首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The essence of neuronal function is to generate outputs in response to synaptic potentials. Synaptic integration at postsynaptic sites determines neuronal outputs in the CNS. Using immunohistochemical and electrophysiological approaches, we first reveal that steroidogenic factor 1 (SF-1) green fluorescent protein (GFP)-positive neurons in the ventromedial nucleus of the hypothalamus express P2X4 subunits that are activated by exogenous ATP. Increased membrane expression of P2X4 channels by using a peptide competing with P2X4 intracellular endocytosis motif enhances neuronal excitability of SF-1 GFP-positive neurons. This increased excitability is inhibited by a P2X receptor antagonist. Furthermore, increased surface P2X4 receptor expression significantly decreases the frequency and the amplitude of GABAergic postsynaptic currents of SF-1 GFP-positive neurons. Co-immunopurification and pulldown assays reveal that P2X4 receptors complex with aminobutyric acid, type A (GABA(A)) receptors and demonstrate that two amino acids in the carboxyl tail of the P2X4 subunit are crucial for its physical association with GABA(A) receptors. Mutation of these two residues prevents the physical association, thereby blocking cross-inhibition between P2X4 and GABA(A) receptors. Moreover, disruption of the physical coupling using competitive peptides containing the identified motif abolishes current inhibition between P2X4 and GABA(A) receptors in recombinant system and P2X4 receptor-mediated GABAergic depression in SF-1 GFP-positive neurons. Our present work thus provides evidence for cross-talk between excitatory and inhibitory receptors that appears to be crucial in determining GABAergic synaptic strength at a central synapse.  相似文献   

2.
Rapid modulation of the surface number of certain ionotropic receptors is achieved by altering the relative rates of insertion and internalization. These receptors are internalized by a clathrin-mediated pathway; however, a motif that is necessary for endocytosis of ionotropic receptors has not yet been identified. Here, we identified a motif that is required for constitutive and agonist-regulated internalization of the ionotropic P2X(4) receptor. Three amino acids in the C terminus of P2X(4) (Tyr(378), Gly(381), and Leu(382)) compose a non-canonical tyrosine-based sorting signal of the form YXXGL. We found that P2X(4) protein was present in clathrin-coated vesicles isolated from rat brain and that a glutathione S-transferase fusion of the P2X(4) C terminus pulled down the adaptor protein-2 complex from brain extract. Mutation of either the tyrosine-binding pocket of the mu2 subunit of adaptor protein-2 or the YXXGL motif in the receptor C terminus caused a decrease in receptor internalization and a dramatic increase in the surface expression of P2X(4) receptors. The YXXGL motif represents a non-canonical tyrosine-based sorting signal that is necessary for efficient endocytosis of the P2X(4) receptor. Similar motifs are present in other receptors and may be important for the control of their functional expression.  相似文献   

3.
Functional cross-talk between structurally unrelated P2X ATP receptors and members of the 'cys-loop' receptor-channel superfamily represents a recently-discovered mechanism for rapid modulation of information processing. The extent and the mechanism of the inhibitory cross-talks between these two classes of ionotropic receptors remain poorly understood, however. Both ionic and molecular coupling were proposed to explain cross-inhibition between P2X subtypes and GABA(A) receptors, suggesting a P2X subunit-dependent mechanism. We show here that cross-inhibition between neuronal P2X(3) or P2X(2+3) and GABA(A) receptors does not depend on chloride and calcium ions. We identified an intracellular QST(386-388) motif in P2X(3) subunits which is required for the functional coupling with GABA(A) receptors. Moreover the cross-inhibition between native P2X(3) and GABA receptors in cultured rat dorsal root ganglia (DRG) neurons is abolished by infusion of a peptide containing the QST motif as well as by viral expression of the main intracellular loop of GABA(A)beta3 subunits. We provide evidence that P2X(3) and GABA(A) receptors are colocalized in the soma and central processes of nociceptive DRG neurons, suggesting that specific intracellular P2X(3)-GABA(A) subunit interactions underlie a pre-synaptic cross-talk that might contribute to the regulation of sensory synaptic transmission in the spinal cord.  相似文献   

