首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Erythropoietic protoporphyria (EPP), an inborn error of heme metabolism, causes in the majority of the patients only a symptom of photosensitivity. However, around 2% of the EPP sufferers develop liver complication in the form of liver cirrhosis and progressive liver failure. Mutations in the human ferrochelatase (FECH) gene causing EPP are highly heterogeneous and mostly family-specific. Actually, 62 FECH mutations have been published, 48 of them are "null allele" mutations inducing the formation of a truncated protein. The remaining 14 are missense mutations. In contrast to the null allele mutations, the latter lead to substitution of a single amino acid residue in the protein molecule and generate an enzyme that, although functionally impaired, is in its full length. In order to study the association between "null allele" mutation and liver complication, we combined our data with those in the literature. A total of 112 EPP patients were counted among 93 EPP families with a known FECH mutation. All 18 EPP patients who had severe liver complication carried a "null allele" mutation. In contrast, none of the 20 patients who carried a missense mutation had developed liver complication till the time of study (Fisher's exact test, p<0.05). High protoporphyrin blood concentration are considered to be a sign of an increased risk of liver disease. No correlation of protoporphyrin blood level with the type of mutation, was found, if patients with overt liver disease were excluded from the sample. Furthermore, no significant association of the liver complication with the location of the mutation within the FECH gene was found (Fisher exact test p = 0.46). These available data indicate a significant genotype-phenotype correlation between "null allele" mutation and protoporphyrin related liver disease in EPP. Although the risk for a EPP patient with a missense mutation to develop liver disease cannot be totally eliminated based on these data, it is comparably low.  相似文献   

2.
Erythropoietic protoporphyria (EPP; MIM 177000) is an inherited disorder caused by partial deficiency of ferrochelatase (FECH), the last enzyme in the heme biosynthetic pathway. In EPP patients, the FECH deficiency causes accumulation of free protoporphyrin in the erythron, associated with a painful skin photosensitivity. In rare cases, the massive accumulation of protoporphyrin in hepatocytes may lead to a rapidly progressive liver failure. The mode of inheritance in EPP is complex and can be either autosomal dominant with low clinical penetrance, as it is in most cases, or autosomal recessive. To acquire an in-depth knowledge of the genetic basis of EPP, we conducted a systematic mutation analysis of the FECH gene, following a procedure that combines the exon-by-exon denaturing-gradient-gel-electrophoresis screening of the FECH genomic DNA and direct sequencing. Twenty different mutations, 15 of which are newly described here, have been characterized in 26 of 29 EPP patients of Swiss and French origin. All the EPP patients, including those with liver complications, were heterozygous for the mutations identified in the FECH gene. The deleterious effect of all missense mutations has been assessed by bacterial expression of the respective FECH cDNAs generated by site-directed mutagenesis. Mutations leading to a null allele were a common feature among three EPP pedigrees with liver complications. Our systematic molecular study has resulted in a significant enlargement of the mutation repertoire in the FECH gene and has shed new light on the hereditary behavior of EPP.  相似文献   

