首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
George Oster is Professor of Biophysics, University of California, Berkeley. He received his B.S. at the U.S. Merchant Marine Academy and his Ph.D. at Columbia University. He began his career in biophysics as a postdoc at the Weizmann Institute under Aharon Katchalsky, where his research involved membrane biophysics and irreversible thermodynamics. His concern for environmental issues led him into population biology, which shaded into evolutionary biology and thence to developmental biology, cell biology and, most recently, protein motors and bacterial motility and pattern formation. His tools are mathematics, physics and computer simulation. He is currently a faculty member in the Departments of Molecular and Cellular Biology and the College of Natural Resources at Berkeley.  相似文献   

2.
Woese CR 《Current biology : CB》2005,15(4):R111-R112
Carl R. Woese was born and raised in Syracuse, New York. His undergraduate training was at Amherst College (AB 1950) and graduate work at Yale University (PhD 1953). He is currently the Stanley O. Ikenberry University Professor and Center for Advanced Study Professor of Microbiology at the University of Illinois (Champaign-Urbana), where he has been for the past forty years. He was trained as a biophysicist and molecular biologist. He views himself as a molecular biologist in search of Biology. Consequently, his career has been devoted to using molecular methods to approach evolutionary problems. His most notable accomplishments have been determining the universal phylogenetic tree, through molecular sequence analysis, and the discovery of the Archaea, the so-called ‘third form’ of life. For these he has received numerous awards, including a John D. and Catherine T. MacArthur Award, the Leeuwenhoek Medal 1990 (Netherlands Royal Academy), the Waksman Award (National Academy of Science USA), and the Crafoord Prize (Swedish Royal Academy). At present he works on the evolution of cellular organization.  相似文献   

3.
The 2003 International Prize for Biology was awarded to Shinya Inoue for his pioneering work in visualizing dynamic processes within living cells using the light microscope. He and his scientific descendants are now pushing light microscopy even further by developing new techniques such as imaging single molecules, visualizing processes in living animals, and correlating results from light and electron microscopy.  相似文献   