4.
A trafficking checkpoint controls GABA(B) receptor heterodimerization   总被引:19,自引:0,他引:19  
Margeta-Mitrovic M  Jan YN  Jan LY 《Neuron》2000,27(1):97-106
Surface expression of GABA(B) receptors requires heterodimerization of GB1 and GB2 subunits, but little is known about mechanisms that ensure efficient heterodimer assembly. We found that expression of the GB1 subunit on the cell surface is prevented through a C-terminal retention motif RXR(R); this sequence is reminiscent of the ER retention/retrieval motif RKR identified in subunits of the ATP-sensitive K+ channel. Interaction of GB1 and GB2 through their C-terminal coiled-coil alpha helices masks the retention signal in GB1, allowing the plasma membrane expression of the assembled complexes. Because individual GABA(B) receptor subunits and improperly assembled receptor complexes are not functional even if expressed on the cell surface, we conclude that a trafficking checkpoint ensures efficient assembly of functional GABA(B) receptors.  相似文献   

5.
Activation of the P2X(7) receptor by extracellular nucleotides modulates multiple immune functions, including inflammatory mediator production, membrane fusion events, and apoptosis. Previous studies have revealed that the C terminus of this multimeric cation channel possesses a lipid-interaction motif that has been proposed to regulate receptor function. This domain is homologous to the LPS binding region of the LPS binding protein, and we demonstrated that two basic residues (Arg(578), Lys(579)) within this motif are essential for LPS binding to P2X(7) in vitro. Because P2X(7) can influence LPS action, and because lipid interaction motifs modulate the trafficking of other ion channel-linked receptors, we hypothesized that this motif of P2X(7) is critical for receptor function and trafficking. In these studies we mutated Arg(578) and Lys(579) of P2X(7), and the expression profile, channel activity, and pore formation of the mutant were characterized in transfected human embryonic kidney 293 cells. In contrast with the wild-type receptor, the P2X(7)-R578E/K579E mutant fails to demonstrate surface immunoreactivity despite normal levels of total protein expression. This effect on the mutant receptor is unlikely to result from widespread defects in protein folding, because surface localization, determined using conformation-specific Abs, can be restored by growing the cells at 25 degrees C, conditions that slow receptor recycling. Despite surface expression at reduced temperatures, at 25 degrees C the P2X(7)-R578E/K579E mutant still exhibits greatly reduced sodium, potassium, and calcium channel activity when compared with the wild-type receptor, and cannot induce pore formation. These data suggest that the lipid interaction motif of the P2X(7) C terminus controls receptor trafficking and modulates channel activity.  相似文献   

6.
P2X receptors are nonselective cation channels gated by extracellular ATP. Recombinant mammalian P2X subunits assemble in homomeric ionotropic ATP receptors that differ by their agonist sensitivity and desensitization rate in heterologous expression systems. Using site-directed mutagenesis and voltage clamp recording in Xenopus oocytes, we identified the highly conserved protein kinase C site TX(K/R) located in the intracellular N terminus of P2X subunits as a critical determinant of kinetics in slowly desensitizing (time constant, >1 min) rat P2X(2) receptors. Mutant receptors P2X(2)T18A, T18N, and K20T devoid of this consensus site exhibited quickly desensitizing properties (time constant, <1 s). In contrast with wild-type receptors, mutant P2X(2) receptors with truncated C terminus exhibited variable cell-specific kinetics with quickly desensitizing currents converted to slowly desensitizing currents by phorbol ester-mediated stimulation of protein kinase C. Phosphorylation of Thr(18) was demonstrated directly by immunodetection using specific monoclonal antibodies directed against the phosphothreonine-proline motif. Our data indicate that both phosphorylation of the conserved threonine residue in the N-terminal domain by protein kinase C and interaction between the two cytoplasmic domains of P2X(2) subunits are necessary for the full expression of slowly desensitizing ATP-gated channels.  相似文献   