3.
Erythropoietic protoporphyria (EPP) is an inherited disorder of the haem metabolic pathway characterised by accumulation of protoporphyrin in blood, erythrocytes and tissues, and cutaneous manifestations of photosensitivity. EPP has been reported worldwide, with prevalence between 1:75,000 and 1:200,000. It usually manifests in early infancy upon the first sun exposures. EPP is characterised by cutaneous manifestations of acute painful photosensitivity with erythema and oedema, sometimes with petechiae, together with stinging and burning sensations upon exposure to sunlight, without blisters. These episodes have a variable severity depending on the exposure duration and may result in chronic permanent lesions on exposed skin. As protoporphyrin is a lipophilic molecule that is excreted by the liver, EPP patients are at risk of cholelithiasis with obstructive episodes, and chronic liver disease that might evolve to rapid acute liver failure. In most patients, EPP results from a partial deficiency of the last enzyme of the haem biosynthetic pathway, ferrochelatase, EC 4.99.1.1/FECH (encoded by the FECH gene). EPP appears to be inherited as an autosomal dominant disease, the clinical expression of which is modulated by the presence of the hypomorphic FECH IVS3-48C allele trans, but recessive inheritance with two mutated FECH alleles has also been described. In about 2% of patients, overt disease was recently shown to be caused by gain-of-function mutations in the erythroid-specific aminolevulinic acid synthase 2 (ALAS2/ALAS, EC 2.3.1.27) gene and named X-linked dominant protoporphyria. Diagnosis is established by finding increased levels of protoporphyrin in plasma and red blood cells, and detection of a plasma fluorescence peak at 634 nm. Investigations for hepatic involvement, ferrochelatase activity level, genetic analysis (FECH mutations, presence of the hypomorphic FECH IVS3-48C allele trans and ALAS2 mutations) and family studies are advisable. Differential diagnosis includes phototoxic drug reactions, hydroa vacciniforme, solar urticaria, contact dermatitis, angio-oedema and, in some cases, other types of porphyria. Management includes avoidance of exposure to light, reduction of protoporphyrin levels and prevention of progression of possible liver disease to liver failure. As the major risk in EPP patients is liver disease, a regular follow-up of hepatic involvement is essential. Sequential hepatic and bone marrow transplantation should be considered as a suitable treatment for most severe cases of EPP with hepatic involvement. EPP is a lifelong disorder whose prognosis depends on the evolution of the hepatic disease. However, photosensitivity may have a significant impact on quality of life of EPP patients.  相似文献   

4.
Erythropoietic protoporphyria (EPP) and X-linked protoporphyria (XLP) are inborn errors of heme biosynthesis with the same phenotype but resulting from autosomal recessive loss-of-function mutations in the ferrochelatase (FECH) gene and gain-of-function mutations in the X-linked erythroid-specific 5-aminolevulinate synthase (ALAS2) gene, respectively. The EPP phenotype is characterized by acute, painful, cutaneous photosensitivity and elevated erythrocyte protoporphyrin levels. We report the FECH and ALAS2 mutations in 155 unrelated North American patients with the EPP phenotype. FECH sequencing and dosage analyses identified 140 patients with EPP: 134 with one loss-of-function allele and the common IVS3-48T>C low expression allele, three with two loss-of-function mutations and three with one loss-of-function mutation and two low expression alleles. There were 48 previously reported and 23 novel FECH mutations. The remaining 15 probands had ALAS2 gain-of-function mutations causing XLP: 13 with the previously reported deletion, c.1706_1709delAGTG, and two with novel mutations, c.1734delG and c.1642C>T(p.Q548X). Notably, XLP represented ~10% of EPP phenotype patients in North America, two to five times more than in Western Europe. XLP males had twofold higher erythrocyte protoporphyrin levels than EPP patients, predisposing to more severe photosensitivity and liver disease. Identification of XLP patients permits accurate diagnosis and counseling of at-risk relatives and asymptomatic heterozygotes.  相似文献   

5.
6.
7.
Erythropoietic protoporphyria (EPP) is an inherited disorder of heme biosynthesis caused by partial ferrochelatase deficiency, resulting in protoporphyrin overproduction which is responsible for painful skin photosensitivity. Chronic liver disease is the most severe complication of EPP, requiring liver transplantation in some patients. Data from a mouse model suggest that cytotoxic bile formation with high concentrations of bile salts and protoporphyrin may cause biliary fibrosis by damaging bile duct epithelium. In humans, cholestasis is a result of intracellular and canalicular precipitation of protoporphyrin. To limit liver damage two strategies may be considered: the first is to reduce protoporphyrin production and the second is to enhance protoporphyrin excretion. Bile salts are known to increase protoporphyrin excretion via the bile, while heme arginate is used to decrease the production of porphyrins in acute attacks of hepatic porphyrias. The Griseofulvin-induced protoporphyria mouse model has been used to study several aspects of human protoporphyria including the effects of bile salts. However, the best EPP animal model is an ethylnitrosourea-induced point mutation with fully recessive transmission, named ferrochelatase deficiency (Fech(m1Pas)). Here we investigate the effect of early ursodesoxycholic acid (UDCA) administration and heme-arginate injections on the ferrochelatase deficient EPP mouse model. In this model UDCA administration and heme-arginate injections do not improve the protoporphyric condition of Fech(m1Pas)/Fech(m1Pas) mice.  相似文献   