4.
The Preparation of Subtilisin-modified Ribonuclease and the Separation of the Peptide and Protein Components(Richards, F. M., and Vithayathil, P. (1959) J. Biol. Chem. 234, 1459–1465)The Three-dimensional Structure of Ribonuclease-S. Interpretation of an Electron Density Map at a Nominal Resolution of 2 Å(Wyckoff, H. W., Tsernoglou, D., Hanson, A. W., Knox, J. R., Lee, B., and Richards, F. M. (1970) J. Biol. Chem. 245, 305–328)Frederic Middlebrook Richards (1925–2009) was born in New York City. He attended the Massachusetts Institute of Technology and, after a brief stint in the military, received his B.S. in 1948. Richards then enrolled in graduate school at Harvard Medical School, where he worked with Barbara Low and received his Ph.D. in 1952. After graduating he remained at Harvard for another year as a research fellow with Edwin Joseph Cohn, who was featured in a previous Journal of Biological Chemistry (JBC) Classic (1). Richards then moved to the Carlsberg Laboratory in Denmark where, with Kaj Linderstrøm-Lang and others, he began working on ribonuclease.Open in a separate windowFrederic M. RichardsAfter a short stint as a postdoctoral fellow at Cambridge University, Richards joined the faculty of the Department of Biochemistry at Yale University in 1955 as an assistant professor. He rose rapidly through the ranks, becoming professor in 1963. That year, Richards was also appointed chairman of the Department of Molecular Biology and Biophysics at Yale, which entailed a move from the Medical School to the Yale College campus. Following a sabbatical at Oxford University in 1967–1968, for which Richards and his wife Sally sailed their own boat with a small crew across the Atlantic Ocean, Yale merged the Medical School Department of Biochemistry and the Yale College Department of Molecular Biology and Biophysics to form a new university-wide Department of Molecular Biophysics & Biochemistry (MB&B) with Richards as its founding chair (1969–1973). Richards remained at Yale for his entire research career, eventually becoming Sterling Professor of Molecular Biophysics and Biochemistry.Much of Richard''s early research centered on bovine pancreatic ribonuclease (RNase). During his time at the Carlsberg laboratory, he showed that cleavage of RNase by the protease subtilisin produces a modified RNase (RNase S) that is still active (2). After starting his own lab at Yale, Richards was able to separate RNase S into a 20-residue S-peptide and a 102-residue S-protein, both of which lacked enzymatic activity. However, when the peptide and protein were recombined, the activity was recovered. Richards published an initial paper on this finding in 1958 (3). He followed this up with a more extensive article in the JBC, which is reprinted here as the first JBC Classic. In this paper, Richards and co-workers purified and characterized RNase S, separated it into S-peptide and S-protein, showed that almost all enzymatic activity is recovered when the two components are recombined, and also reported that the only observed change in covalent structure during the conversion of RNase A to RNase S is the hydrolysis of the peptide bond between residues 20 and 21.The demonstration that two separate, inactive fragments of the enzyme RNase A could be reconstituted to form an active enzyme provided the first experimental evidence that the ability of a protein to form a three-dimensional structure is an intrinsic property of its amino acid sequence. This work also foreshadowed the extensive RNase A refolding studies performed by Nobel laureate Christian Anfinsen, as discussed in a previous JBC Classic (4).In the 1960s Richards teamed up with Harold Wyckoff to solve the three-dimensional structure of RNase S. Initially, in 1967, they produced a 3.5 Å electron density map (5), which they used to determine the approximate conformation of the peptide chain. Three years later, they collected data to 2 Å, as reported in the second JBC Classic reprinted here. Using these data, Richards, Wyckoff, and colleagues produced an electron density map, which they used to determine the complete three-dimensional structure of RNase S. This structure tied with three others for the third protein structure ever solved to atomic resolution. Richards also showed that RNase S was enzymatically active in crystal form, putting to rest the widely held view at that time that protein crystal structures were irrelevant to the conformation and behavior of enzymes in solution.Richards received many honors and awards for his scientific achievements, including the Pfizer-Paul Lewis Award in Enzyme Chemistry (1965), election as Fellow of the American Academy of Arts and Sciences (1968), election to the National Academy of Sciences (1971), the Kai Linderstrøm-Lang Prize in Protein Chemistry (1978), the American Society for Biochemistry and Molecular Biology Merck Award (1988), the Stein and Moore Award of the Protein Society (1988), and the State of Connecticut Medal of Science (1995). He was also president of ASBMB (1979) and the Biophysical Society (1972–1973).  相似文献   

5.
Sergei Winogradsky, was born in Russia in 1856 and was to become a founder of modern microbiology. After his Master's degree work on the nutrition and growth physiology of the yeast Mycoderma vini at the University of St. Petersburg, he joined the laboratory of Anton DeBary in Strassburg. There he carried out his studies on the sulfur-oxidizing bacterium Beggiatoa which resulted in his formulation of the theory of chemolithotrophy. He then joined the Swiss Polytechnic Institute in Zurich where he did his monumental work on bacterial nitrification. He isolated the first pure cultures of the nitrifying bacteria and confirmed that they carried out the separate steps of the conversion of ammonia to nitrite and of nitrite to nitrate. This led directly to the concept of the cycles of sulfur and nitrogen in Nature. He returned to Russia and there was the first to isolate a free-living dinitrogen-fixing bacterium. In the flush of success, he retired from science and spent 15?years on his familial estate in the Ukraine. The Russian revolution forced him to flee Russia. He joined the Pasteur Institute in Paris where he spent his remaining 24?years initiating and developing the field of microbial ecology. He died in 1953.  相似文献   

6.
7.
The structural and functional properties of cryptochrome blue light receptors ofArabidopsis thaliana are described. Cryptochromes from ferns and algae, as well as a cryptochrome-like sequences from mammals, are discussed. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