7.
Of the three major classes of ligand-gated ion channels, nicotinic receptors and ionotropic glutamate receptors are known to be organized as pentamers and tetramers, respectively. The architecture of the third class, P2X receptors, is under debate, although evidence for a trimeric assembly is accumulating. Here we provide biochemical evidence that in addition to the rapidly desensitising P2X1 and P2X3 receptors, the slowly desensitising subtypes P2X2, P2X4, and P2X5 are trimers of identical subunits. Similar (heteromeric) P2X subunits also formed trimers, as shown for co-expressed P2X1 and P2X2 subunits, which assembled efficiently to a P2X1+2 receptor that was exported to the plasma membrane. In contrast, P2X6 subunits, which are incapable of forming functional homomeric channels in Xenopus oocytes, were retained in the ER as apparent tetramers and high molecular mass aggregates. Altogether, we conclude from these data that a trimeric architecture is the structural hallmark of functional homomeric and heteromeric P2X receptors.  相似文献   

8.
P2X4 receptors are adenosine triphosphate (ATP)-gated cation channels present on the plasma membrane (PM) and also within intracellular compartments such as vesicles, vacuoles, lamellar bodies (LBs), and lysosomes. P2X4 receptors in microglia are up-regulated in epilepsy and in neuropathic pain; that is to say, their total and/or PM expression levels increase. However, the mechanisms underlying up-regulation of microglial P2X4 receptors remain unclear, in part because it has not been possible to image P2X4 receptor distribution within, or trafficking between, cellular compartments. Here, we report the generation of pH-sensitive fluorescently tagged P2X4 receptors that permit evaluations of cell surface and total receptor pools. Capitalizing on information gained from zebrafish P2X4.1 crystal structures, we designed a series of mouse P2X4 constructs in which a pH-sensitive green fluorescent protein, superecliptic pHluorin (pHluorin), was inserted into nonconserved regions located within flexible loops of the P2X4 receptor extracellular domain. One of these constructs, in which pHluorin was inserted after lysine 122 (P2X4-pHluorin123), functioned like wild-type P2X4 in terms of its peak ATP-evoked responses, macroscopic kinetics, calcium flux, current–voltage relationship, and sensitivity to ATP. P2X4-pHluorin123 also showed pH-dependent fluorescence changes, and was robustly expressed on the membrane and within intracellular compartments. P2X4-pHluorin123 identified cell surface and intracellular fractions of receptors in HEK-293 cells, hippocampal neurons, C8-B4 microglia, and alveolar type II (ATII) cells. Furthermore, it showed that the subcellular fractions of P2X4-pHluorin123 receptors were cell and compartment specific, for example, being larger in hippocampal neuron somata than in C8-B4 cell somata, and larger in C8-B4 microglial processes than in their somata. In ATII cells, P2X4-pHluorin123 showed that P2X4 receptors were secreted onto the PM when LBs undergo exocytosis. Finally, the use of P2X4-pHluorin123 showed that the modulator ivermectin did not increase the PM fraction of P2X4 receptors and acted allosterically to potentiate P2X4 receptor responses. Collectively, our data suggest that P2X4-pHluorin123 represents a useful optical probe to quantitatively explore P2X4 receptor distribution, trafficking, and up-regulation.  相似文献   

9.
The G protein-coupled V(2) vasopressin receptor is crucially involved in water reabsorption in the renal collecting duct. Mutations in the human V(2) vasopressin receptor gene cause nephrogenic diabetes insipidus. Many of the disease-causing mutants are retained intracellularly by the quality control system of the early secretory pathway. It was previously thought that quality control system is restricted to the endoplasmic reticulum (ER). Here, we have examined the retention mechanisms of eight V(2) vasopressin receptor mutants. We show that mutants L62P, DeltaL62-R64 and S167L are trapped exclusively in the ER. In contrast, mutants R143P, Y205C, InsQ292, V226E and R337X reach the ER/Golgi intermediate compartment (ERGIC) and are rerouted to the ER. The ability of the mutant receptors to reach the ERGIC is independent of their expression levels. Instead, it is determined by their folding state. Mutant receptors in the ERGIC may be sorted into retrograde transport vesicles by an interaction of an RXR motif in the third intracellular loop with the coatomer complex I. Our data show that disease-causing mutants of a particular membrane protein may be retained in different compartments of the early secretory pathway and that the folding states of the proteins determine their retention mechanism.  相似文献   