8.
The porphyrias are disorders associated with inherited or acquired enzyme deficiencies in the heme biosynthetic pathway. The differential diagnosis is often difficult since the phenotype is very similar in some forms and the biochemical tests are not commonly available. Here we provide an update on the molecular diagnosis of porphyrias in Italy and a flow-chart to facilitate the identification of mutations in heme biosynthetic genes. The molecular analysis has allowed us to identify the molecular defect underlying the disease in 66 probands with different porphyrias [acute intermittent porphyria (AIP), variegate porphyria (VP), porphyria cutanea tarda (PCT), erythropoietic protoporphyria (EPP)]. No Italian patients with defects in coproporphyrinogen oxidise (CPOX) gene, responsible for hereditary coproporphyria (HCP), have been detected. The molecular characterization has been extended to 115 relatives with the identification of 55 asymptomatic mutation carriers and 60 normal subjects. We have so far identified 50 different mutations among 4 genes associated with the most common porphyrias showing a high molecular heterogeneity: 22 in the hydroxymethylbilane synthase (HMBS) gene (AIP), 7 in the protoporphyrinogen oxidase (PPOX) gene (VP), 16 in the uroporphyrinogen decarboxylase (UROD) gene (PCT) and 5 in the ferrochelatase (FECH) gene (EPP). Among the 50 molecular defects, 29 seem to be restricted to the Italian population.  相似文献   

9.
Erythropoietic protoporphyria (EPP), attributable to deficiency of ferrochelatase activity (FECH), is characterised mainly by cutaneous photosensitivity. To define the molecular defect in two EPP-affected siblings and their parents in a Swiss family, ferrochelatase cDNA was amplified by the polymerase chain reaction (PCR) and subjected to sequence analysis. A 5-bp deletion (T580G584) was identified on one allele of the ferrochelatase gene in both patients and their mother. Screening of the mutation among family members by RsaI digestion of PCR-amplified genomic DNA revealed autosomal dominant inheritance associated with abnormal protoporphyrin concentration and enzyme activity. We also isolated ferrochelatase cDNAs containing a 18-bp insertion (part of the intron 2 sequence) between exons 2 and 3; this corresponded to six extra amino acids (YESNIR) inserted between Arg-65 and Lys-66 of the known ferrochelatase. This isoform was identified initially in mRNAs derived from both alleles of the ferrochelatase gene in one patient. Its existence was confirmed in six additional EPP patients, in five out of seven controls, and in four different cell lines (fibroblast, muscle, hepatoma and myelogenous leukaemia). This isoform, roughly 20% of the total ferrochelatase mRNA, was generated through splicing at a second donor site in intron 2 and its presence was not linked to EPP.  相似文献   

10.
We studied 29 families with X-linked dominant CMT (CMTX1) neuropathy. Twenty-five families showed mutations in the coding region of the connexin32 (Cx32) gene. The mutations included five nonsense mutations, 17 missense mutations, two medium size deletions and one insertion. Most missense mutations showed a mild clinical phenotype and slowing of motor nerve conduction velocities. All five nonsense mutations, the larger deletion and the insertion showed severe clinical phenotype. Four CMTX1 families with mild clinical phenotype showed no point mutations of the Cx32 gene coding region. Two mutations of the non-coding region were identified. The first mutation was located in the nerve specific Cx32 promoter, the second mutation was located in the 5' untranslated region of the mRNA.  相似文献   

