour-specific survival pathways and their selective targeting might provide a new approach to improve the efficacy of IFN-–based treatment of human cancer. Moreover, new pegylated species of IFN- are now available with a more favourable pharmacokinetic profile. We will review these achievements, and we will specifically address the topic of IFN-–based molecularly targeted combinatory antitumour approaches.  相似文献   

9.
Epigenetic gene regulation contributes, together with genetic alterations, to cancer development and progression. In contrast to genetic disorders, the possibility of reversing epigenetic alterations has provided original targets for therapeutic application. In the last years, work has been focused on the pharmacological restoration of epigenetic regulation balance using epidrugs which yield hopes for novel strategy in cancer therapy. Histone acetylation and DNA methylation are epigenetic modifications which have been closely linked to the pathology of human cancers, and inhibitors of both enzyme classes for clinical use are at hands. Novel findings accumulated during the last years both in chemistry and biomedical applications give rise to new targeted treatments against cancer. Since their links with pathogenesis and progression of cancer were recognized, histone methyltransferases emerge as promising therapeutic targets in cancer treatment.  相似文献   

10.
11.
12.
13.
Global alterations in epigenetic landscape are now recognized as a hallmark of cancer. Epigenetic mechanismssuch as DNA methylation,histone modifications,nucleosome positioning and non-coding RNAs are proven to have strong association with cancer. In particular,covalent post-translational modifications of histone proteins are known to play an important role in chromatin remodeling and thereby in regulation of gene expression. Further,histone modifications have also been associated with different aspects of carcinogenesis and have been studied for their role in the better management of cancer patients. In this review,we will explore and discuss how histone modifications are involved in cancer diagnosis,prognosis and treatment.  相似文献   

14.
Summary Using ultrarapid-freezing techniques and freezefracture electron microscopy, we report here a close association between cardiac gap junctions and specialized membrane domains containing regularly-spaced furrows. These specialized furrowed domains are observed only during periods of gap junction re-organisation (i.e., connexon redistribution) and may reflect the presence of underlying cytoskeletal elements controlling the position of connexons in the membrane.  相似文献   

15.
Cytosolic and mitochondrial Trypanosoma cruzi tryparedoxin peroxidases belong to the family of 2-Cys peroxiredoxins. These enzymes play an essential role as antioxidants by their peroxidase and peroxynitrite reductase activities. TXNPx are key components of the trypanosomatid peroxide detoxification pathways. The aim of this work was to determine the role of TXNPx as virulence factors in the parasite, and whether these enzymes are good candidates for drug design. We observed that peroxiredoxins are not highly abundant proteins expressed at similar levels throughout the T. cruzi life cycle. In order to study the role of c-TXNPx and m-TXNPx in invasion and infectivity, parasites overexpressing TXNPx were produced, and infection experiments were carried out using phagocytic and non-phagocytic cells. Parasites overexpressing peroxiredoxins showed a significant increase in infectivity with respect to the control ones. The results presented in this work point out that the T. cruzi peroxiredoxins are important in survival, replication and differentiation of T. cruzi and could constitute virulence factors. Moreover, their expression in the infective forms of the life cycle and their low intracellular concentration make them good candidates to become targets for drug design.  相似文献   

16.
Decades of research have indicated that gap junction channels contribute to the propagation of apoptosis between neighboring cells. Inositol 1,4,5-trisphosphate (IP3) has been proposed as the responsible molecule conveying the apoptotic message, although conclusive results are still missing. We investigated the role of IP3 in a model of gap junction-mediated spreading of cytochrome C-induced apoptosis. We used targeted loading of high-molecular-weight agents interfering with the IP3 signaling cascade in the apoptosis trigger zone and cell death communication zone of C6-glioma cells heterologously expressing connexin (Cx)43 or Cx26. Blocking IP3 receptors or stimulating IP3 degradation both diminished the propagation of apoptosis. Apoptosis spread was also reduced in cells expressing mutant Cx26, which forms gap junctions with an impaired IP3 permeability. However, IP3 by itself was not able to induce cell death, but only potentiated cell death propagation when the apoptosis trigger was applied. We conclude that IP3 is a key necessary messenger for communicating apoptotic cell death via gap junctions, but needs to team up with other factors to become a fully pro-apoptotic messenger.  相似文献   

17.
18.
Members of the CAR group of Ig-like type I transmembrane proteins mediate homotypic cell adhesion, share a common overall extracellular domain structure and are closely related at the amino acid sequence level. CAR proteins are often found at tight junctions and interact with intracellular scaffolding proteins, suggesting that they might modulate tight junction assembly or function. However, impairment of tight junction integrity has not been reported in mouse knockout models or zebrafish mutants of CAR members. In contrast, in the same knockout models deficits in gap junction communication were detected in several organ systems, including the atrioventricular node of the heart, smooth muscle cells of the intestine and the ureter and in Sertoli cells of the testes. Possible interactions between BT-IgSF and connexin41.8 on the disturbed pattern of pigment stripes found in zebrafish mutants and between ESAM and connexin43 during hematopoiesis in the mouse are also discussed. On the basis of the combined data and phenotypic similarities between CAR member mutants and connexin mutants I hypothesize that they primarily play a role in the organization of gap junction communication. Also see the video abstract here: https://youtu.be/i0yq2KhuDAE .  相似文献   

19.
Growing evidence suggests that pathological overactivation of the endocannabinoid system (ECS) is associated with dyslipidemia, obesity and diabetes. Indeed, this signalling system acting through cannabinoid receptors has been shown to function both centrally and peripherally to regulate feeding behaviour as well as energy expenditure and metabolism. Consequently, modulation of these receptors can promote significant alterations in body weight and associated metabolic profile. Importantly, blocking cannabinoid receptor type 1 function has been found to prevent obesity and metabolic dysfunction in various murine models and in humans. Here we provide a detailed account of the known physiological role of the ECS in energy balance, and explore how recent studies have delivered novel insights into the potential targeting of this system as a therapeutic means for treating obesity and related metabolic disorders.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号