10.
11.
Recombinant FlagHis6 tagged Human P2X1 receptors expressed in HEK293 cells were purified, digested with trypsin and analysed by mass spectroscopy (96% coverage following de‐glycosylation and reduction). The receptor was basally phosphorylated at residues S387, S388 and T389 in the carboxyl terminus, a triple alanine mutant of these residues had a modest ~ 25% increase in current amplitude and recovery from desensitization. Chemical modification showed that intracellular lysine residues close to the transmembrane domains and the membrane stabilization motif are accessible to the aqueous environment. The membrane‐impermeant cross‐linking reagent 3,3′‐Dithiobis (sulfosuccinimidylpropionate) (DTSSP) reduced agonist binding and P2X1 receptor currents by > 90%, and modified lysine residues were identified by mass spectroscopy. Mutation to remove reactive lysine residues around the ATP‐binding pocket had no effect on inhibtion of agonist evoked currents following DTSSP. However, agonist evoked currents were ~ 10‐fold higher than for wild type following DTSSP treatment for mutants K199R, K221R and K199R‐K221R. These mutations remove reactive residues distant from the agonist binding pocket that are close enough to cross‐link adjacent subunits. These results suggest that conformational change in the P2X1 receptor is required for co‐ordination of ATP action.  相似文献   

12.
Seven P2X purinergic receptor subunits have been identified: P2X1–P2X7. The overlapping expression of P2X2, P2X4 and P2X6 subunits has been shown in different cell types, and functional analysis of P2X receptors in Leydig cells suggests that the three subunits might interact. Here, His6-tagged P2X2, HA-tagged P2X4 and FLAG-tagged P2X6 subunits were co-expressed in tsA 201 cells. After sequential co-immunoprecipitation using anti-HA and anti-FLAG beads, all three subunits were present, demonstrating their interaction. Atomic force microscopy (AFM) imaging revealed receptors that were specifically decorated by both an anti-His6 antibody and an anti-HA Fab fragment, indicating the presence of a P2X2/4/6 heterotrimer. To our knowledge, this is the first report of a P2X receptor containing three different subunits.  相似文献   

13.
Gamma-aminobutyric-acid (GABA) and ATP ionotropic receptors represent two structurally and functionally different classes of neurotransmitter-gated channels involved in fast synaptic transmission. We demonstrate here that, when the inhibitory rho1/GABA and the excitatory P2X2 receptor channels are co-expressed in Xenopus oocytes, activation of one channel reduces the currents mediated by the other one. This reciprocal inhibitory cross-talk is a receptor-mediated phenomenon independent of agonist cross-modulation, membrane potential, direction of ionic flux, or channel densities. Functional interaction is disrupted when the cytoplasmic C-terminal domain of P2X2 is deleted or in competition experiments with minigenes coding for the C-terminal domain of P2X2 or the main intracellular loop of rho1 subunits. We also show a physical interaction between P2X2 and rho1 receptors expressed in oocytes and the co-clustering of these receptors in transfected hippocampal neurons. Co-expression with P2X2 induces retargeting and recruitment of mainly intracellular rho1/GABA receptors to surface clusters. Therefore, molecular and functional cross-talk between inhibitory and excitatory ligand-gated channels may regulate synaptic strength both by activity-dependent current occlusion and synaptic receptors co-trafficking.  相似文献   

14.
On nociceptive neurons, one important mechanism to generate pain signals is the activation of P2X3 receptors, which are membrane proteins gated by extracellular ATP. In this work, we have studied the recovery of recombinant P2X3 receptor expression in human embryonic kidney (HEK) cells. Our data demonstrated that HEK cells were not permissive for stable P2X3 expression, since the significant time-dependent cell loss. In vivo treatment with P2X3 receptor antagonist limited the effect. The expression of a single P2X3 point mutant Y393A, also largely accelerated cell death. We suggest the requirements of a permissive intracellular molecular machinery for appropriate receptor expression. The present report suggests that despite HEK cells are often used as recombinant expression system for the study a variety of receptors function, they represent a limiting permissive environment for P2X3 receptors.  相似文献   