11.
Protoporphyria is a genetic disorder in which liver damage is caused by the toxic effect of protoporphyrin accumulation in the liver. In this study protoporphyrin was measured in the resected livers of 7 patients who had liver transplantation and an additional patient from whom liver tissue was obtained post mortem. Comparison of liver, erythrocyte and serum protoporphyrin levels demonstrated a marked gradient between these compartments: erythrocyte, 5781 +/- 655 micrograms/dl; serum, 384 +/- 102 micrograms/dl; liver 377,238 +/- 55,568 micrograms/100 gm wet weight, (mean +/- SE). Protoporphyrin levels in bile of 3 patients were 55,559, and 1,153 micrograms/dl, indicating a gradient between liver and bile as well. Examination of the livers by polarization microscopy and electron microscopy demonstrated protoporphyrin pigment crystals. In one patient who had recurrent liver disease after transplantation, the protoporphyrin concentration in the graft at the time of death was similar to that in the resected liver. These data indicate that liver protoporphyrin levels in patients with advanced protoporphyric liver disease are much higher than levels in blood and bile, in part because protoporphyrin forms crystalline deposits in liver tissue. Thus, progressive hepatic accumulation of protoporphyrin occurs in the face of impaired biliary excretion. An intrinsic defect in hepatic excretion of protoporphyrin is probably not necessary for this condition to develop because liver disease can occur in the graft following transplantation.  相似文献   

12.
Liu YL  Ang SO  Weigent DA  Prchal JT  Bloomer JR 《Life sciences》2004,75(17):2035-2043
Ferrochelatase (FECH), the last enzyme of the heme biosynthetic pathway, catalyzes the insertion of iron into protoporphyrin to form heme. This pathway provides heme for hemoglobin and other essential hemoproteins. The regulatory role of oxygen in the pathway has not been clearly established. In this study, we examined whether FECH gene expression is upregulated during hypoxia by a mechanism which involves the hypoxia-inducible factor 1 (HIF-1). Two HIF-1 binding motifs were identified within the -150 bp FECH minimal promoter sequence. Exposure of HEL, K562, and Hep-G2 cells to hypoxia for 18 hours resulted in a significant increase in FECH mRNA expression (p < 0.05). Hypoxia also transactivated the minimal promoter for the FECH gene in the cells. Transient co-expression of wild-type HIF-1alpha or a dominant negative HIF-1alpha with the FECH minimal promoter luciferase construct stimulated or blocked FECH promoter activity, respectively. Expression of the von Hippel-Lindau (VHL) tumor suppressor factor blocked the expression of both FECH mRNA and HIF-1alpha protein during normoxic culture of renal carcinoma cell line (RCC4). The results suggest that the FECH gene is a target for HIF-1 during hypoxia.  相似文献   

13.
Globoid cell leukodystrophy (GLD) or Krabbe disease is an autosomal recessively inherited neurological disease caused by mutations in the gene coding for the lysosomal enzyme galacto-cerebrosidase (GALC). GALC is responsible for the degradation of specific galactolipids, including several that are important in the production of compact, stable myelin. A failure to adequately degrade galactosylceramide and psychosine (galactosylsphingosine) results in the characteristic pathological findings observed in tissue from humans and animals affected with GLD. These galactosphingolipids are normally synthesized during active myelination, and psychosine accumulates in individuals with very low GALC activity. Psychosine is highly toxic to the myelin-forming oligodendrocytes, causing their death and the paucity of myelin found on autopsy. While most human patients present with symptoms before six months of age and die before 18 months of age, older children and adults can also be diagnosed with GLD[1,2]. The cloning of both the human GALC cDNA and the GALC gene opened the way for the identification of mutations causing GLD in humans and animals and the development of novel strategies to treat this severe and fatal disease[3]. The pheno-typic differences between human patients result from the wide range of mutations identified, as well as additional unknown factors. Treatment of late-onset patients and pre-symptomatic individuals (identified either because prenatal testing was not requested or a fetus predicted to be affected was not aborted) by hemato-poietic stem cell transplantation (HSCT) resulted in a less severe phenotype than was predicted and, in some cases, a significant delay in the onset of symptoms[4]. Attempts to treat this disorder by in utero HSCT have not been successful[5].GLD in dogs  相似文献   