8.
Sir John Sulston was a co-winner of the Nobel Prize for Medicine in 2002. He won the prize for his discoveries concerning "genetic regulation of organ development and programmed cell death," along with his colleagues sydney Brenner and H. Robert Horvitz. Dr. Sulston was founding director of the Sanger Centre, Cambridge, England, which he headed from 1992 to 2000. From 1993 to 2000, he led the British arm of the international team selected to work on the Human Genome Project. He is co-author of the book The Common Thread: A Story of Science, Politics, Ethics, and the Human Genome, published by Joseph Henry Press in 2002.This interview was conducted on December 20, 2002, shortly after Dr. Sulston was awarded his Nobel Prize and was originally broadcast on that date on radio station WPKN-FM in Bridgeport, Connecticut. The interview was conducted by Valerie Richardson, the Managing Editor of The Yale Journal of Biology and Medicine.Dr. Sulston has been an outspoken advocate against letting the data from the Human Genome Project become property of commercial interests that would charge the world's scientific community for its use. Since leaving the Sanger Institute, he has worked with OxFam, the Oxford Campaign for Famine Relief.  相似文献   

9.
Sticking together: Cell adhesion interactions inArabidopsis reproduction   总被引:1,自引:0,他引:1  
We review the role of the extracellular matrix in transducing environmental signals, focusing on adhesion molecules in plants and animals. Plant reproduction is ideal for investigating cell-cell interactions; recently-describedArabidopsis thaliana mutants defective in cell adhesion during reproduction promise to illuminate unique cell signaling mechanisms. The exteneded abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

10.
11.
The tobaccoNPK1 gene encodes a homolog of mitogenactivated protein kinase kinase kinases. We have recently identified tobacco kinesin-like proteins (NACK1/2) as activators for NPK1. Immunochemical analyses of NPK1 and NACK1 proteins suggest that NPK1 is involved in the regulation of some process in the M phase of the plant cell cycle. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

12.
Elaine and Gary Ostrander spent their youth in New Jersey and New York before heading to Nebraska for their teen years and eventually Washington State for High School and college, as their father moved around in library administration. Elaine was an undergraduate at the University of Washington, a graduate student at the Oregon Health Sciences University and a postdoc with James Wang at Harvard, studying DNA supercoiling. She next went to Berkeley, where she began the canine genome project, initiating the meiotic linkage map and working on human chromosome 21 at the Lawrence Berkeley National Labs. In 1993 she moved to the Fred Hutchinson Cancer Research Center where she is now a Member of the Divisions of Clinical Research and Human Biology. She is also an Affiliate Professor of Genome Sciences and Biology at the University of Washington, and heads the Program in Genetics at the Hutchinson Center. Gary completed his undergraduate degree in Biology at Seattle University, a M.S. degree at Illinois State University and a Ph.D at the University of Washington in Ocean and Fisheries Science. He went on to be a postdoc in the Department of Pathology at the University of Washington Medical School while being mentored by Senitroh Hakomori of the Fred Hutchinson Cancer Research Center and Eric Holmes of the Pacific Northwest Research Foundation. His work focused on using novel aspects of the biology of fishes to address fundamental questions about cancer. He subsequently held both faculty and administrative positions at Oklahoma State University. Since 1996, he has been at the Johns Hopkins University, where he currently holds academic appointments in the Departments of Biology and Comparative Medicine and is the Associate Provost for Research.  相似文献   