15.
P2X1 receptors are ATP-gated ion channels expressed by smooth muscle and blood cells. Carboxyl-terminally His-FLAG-tagged human P2X1 receptors were stably expressed in HEK293 cells and co-purified with cytoskeletal proteins including actin. Disruption of the actin cytoskeleton with cytochalasin D inhibited P2X1 receptor currents with no effect on the time course of the response or surface expression of the receptor. Stabilization of the cytoskeleton with jasplakinolide had no effect on P2X1 receptor currents but decreased receptor mobility. P2X2 receptor currents were unaffected by cytochalasin, and P2X1/2 receptor chimeras were used to identify the molecular basis of actin sensitivity. These studies showed that the intracellular amino terminus accounts for the inhibitory effects of cytoskeletal disruption similar to that shown for lipid raft/cholesterol sensitivity. Stabilization of the cytoskeleton with jasplakinolide abolished the inhibitory effects of cholesterol depletion on P2X1 receptor currents, suggesting that lipid rafts may regulate the receptor through stabilization of the cytoskeleton. These studies show that the cytoskeleton plays an important role in P2X1 receptor regulation.  相似文献   

16.
Fast synaptic transmission involves the operation of ionotropic receptors, which are often composed of at least two types of subunit. We have developed a method, based on atomic force microscopy imaging to determine the stoichiometry and subunit arrangement within ionotropic receptors. We showed recently that the P2X(2) receptor for ATP is expressed as a trimer but that the P2X(6) subunit is unable to oligomerize. In this study we addressed the subunit stoichiometry of heteromers containing both P2X(2) and P2X(6) subunits. We transfected tsA 201 cells with both P2X(2) and P2X(6) subunits, bearing different epitope tags. We manipulated the transfection conditions so that either P2X(2) or P2X(6) was the predominant subunit expressed. By atomic force microscopy imaging of isolated receptors decorated with antiepitope antibodies, we demonstrate that when expression of the P2X(2) subunit predominates, the receptors contain primarily 2 x P2X(2) subunits and 1 x P2X(6) subunit. In contrast, when the P2X(6) subunit predominates, the subunit stoichiometry of the receptors is reversed. Our results show that the composition of P2X receptor heteromers is plastic and dependent on the relative subunit expression levels. We suggest that this property of receptor assembly might introduce an additional layer of subtlety into P2X receptor signaling.  相似文献   

17.
Kainate receptors (KARs) are heteromeric ionotropic glutamate receptors that play a variety of roles in the regulation of synaptic network activity. The function of glutamate receptors (GluRs) is highly dependent on their surface density in specific neuronal domains. Alternative splicing is known to regulate surface expression of GluR5 and GluR6 subunits. The KAR subunit GluR7 exists under different splice variant isoforms in the C-terminal domain (GluR7a and GluR7b). Here we have studied the trafficking of GluR7 splice variants in cultured hippocampal neurons from wild-type and KAR mutant mice. We have found that alternative splicing regulates surface expression of GluR7-containing KARs. GluR7a and GluR7b differentially traffic from the ER to the plasma membrane. GluR7a is highly expressed at the plasma membrane, and its trafficking is dependent on a stretch of positively charged amino acids also found in GluR6a. In contrast, GluR7b is detected at the plasma membrane at a low level and retained mostly in the endoplasmic reticulum (ER). The RXR motif of GluR7b does not act as an ER retention motif, at variance with other receptors and ion channels, but might be involved during the assembly process. Like GluR6a, GluR7a promotes surface expression of ER-retained subunit splice variants when assembled in heteromeric KARs. However, our results also suggest that this positive regulation of KAR trafficking is limited by the ability of different combinations of subunits to form heteromeric receptor assemblies. These data further define the complex rules that govern membrane delivery and subcellular distribution of KARs.  相似文献   