14.
Mutations in the gene encoding fibrillin-1 (FBN1), a component of the extracellular microfibril, cause the Marfan syndrome (MFS). This statement is supported by the observations that the classic Marfan phenotype cosegregates with intragenic and/or flanking marker alleles in all families tested and that a significant number of FBN1 mutations have been identified in affected individuals. We have now devised a method to screen the entire coding sequence and flanking splice junctions of FBN1. On completion for a panel of nine probands with classic MFS, six new mutations were identified that accounted for disease in seven (78%) of nine patients. Nine additional new mutations have been characterized in the early stages of a larger screening project. These 15 mutations were equally distributed throughout the gene and, with one exception, were specific to single families. One-third of mutations created premature termination codons, and 6 of 15 substituted residues with putative significance for calcium binding to epidermal growth factor (EGF)-like domains. Mutations causing severe and rapidly progressive disease that presents in the neonatal period can occur in a larger region of the gene than previously demonstrated, and the nature of the mutation is as important a determinant as its location, in predisposing to this phenotype.  相似文献   

15.
16.
We identified two additional mutations in the ferrochelatase gene in two Swiss patients with erythropoietic protoporphyria (EPP). Ferrochelatase cDNA from patients was amplified by the polymerase chain reaction (PCR) and subjected to mutation analysis by sequencing PCR products either directly or after subcloning. The first patient, who underwent liver transplantation because of terminal liver failure, was identified as having a single point mutation (C to T) at nucleotide 175 that resulted in a Gln to stop codon conversion in one allele of the gene. In the second case, in which the patient has so far no liver involvement, a two-base deletion (T899G900) was found in one allele. Frameshift as a result of the deletion creates a stop codon. This study presents two new genotypes of EPP, including one with liver failure, a rare and fatal form of EPP.  相似文献   

17.
The gene predisposing to neurofibromatosis type 2 (NF2) on human chromosome 22 has revealed a wide variety of different mutations in NF2 individuals. These patients display a marked variability in clinical presentation, ranging from very severe disease with numerous tumors at a young age to a relatively mild condition much later in life. To investigate whether this phenotypic heterogeneity is determined by the type of mutation in NF2, we have collected clinical information on 111 NF2 cases from 73 different families on whom we have performed mutation screening in this gene. Sixty-seven individuals (56.2%) from 41 of these kindreds revealed 36 different putative disease-causing mutations. These include 26 proposed protein-truncating alterations (frameshift deletions/insertions and nonsense mutations), 6 splice-site mutations, 2 missense mutations, 1 base substitution in the 3' UTR of the NF2 cDNA, and a single 3-bp in-frame insertion. Seventeen of these mutations are novel, whereas the remaining 19 have been described previously in other NF2 individuals or sporadic tumors. When individuals harboring protein-truncating mutations are compared with cases with single codon alterations, a significant correlation (P < .001) with clinical outcome is observed. Twenty-four of 28 patients with mutations that cause premature truncation of the NF2 protein, schwannomin, present with severe phenotypes. In contrast, all 16 cases from three families with mutations that affect only a single amino acid have mild NF2. These data provide conclusive evidence that a phenotype/genotype correlation exists for certain NF2 mutations.  相似文献   