13.
Vyacheslav Vasilevich (V.V.) Klimov (or Slava, as most of us called him) was born on January 12, 1945 and passed away on May 9, 2017. He began his scientific career at the Bach Institute of Biochemistry of the USSR Academy of Sciences (Akademy Nauk (AN) SSSR), Moscow, Russia, and then, he was associated with the Institute of Photosynthesis, Pushchino, Moscow Region, for about 50 years. He worked in the field of biochemistry and biophysics of photosynthesis. He is known for his studies on the molecular organization of photosystem II (PSII). He was an eminent scientist in the field of photobiology, a well-respected professor, and, above all, an outstanding researcher. Further, he was one of the founding members of the Institute of Photosynthesis in Pushchino, Russia. To most, Slava Klimov was a great human being. He was one of the pioneers of research on the understanding of the mechanism of light energy conversion and of water oxidation in photosynthesis. Slava had many collaborations all over the world, and he is (and will be) very much missed by the scientific community and friends in Russia as well as around the World. We present here a brief biography and some comments on his research in photosynthesis. We remember him as a friendly and enthusiastic person who had an unflagging curiosity and energy to conduct outstanding research in many aspects of photosynthesis, especially that related to PSII.  相似文献   

14.
Ivan Petrovich Pavlov was the first physiologist to win the Nobel Prize. The Prize was given in 1904 for his research on the neural control of salivary, gastric, and pancreatic secretion. A major reason for the success and novelty of his research was the use of unanesthetized dogs surgically prepared with chronic fistulas or gastric pouches that permitted repeated experiments in the same animal for months. Pavlov invented this chronic method because of the limitations he perceived in the use of acute anesthetized animals for investigating physiological systems. By introducing the chronic method and by showing its experimental advantages, Pavlov founded modern integrative physiology. This paper reviews Pavlov's journey from his birthplace in a provincial village in Russia to Stockholm to receive the Prize. It begins with childhood influences, describes his training and mentors, summarizes the major points of his research by reviewing his book Lectures on the Work of the Digestive Glands, and discusses his views on the relationship between physiology and medicine.  相似文献   

15.
Programming of cell death during xylogenesis   总被引:2,自引:0,他引:2  
Death of tracheary elements which compose vessels and tracheids is a typical example of programmed cell death in plants. Anin vitro system usingZinnia mesophyll cells which differentiate directly into tracheary elements has provided various types of data on the cell death process. In this paper, we will summarize recent results obtained using theZinnia system and discuss the programming of cell death during tracheary element differentiation. The extended abstract of a paper presented at the 13th International Symposium in Conjugation with Award of the International Prize for Biology “Frontier of Plant Biology”  相似文献   

16.
Joel Rosenbaum was born and grew up in Massena, New York state, on the St Lawrence River border with Ontario, Canada. He received his undergraduate and PhD degrees from Syracuse University, and a Masters Degree in high school biology teaching at St Lawrence University. His PhD work was done with the protozoologist, George Holz Jr, and his post doctoral research on cilia and flagella was at the University Of Chicago with Frank Child and Hewson Swift. He has been at Yale University for 37 years where he has taught Cell Biology. His research has been on the synthesis and assembly of the proteins of cilia and flagella, showing that the flagellar axoneme assembles at the distal tip and that detachment of the flagella upregulates the genes for flagellar proteins. More recently his group has shown that this tip assembly process is facilitated by a rapid kinesin and cytoplasmic dynein-mediated motility underneath the flagellar membrane called ‘intraflagellar transport’. He is a runner with more than 20 marathons under his belt.  相似文献   

17.
On March 19, 2011, the discipline of cell biology lost a creative force with the passing of Richard G.W. Anderson, Professor and Chairman of the Department of Cell Biology at the University of Texas Southwestern Medical School. An unabashed chauvinist for cell biology, Dick served for many years on the editorial board of The Journal of Cell Biology and the Council of the American Society for Cell Biology. He died of glioblastoma multiforme six days before his 71st birthday.  相似文献   

18.
Q & A     
Petsko G 《Current biology : CB》2003,13(20):R787-R788
Gregory A. Petsko is Gyula and Katica Tauber Professor of Biochemistry and Chemistry and Director of the Rosenstiel Basic Medical Sciences Research Center at Brandeis University. He did his undergraduate work at Princeton and his graduate work as a Rhodes Scholar at Oxford University. He held faculty positions at Wayne State University School of Medicine and MIT before moving to Brandeis in 1990. A structural biologist, he is best known for his work, together with his colleague Dagmar Ringe, on the structural basis of enzyme catalytic power and the role of protein dynamics in protein function. He writes a regular opinion column for the journal Genome Biology.  相似文献   