18.
P2X4 and P2X7 are the predominant P2X receptor subtypes expressed in immune cells. Having previously shown a structural and functional interaction between the two recombinant receptors, our aims here were to identify the preferred assembly pathway of the endogenous receptors in macrophage-like cells and to investigate the trafficking of these receptors between the plasma membrane and intracellular sites. We exploited the difference in size between the two subunits, and we used a combination of cross-linkers and blue native-PAGE analysis to investigate the subunit composition of complexes present in primary cultures of rat microglia and macrophages from wild type and P2X7–/– mice. Our results indicate that the preferred assembly pathway for both receptors is the formation of homotrimers. Homotrimers of P2X7 were able to co-immunoprecipitate with P2X4, suggesting that an interaction occurs between rather than within receptor complexes. In both macrophages and microglia, P2X7 receptors were predominantly at the cell surface, whereas P2X4 receptors were predominantly intracellular. There were clear cell type-dependent differences in the extent to which P2X4 receptors trafficked to and from the surface; trafficking was much more dynamic in microglia than in the macrophages, and further activation of cultured microglia with relatively short (3-h) incubations with lipopolysaccharide caused an ∼4-fold increase in the fraction of receptors at the surface with only a 1.2-fold increase in total expression. The redistribution of intracellular receptors is thus an efficient means of enhancing the functional expression of P2X4 at the plasma membrane of microglia.Acting via P2X receptors, ATP has several effects on immune cells, including triggering the release of pro-inflammatory cytokines, programmed cell death, and mycobacterial killing (1, 2). Until recently, attention has focused on the P2X7 receptor as the relevant sensor at the cell surface, and there is evidence for its involvement in neuropathic and inflammatory pain (3), arthritis (4), and the control of mycobacterial infection (5). P2X7 has a low affinity for ATP compared with the other predominant subtype expressed by immune cells, P2X4. The role of P2X4 receptors is less well understood, although in microglia they were shown to be up-regulated following peripheral nerve injury and to play an important role in the development of neuropathic pain (6). Regulation of the plasma membrane expression of these two receptors is not understood. Also, despite the considerable interest in both these receptor subtypes as potential targets in development of novel pain therapies, the subunit composition of the native receptors has not been determined.P2X receptor subunits associate to form trimeric complexes around a central conduction pore (7, 8). With the exception of P2X6, they form functional homomeric receptors, and several subtypes also form functional heterotrimers (9). There is also evidence that P2X receptors form larger signaling complexes, interacting with other neighboring P2X receptors and also with ion channels that belong to different structural classes, including members of the Cys loop receptor family (10) and the gap junction family (11). Higher order structures, with molecular mass corresponding to hexamers and nonamers, have been identified for heterologously expressed P2X2 and P2X4 receptors, suggesting that two or three receptors can form a stable association (12). Consistent with this idea, P2X receptor channels within a patch of membrane have been shown to open in a non-independent manner and to display positive cooperativity (13, 14).P2X4 and P2X7 are frequently co-expressed, not only in immune cells but also in epithelia and endothelia (15). The P2X7 subtype differs from other members of the family in that it has a very long cytoplasmic C-terminal tail, a low affinity toward ATP, is preferentially activated by BzATP, and couples to the opening of a pore permeable to large molecules up to 900 Da (2). P2X4 receptors have considerably higher affinity for ATP; they are up-regulated by the allosteric modulator ivermectin and are sensitive to the antagonist TNP-ATP3 at micromolar concentrations. It has been widely assumed that P2X7 does not form heteromeric assemblies with other members of the P2X family; however, recent evidence has indicated a structural and functional interaction between P2X4 and P2X7 receptors. First, P2X receptor currents recorded from airway-ciliated cells were reported to show a combination of P2X4-like and P2X7-like properties (16). Second, we showed that P2X4 and P2X7 could be co-immunoprecipitated both from mouse bone marrow-derived macrophages (BMDMs) and also when heterologously co-expressed (17). In addition, we used two nonfunctional point mutants of P2X4 to demonstrate a functional interaction between the two receptors; one mutant exerted a dominant negative effect on P2X7 receptor currents, whereas another conferred P2X4-like properties on the whole cell currents, namely sensitivity to ivermectin and TNP-ATP. Our conclusion was that P2X4 and P2X7 form a heteromeric association but that it remained to be established whether or not they assemble as heterotrimers around the same conduction pore.In this study, we set out first to address the question of the preferred assembly pathway of native P2X4 and P2X7 receptors in immune cells, and second to compare how these receptors traffic within immune cells. We took advantage of the size difference between P2X4 and P2X7 subunits to analyze the composition of the predominant dimeric and trimeric forms. We found that in rodent macrophages and microglia, P2X4 and P2X7 receptors preferentially assemble as homotrimers. Comparison of the trafficking of these receptors indicated cell type-dependent differences in the extent to which the predominantly intracellular P2X4 receptor traffics to and from the surface.  相似文献   

