共查询到20条相似文献,搜索用时 0 毫秒
1.
Autocrine beta-related interferon controls c-myc suppression and growth arrest during hematopoietic cell differentiation 总被引:28,自引:0,他引:28
Different hematopoietic cells produce minute amounts of beta-related interferon (IFN) following induction of differentiation by chemical or natural inducers. The endogenous IFN binds to type I cell surface receptors and modulates gene expression in the producer cells. We show that self-induction of two members of the IFN-induced gene family differs in the dose response sensitivity and the prolonged kinetics of mRNA accumulation from the response to exogenous IFN-beta 1. Production and response to endogenous IFN are also detected when bone marrow precursor cells differentiate to macrophages after exposure to colony stimulating factor 1. In M1 myeloid cells induced to differentiate by lung-conditioned medium, addition of antibodies against IFN-beta partially abrogates the reduction of c-myc mRNA and the loss in cell proliferative activity, which both occur during differentiation. The endogenous IFN therefore functions as an autocrine growth inhibitor that participates in controlling c-myc suppression and the specific G0/G1 arrest during terminal differentiation of hematopoietic cells. 相似文献
2.
3.
To investigate the effect of extracellular matrix molecules in the megakaryocytic lineage, we studied the role of integrin engagement in the proliferation and differentiation of human erythroleukemia (HEL) cells. HEL cells grew in suspension, but their adherence depended upon the presence of matrix proteins or protein kinase C signaling. Adherence by itself did not trigger commitment of these cells but accelerated phorbol 12-myristate 13-acetate-induced differentiation. HEL cells adhered to fibronectin mainly through alpha5beta1, and this receptor acted synergetically with alpha4beta1. Integrin engagement induced cell growth arrest through mitogen-activated protein kinase inactivation. Such down-regulation of the mitogen-activated protein kinase pathway by integrin engagement was suggested as a megakaryocytic-platelet lineage specificity. This signaling was not restricted to a peculiar integrin but was proposed as a general mechanism in these cells. 相似文献
4.
La Rocca G Shi B Audia A Ferrari-Amorotti G Mellert HS Calabretta B McMahon SB Sepp-Lorenzino L Baserga R 《Experimental cell research》2011,(4):488-495
MicroRNA145 (miR145), a tumor suppressor miR, has been reported to inhibit growth of human cancer cells, to induce differentiation and to cause apoptosis, all conditions that result in growth arrest. In order to clarify the functional effects of miR145, we have investigated its expression in diverse conditions and different cell lines. Our results show that miR145 levels definitely increase in differentiating cells and also in growth-arrested cells, even in the absence of differentiation. Increased expression during differentiation sometimes occurs as a late event, suggesting that miR145 could be required either early or late during the differentiation process. 相似文献
5.
Elongation and maturation of c-myc RNA is inhibited by differentiation inducing agents in HL60 cells. 总被引:3,自引:0,他引:3
下载免费PDF全文

D Eick 《Nucleic acids research》1990,18(5):1199-1205
6.
Juliana Maria Motta Clarissa Rodrigues Nascimento Vivian Mary Rumjanek 《Cancer immunology, immunotherapy : CII》2010,59(11):1645-1653
The microenvironment produced by solid tumors is inhibitory to the immune system, inducing dendritic cell (DC) alterations,
but there is a paucity of information regarding haematological malignances. The aim of this study was to investigate DC differentiation
under the influence of leukemic cell products. Monocytes from healthy volunteers were cultured in the presence of IL-4 and
GM-CSF for the generation of immature DCs. Supernatants from leukemic cultures were added to monocyte cultures during differentiation.
The lineages used were K562, a chronic myeloid leukemia, HL-60, a promyelocytic leukemia and DAUDI, originated from Burkitt
lymphoma. It was observed that the expression of CD14 remained high and the CD1a was low in the presence of tumor supernatants,
while non-malignant supernatants did not affect these parameters. Furthermore, IL-1β and TNF-α production by monocytes during
differentiation was increased by the presence of tumor supernatants. The modifications on CD14 and CD1a expressions could
be mimicked by the addition of exogenous IL-1β and partially inhibited by the neutralization of IL-1β. These results suggest
that soluble products from leukemic cells interfere with DC differentiation and, in the present work, this effect could be
mediated by monocyte-derived IL-1β in response to tumor supernatants. 相似文献
7.
Michell RH 《Nature reviews. Molecular cell biology》2008,9(2):151-161
Current research on inositols mainly focuses on myo-inositol (Ins) derivatives in eukaryotic cells, and in particular on the many roles of Ins phospholipids and polyphosphorylated Ins derivatives. However, inositols and their derivatives are more versatile than this--they have acquired diverse functions over the course of evolution. Given the central involvement of primordial bacteria and archaea in the emergence of eukaryotes, what is the status of inositol derivatives in these groups of organisms, and how might inositol, inositol lipids and inositol phosphates have become ubiquitous constituents of eukaryotes? And how, later, might the multifarious functions of inositol derivatives have emerged during eukaryote diversification? 相似文献
8.