19.
A wireless mobile Ad hoc network (MANET) is a collection of wireless mobile hosts forming nodes that are arbitrarily and randomly changing their locations and communicating without the aid of any centralized administration or standard support services. Ad hoc cluster-based routing protocols establish a dynamic wireless mobile infrastructure to mimic the operation of the fixed infrastructure in cellular networks. A clusterhead is elected from a set of nominees, based on an agreed upon rule, to act as a temporary base station within its zone or autonomous system. Mobile stations elected as clusterheads are used to track other mobile stations in the ad hoc network. In each cluster, we use the clusterhead controlled token to assign the channel among contending Mobile Terminals (MTs). A clusterhead controlled token supports multiple class of services and minimizes collisions. In this paper, we derive formulas to calculate the average waiting time for a packet, in order to get transmitted. In our study, we use two polling schemes, namely: Exhaustive polling and Partially Gated polling controlled token.Tarek Sheltami is currently an assistant professor at the Computer Engineering Department at King Fahd University of Petroleum and Minerals (KFUPM) Dhahran, Kingdom of Saudi Arabia. He joined the department on September, 2004. Before joining the KFUPM, Dr. Sheltami was a research associate professor at the School of Information Technology and Engineering (SITE), University of Ottawa, Ontario, Canada. He has two years of industrial experience at GamaEng Inc (2002–2004). He is the co-author of the Warning Energy Aware Clusterhead (WEAC) infrastructure protocol and the Virtual Base Station On-demand (VBS-O) routing protocol. Dr. Sheltami has been a member of a technical program and organizing committees of several international IEEE conferences. Dr. Sheltamis research interests are in the area of wireless communications, wireless ad hoc and sensors networks, mobile infrastructure protocols, network control/mobility management, UMTS, and performance evaluation of wireless communication networks.Hussein Mouftah joined the School of Information Technology and Engineering (SITE) of the University of Ottawa in September 2002 as a Canada Research Chair (Tier 1) Professor in Optical Networks. He has been with the Department of Electrical and Computer Engineering at Queens University (1979–2002), where he was prior to his departure a Full Professor and the Department Associate Head. He has three years of industrial experience mainly at Bell Northern Research of Ottawa, now Nortel Networks (1977–79). He has spent three sabbatical years also at Nortel Networks (1986–87, 1993–94, and 2000–01), always conducting research in the area of broadband packet switching networks, mobile wireless networks and quality of service over the optical Internet. He served as Editor-in-Chief of the IEEE Communications Magazine (1995–97) and IEEE Communications Society Director of Magazines (1998–99) and Chair of the Awards Committee (2002–2003). He is a Distinguished Speaker of the IEEE Communications Society since 2000. Dr. Mouftah is the author or coauthor of five books, 22 book chapters and more than 700 technical papers and 8 patents in this area. He is the recipient of the 1989 Engineering Medal for Research and Development of the Association of Professional Engineers of Ontario (PEO), and the Ontario Distinguished Researcher Award of the Ontario Innovation Trust. He is the joint holder of the Best Paper Award for a paper presented at SPECTS 2002, and the Outstanding Paper Award for papers presented at the IEEE HPSR 2002 and the IEEE ISMVLõ1985. Also he is the joint holder of a Honorable Mention for the Frederick W. Ellersick Price Paper Award for Best Paper in the IEEE Communications Magazine in 1993. He is the recipient of the IEEE Canada (Region 7) Outstanding Service Award (1995). Also he is the recipient of the 2004 IEEE Communications Society Edwin Howard Armstrong Achievement Award, and the 2004 George S. Glinski Award for Excellence in Research of the Faculty of Engineering, University of Ottawa. Dr. Mouftah is a Fellow of the IEEE (1990), the Canadian Academy of Engineering (2003) and the Engineering Institute of Canada (2005).  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号