19.
The aim of the present experiments was to clarify the subunit stoichiometry of P2X2/3 and P2X2/6 receptors, where the same subunit (P2X2) forms a receptor with two different partners (P2X3 or P2X6). For this purpose, four non-functional Ala mutants of the P2X2, P2X3, and P2X6 subunits were generated by replacing single, homologous amino acids particularly important for agonist binding. Co-expression of these mutants in HEK293 cells to yield the P2X2 WT/P2X3 mutant or P2X2 mutant/P2X3 WT receptors resulted in a selective blockade of agonist responses in the former combination only. In contrast, of the P2X2 WT/P2X6 mutant and P2X2 mutant/P2X6 WT receptors, only the latter combination failed to respond to agonists. The effects of α,β-methylene-ATP and 2-methylthio-ATP were determined by measuring transmembrane currents by the patch clamp technique and intracellular Ca(2+) transients by the Ca(2+)-imaging method. Protein labeling, purification, and PAGE confirmed the assembly and surface trafficking of the investigated WT and WT/mutant combinations in Xenopus laevis oocytes. In conclusion, both electrophysiological and biochemical investigations uniformly indicate that one subunit of P2X2 and two subunits of P2X3 form P2X2/3 heteromeric receptors, whereas two subunits of P2X2 and one subunit of P2X6 constitute P2X2/6 receptors. Further, it was shown that already two binding sites of the three possible ones are sufficient to allow these receptors to react with their agonists.  相似文献   

20.
P2X(7) receptors are ATP-gated cation channels composed of three identical subunits, each having intracellular amino and carboxyl termini and two transmembrane segments connected by a large ectodomain. Within the P2X family, P2X(7) subunits are unique in possessing an extended carboxyl tail. We expressed the human P2X(7) subunit as two complementary fragments, a carboxyl tail-truncated receptor channel core (residues 1-436 or 1-505) and a tail extension (residues 434-595) in Xenopus laevis oocytes. P2X(7) channel core subunits efficiently assembled as homotrimers that appeared abundantly at the oocyte surface, yet produced only approximately 5% of the full-length P2X(7) receptor current. Co-assembly of channel core subunits with full-length P2X(7) subunits inhibited channel current, indicating that the lack of a single carboxyl tail domain is dominant-negative for P2X(7) receptor activity. Co-expression of the tail extension as a discrete protein increased ATP-gated current amplitudes of P2X(7) channel cores 10-20-fold, fully reconstituting the wild type electrophysiological phenotype of the P2X(7) receptor. Chemical cross-linking revealed that the discrete tail extension bound with unity stoichiometry to the carboxyl tail of the P2X(7) channel core. We conclude that a non-covalent association of crucial functional importance exists between the carboxyl tail of the channel core and the tail extension. Using a slightly shorter P2X(7) subunit core and subfragments of the tail extension, this association could be narrowed down to include residues 409-436 and 434-494 of the split receptor. Together, these results identify the tail extension as a regulatory gating module, potentially making P2X(7) channel gating sensitive to intracellular regulation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号