9.
S.S. Xing C.C. Shen M.P. Godard J.J. Wang Y.Y. Yue S.T. Yang Q. Zhao S.B. Zhang T.X. Wang X.L. Yang P. Delafontaine Y. He Y.H. Song 《Biochemical and biophysical research communications》2014
Proteosome inhibitors such as bortezomib (BTZ) have been used to treat muscle wasting in animal models. However, direct effect of BTZ on skeletal muscle cells has not been reported. In the present study, our data showed that C2C12 cells exhibited a dose-dependent decrease in cell viability in response to increasing concentrations of BTZ. Consistent with the results of cell viability, Annexin V/PI analysis showed a significant increase in apoptosis after exposing the cells to BTZ for 24 h. The detection of cleaved caspase-3 further confirmed apoptosis. The apoptosis induced by BTZ was associated with reduced expression of p-ERK. Cell cycle analysis revealed that C2C12 cells underwent G2/M cell cycle arrest when incubated with BTZ for 24 h. Furthermore, BTZ inhibited formation of multinucleated myotubes. The inhibition of myotube formation was accompanied by decreased expression of Myogenin. Our data suggest that BTZ induces cell death and inhibits differentiation of C2C12 cells at clinically relevant doses. 相似文献
10.
11.
12.
Vascular endothelial growth factor-D activates VEGFR-3 expressed in osteoblasts inducing their differentiation 总被引:6,自引:0,他引:6
Orlandini M Spreafico A Bardelli M Rocchigiani M Salameh A Nucciotti S Capperucci C Frediani B Oliviero S 《The Journal of biological chemistry》2006,281(26):17961-17967
Vascular endothelial growth factor (VEGF)-D is a member of the VEGF family of angiogenic growth factors that recognizes and activates the vascular endothelial growth factor receptor (VEGFR)-2 and VEGFR-3 on blood and/or lymphatic vessels. We show that in the long bones of newborn mice, VEGF-D and VEGFR-3 are expressed in the osteoblasts of the growing plate. The treatment of primary human osteoblasts with recombinant VEGF-D induces the expression of osteocalcin and the formation of mineralized nodules in a dose-dependent manner. A monoclonal neutralizing antibody, anti-VEGF-D, or silencing of VEGFR-3 by lentiviral-mediated expression of VEGFR-3 small hairpin RNA affects VEGF-D-dependent osteocalcin expression and nodule formation. Moreover, in primary human osteoblasts, VEGF-D expression is under the control of VEGF, and inhibition of VEGF-D/VEGFR-3 signaling, by monoclonal antibodies or VEGFR-3 silencing, affects VEGF-dependent osteoblast differentiation. These experiments establish that VEGF-D/VEGFR-3 signaling plays a critical role in osteoblast maturation and suggest that VEGF-D is a downstream effector of VEGF in osteogenesis. 相似文献
13.
An induced Ets repressor complex regulates growth arrest during terminal macrophage differentiation 总被引:8,自引:0,他引:8
Klappacher GW Lunyak VV Sykes DB Sawka-Verhelle D Sage J Brard G Ngo SD Gangadharan D Jacks T Kamps MP Rose DW Rosenfeld MG Glass CK 《Cell》2002,109(2):169-180
Defining the molecular mechanisms that coordinately regulate proliferation and differentiation is a central issue in development. Here, we describe a mechanism in which induction of the Ets repressor METS/PE1 links terminal differentiation to cell cycle arrest. Using macrophages as a model, we provide evidence that METS/PE1 blocks Ras-dependent proliferation without inhibiting Ras-dependent expression of cell type-specific genes by selectively replacing Ets activators on the promoters of cell cycle control genes. Antiproliferative effects of METS require its interaction with DP103, a DEAD box-containing protein that assembles a novel corepressor complex. Functional interactions between the METS/DP103 complex and E2F/ pRB family proteins are also necessary for inhibition of cellular proliferation, suggesting a combinatorial code that directs permanent cell cycle exit during terminal differentiation. 相似文献
14.
Growth control of epithelial cells differs substantially from other cell types. Activation of Fyn, a Src kinase family member, is required for normal keratinocyte differentiation. We report that increased Fyn activity by itself suppresses growth of keratinocytes, but not dermal fibroblasts, through downmodulation of EGF receptor (EGFR) signaling. Protein kinase C-eta has also been implicated in keratinocyte growth/differentiation control. We show that growth suppression of keratinocytes by PKC-eta depends mostly on Fyn. PKC-eta activity is both necessary and sufficient for Fyn activation, PKC-eta and Fyn are found in association, and recombinant PKC-eta directly activates Fyn. Thus, our findings reveal a direct cross talk between PKC-eta and Fyn, which presides over the decision between keratinocyte (epithelial) cell growth and differentiation. 相似文献
15.
16.