18.
We have identified 14 families with ataxia-telangiectasia (A-T) in which mutation of the ATM gene is associated with a less severe clinical and cellular phenotype (approximately 10%-15% of A-T families identified in the United Kingdom). In 10 of these families, all the homozygotes have a 137-bp insertion in their cDNA caused by a point mutation in a sequence resembling a splice-donor site. The second A-T allele has a different mutation in each patient. We show that the less severe phenotype in these patients is caused by some degree of normal splicing, which occurs as an alternative product from the insertion-containing allele. The level of the 137-bp PCR product containing the insertion was lowest in two patients who showed a later onset of cerebellar ataxia. A further four families who do not have this insertion have been identified. Mutations detected in two of four of these are missense mutations, normally rare in A-T patients. The demonstration of mutations giving rise to a slightly milder phenotype in A-T raises the interesting question of what range of phenotypes might occur in individuals in whom both mutations are milder. One possibility might be that individuals who are compound heterozygotes for ATM mutations are more common than we realize.  相似文献   

19.
Niemann-Pick type C disease (NPC) is a rare neurodegenerative disorder characterised by lysosomal/late endosomal accumulation of endocytosed unesterified cholesterol and delayed induction of cholesterol homeostatic reactions. The large majority of mutations in the NPC1 gene described thus far have been associated with severe cellular cholesterol trafficking impairment (classic biochemical phenotype, present in about 85% of NPC patients). In our population of 13 unrelated NP-C1 patients, among which 12 were of Portuguese extraction, we observed an unusually large proportion of families presenting mild alterations of intracellular cholesterol transport (variant biochemical phenotype), without strict correlation between the biochemical phenotype and the clinical expression of the disease. Mutational studies were carried out to compare molecular lesions associated with severe and mild cholesterol traffic impairment. Levels of NPC1 protein were studied by Western blot in cultured fibroblasts of four patients with homozygous mutant alleles. Ten novel mutations were identified (Q92R, C177Y, R518W, W942C, R978C, A1035V, 2129delA, 3662delT, IVS23+1 G>A and IVS16-82 G>A). The mutational profile appeared to be correlated with the biochemical phenotype. Splicing mutations, I1061T and A1035V, corresponded to "classic" alleles, while three missense mutations, C177Y, R978C and P1007A, could be defined as "variant" alleles. All "variant" mutations described so far appear to be clustered within the cysteine-rich luminal loop between TM 8 and 9, with the remarkable exception of C177Y. The latter mutant allele, at variance with P1007A, was correlated to a decreased level of NPC1 protein and a severe course of the disease, and disclosed a new location for "variant" mutations, the luminal loop located at the N-terminal end of the protein.  相似文献   

20.
Erythropoietic protoporphyria (EPP) is an inherited disorder of heme biosynthesis that results from a partial deficiency of ferrochelatase (FECH). Recently, we have shown that the inheritance of the common hypomorphic IVS3-48C allele trans to a deleterious mutation reduces FECH activity to below a critical threshold and accounts for the photosensitivity seen in patients. Rare cases of autosomal recessive inheritance have been reported. We studied a cohort of 173 white French EPP families and a group of 360 unrelated healthy subjects from four ethnic groups. The prevalences of the recessive and dominant autosomal forms of EPP are 4% (95% confidence interval 1-8) and 95% (95% confidence interval 91-99), respectively. In 97.9% of dominant cases, an IVS3-48C allele is co-inherited with the deleterious mutation. The frequency of the IVS3-48C allele differs widely in the Japanese (43%), southeast Asian (31%), white French (11%), North African (2.7%), and black West African (<1%) populations. These differences can be related to the prevalence of EPP in these populations and could account for the absence of EPP in black subjects. The phylogenic origin of the IVS3-48C haplotypes strongly suggests that the IVS3-48C allele arose from a single recent mutational event. Estimation of the age of the IVS3-48C allele from haplotype data in white and Asian populations yields an estimated age three to four times younger in the Japanese than in the white population, and this difference may be attributable either to differing demographic histories or to positive selection for the IVS3-48C allele in the Asian population. Finally, by calculating the KA/KS ratio in humans and chimpanzees, we show that the FECH protein sequence is subject to strong negative pressure. Overall, EPP looks like a Mendelian disorder, in which the prevalence of overt disease depends mainly on the frequency of a single common single-nucleotide polymorphism resulting from a unique mutational event that occurred 60,000 years ago.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号