Proenkephalin is a nuclear protein responsive to growth arrest and differentiation signals 总被引:1,自引:0,他引:1
下载免费PDF全文

《The Journal of cell biology》1995,130(6):1251-1262
Neuropeptide precursors are traditionally viewed as molecules destined to be cleaved into bioactive peptides, which are then released from the cell to act on target cell surface receptors. In this report we demonstrate nuclear localization of the enkephalin precursor, proenkephalin, in rodent and human embryonic fibroblasts (Swiss 3T3 and MRC-5 cells) and in rodent myoblasts (C2C12 cells). Nuclear proenkephalin, detected by immunofluorescence with a panel of antiproenkephalin monoclonal antibodies, is distributed predominantly in three patterns. Selective abolition of these patterns with salt, nuclease, or methanol is associated with liberation of immunoprecipitable proenkephalin into the extraction supernatant. Proenkephalin antigenic domains, mapped using phage display libraries and synthetic peptides, are differentially revealed in the three distribution patterns. Selective epitope revelation may reflect different conformational forms of proenkephalin or its existence in complexes with other nuclear proteins, forms which therefore have different biochemical associations with the nuclear substructure. In fibroblast cell populations in transition to growth arrest, nuclear proenkephalin responds promptly to mitogen withdrawal and cell-cell contact by transient, virtually synchronous unmasking of multiple antigenic domains in a fine punctate distribution. A similar phenomenon is observed in myoblasts undergoing differentiation. The acknowledgment of growth arrest and differentiation signals by nuclear proenkephalin suggests its integration with transduction pathways mediating these signals. To begin to address the mechanism of nuclear targeting, we have transfected mutated and nonmutated proenkephalin into COS (African green monkey kidney) cells. Nonmutated proenkephalin is localized exclusively in the cytoplasm; however, proenkephalin mutated at the first ATG codon, or devoid of its signal peptide sequence, is targeted to the nucleus as well as to the cytoplasm. From this we speculate that nuclear proenkephalin arises from a primary translation product that lacks a signal peptide sequence because of initiation at a different site. 相似文献
17.
18.
The polyamines and their derivatives are essential for life in eukaryotic and most prokaryotic cells, but their exact role in preserving cell function is not clear. These polyamines provide endogenous cations and thus participate in regulation of the intracellular pH; in addition, polyamine derivatives modulate cell growth and differentiation. The naturally occurring monoacetyl derivatives can induce increased activity of ornithine decarboxylase, the first enzyme in polyamine synthesis, and thus produce positive feedback to their production. The diacetyl derivatives of putrescine and of the synthetic analogue, 1,6-diaminohexane, induce differentiation and inhibit growth in many types of cells in vitro. In addition, they inhibit the proliferative and secretory response of normal B lymphocytes to B-cell mitogens and reduce production of antibodies in vitro. They also inhibit the proliferation of chronic lymphocytic leukemia cells (a B-lymphocyte leukemia). The parent polyamines are post-translational modifiers of proteins, and hypusine, a derivative of spermidine, is a covalently bound constituent of the eukaryotic protein synthetic initiation factor, eIF-4D. Although these various actions do not at present fall into a coherent pattern, they clearly indicate that polyamines and their derivatives play an important part in modulating cell proliferation and differentiation. 相似文献
19.
Accumulating evidences suggest that Herba epimedii has the potential benefits against osteoporosis. However, previous studies were focused on the crude extract, total flavonoids (TF) and icariin (ICA), and the detailed molecular mechanisms of action and structure–activity relationship (SAR) remain unclear. Herein we aimed to systematically investigate the effects of Herba epimedii flavonoids (HEF) on the activity of osteoclasts, and explore the potential SAR. Both ICA and baohuoside-1 (BS) significantly inhibited the proliferation of RAW 264.7 cells (IC50 25 μM and 67 μM, respectively). Treatment of ICA resulted in G2/M arrest and apoptosis in RAW 264.7 cells as early as 12 h. Besides, HEF remarkably suppressed vitamin D-induced differentiation of osteoclasts in rabbit bone marrow cells and the bone resorption of rabbit mature osteoclasts in vitro. It is notable that the inhibitory effect of 100 μM ICA and BS on osteoclast formation is almost 90%; and the inhibition rate on bone resorption is 50% and 80%, respectively. Besides, RANKL-induced osteoclast formation from RAW 264.7 cells and the expression of TRAP, CA II, CTSK and MMP-9 was significantly reduced by the treatment of 25 μM HEF and 17β-estradiol (ES), and the inhibitory strength increases in the order TF < ES < ICA < BS, which was blocked by ICI182780 suggesting that the regulation of osteoclast activity might be ER dependent. Furthermore, the free hydroxyl group at C-7 of BS played an important role in the SAR for anti-osteoclast action. To conclude, HEF could regulate the formation and activity of osteoclasts by inhibiting the proliferation and differentiation, inducing apoptosis and cell cycle arrest and suppressing bone resorption of osteoclasts. Changes in osteoclast activity are probably mediated predominantly by interaction with nuclear estrogen receptors and via mitochondrial pathway. HEF, especially BS, has great potential for the prevention and treatment of osteoporosis. 相似文献