首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Human squamous carcinoma (COLO-16) cells synthesize and secrete hepatocyte-stimulating factor-III (HSF-III), a glycoprotein with Mr = 39,000, which stimulates the synthesis of several acute phase plasma proteins in human hepatoma (HepG2) cells. The qualitative response of HepG2 cells to HSF-III is essentially the same as that elicited by human recombinant interleukin-6 (IL-6). Although similar in hepatocyte-stimulating activity, HSF-III and IL-6 are distinct molecules which differ not only in size and charge but also in immunologic properties: no cross-recognition of HSF-III and IL-6 occurs using neutralizing antibodies against IL-6 and HSF-III, respectively. In addition, Northern blot hybridization of IL-6 cDNA to mRNA from COLO-16 cells revealed no detectable IL-6 message. HSF-III does not compete for binding to the IL-6 receptors suggesting that HepG2 cells carry receptors specific for each hormone. Both receptor types may trigger similar intracellular processes explaining the identical regulation of acute phase protein expression.  相似文献   

2.
3.
Human squamous carcinoma (COLO-16) cells release factors which specifically stimulate the synthesis of major acute-phase plasma proteins in human and rodent hepatic cells. Anion exchange, hydroxyapatite, lectin, and gel chromatography of conditioned medium of COLO-16 cells result in separation into three distinct forms of hepatocyte-stimulating factors (designated HSF-I, HSF-II, and HSF-III) with apparent molecular weights of 30,000, 50,000 and 70,000, respectively. None of the preparations contains detectable amounts of thymocyte-stimulating activity. Each of the three HSF forms stimulates the accumulation of mRNA for alpha 1-antichymotrypsin in the human hepatoma cell line, HepG2. When the same factors were added to primary cultures of adult rat hepatocytes, the expression of the same set of plasma proteins was modulated as by nonfractionated medium. The hormonally induced accumulation of mRNA for acute phase proteins is qualitatively comparable to that occurring in the liver of inflamed rats. Unlike in human cells, in rat liver cells dexamethasone acts additively and synergistically with HSFs. The only functional difference between the three HSF forms lies in the level of maximal stimulation. HSF-I represents the predominant form produced by normal human keratinocytes and closely resembles in molecular size and isoelectric point the activity produced by activated peripheral blood monocytes while the larger molecular weight forms are more prevalent in human as well as mouse squamous carcinoma cells. The observation that HSFs from different sources elicit essentially the same pleiotropic response in hepatic cells led to the hypothesis that the species-specific reaction of adult liver cells to inflammatory stimuli is pre-programmed and that the function of any HSF is to trigger and tune the execution of this fixed cellular process.  相似文献   

4.
Because a number of different cytokines have been reported to regulate the synthesis of human, murine, and rat acute phase proteins (APP), we studied the effect of cytokines on production of several major human APP in a single system, the human hepatoma cell line Hep 3B. Conditioned medium (CM) prepared from human blood monocytes activated with LPS in the presence of dexamethasone led to substantial induction of serum amyloid A (SAA) and C-reactive protein (CRP) synthesis whereas the defined cytokines IL-1 beta, TNF alpha, and medium from a human keratinocyte cell line (COLO-16), containing hepatocyte-stimulating factor activity, failed to induce these two major APP. Induction of SAA and CRP was accompanied by an increase in concentration of their specific mRNA. Size fractionation of CM from activated monocytes by fast protein liquid chromatography indicated that SAA- and CRP-inducing activity eluted as a single peak with a Mr of approximately 18 kDa. alpha 1-Antitrypsin, which also failed to respond to IL-1 beta or TNF alpha, was induced by both CM and medium from COLO-16 cells. The induction of AT by CM was accompanied by an increase in specific mRNA. Induction of ceruloplasmin and alpha 1-antichymotrypsin and decrease in the synthesis of albumin was achieved by both CM and IL-1 beta. Ceruloplasmin and albumin responded in a comparable fashion to both TNF alpha and medium from COLO-16 cells; the response of ACT to these cytokines was not evaluated. These results indicate that human SAA and CRP are induced in Hep 3B cells by products of activated monocytes but not by IL-1 beta, TNF-alpha, or some hepatocyte-stimulating factor preparations and that a group of heterogeneous mechanisms are involved in the induction of the various human APP.  相似文献   

5.
Human hepatoma (HepG2) cells respond to unfractionated conditioned media of human squamous carcinoma (COLO-16) cells and lipopolysaccharide-stimulated human peripheral blood monocytes by increasing the synthesis of alpha 1-acid glycoprotein, haptoglobin, complement C3, alpha 1-antichymotrypsin, alpha 1-antitrypsin, and fibrinogen, while decreasing the synthesis of albumin. The regulation of the acute phase proteins is mediated by hepatocyte-stimulating factors (HSF) and interleukin 1 (IL-1) present in the conditioned medium. Purified HSF-I from COLO-16 cells stimulates preferentially alpha 1-acid glycoprotein synthesis, whereas COLO-HSF-II stimulates preferentially the synthesis of haptoglobin, fibrinogen, and alpha 1-antitrypsin. HSF from monocytes, which has been identified as interferon-beta 2 (B cell stimulating factor-2), displayed the same activity as COLO-HSF-II. Dexamethasone alone had no effect on acute phase plasma protein synthesis but enhanced the response to various HSF severalfold. IL-1 had a relatively low stimulatory activity on the synthesis of alpha 1-acid glycoprotein, haptoglobin, and alpha 1-antichymotrypsin but strongly reduced the basal expression of fibrinogen. The only synergistic action between IL-1 and HSF (or interferon-beta 2) was noted for the synthesis of alpha 1-acid glycoprotein. Tumor necrosis factor active on other hepatic cells failed to modulate significantly the expression of any plasma proteins in HepG2 cells. These studies showed that for an optimal HepG2-cell response a combination of HSF (or interferon-beta 2), IL-1, and dexamethasone is needed. This finding might indicate the identity of some of those hormones involved in regulation of the hepatic acute phase response in vivo.  相似文献   

6.
Leukemia inhibitory factor/differentiation-stimulating factor (LIF/D-factor), expression of its mRNA, and possible roles in bone metabolism were studied in murine primary and clonal osteoblast-like cells. Local bone-resorbing factors such as IL-1, TNF alpha, and LPS strongly induced expression of LIF/D-factor mRNA in both clonal MC3T3-E1 cells and primary osteoblast-like cells. Neither parathyroid hormone nor 1 alpha,25-dihydroxyvitamin D3 stimulated expression of LIF/D-factor mRNA. LIF/D-factor per se did not stimulate expression of its own mRNA. Appreciable amounts of LIF/D-factor were detected in synovial fluids from rheumatoid arthritis (RA) patients but not in those with osteoarthritis (OA). Simultaneous treatment with LIF/D-factor, IL-1, and IL-6 at the concentrations found in synovial fluids from RA patients greatly enhanced bone resorption, though these cytokines did not stimulate bone resorption when separately applied. This suggests that LIF/D-factor produced by osteoblasts is in concert with other bone-resorbing cytokines such as IL-1 and IL-6 involved in the bone resorption seen in the joints of RA patients. LIF/D-factor specifically bound to MC3T3-E1 cells with an apparent dissociation constant of 161 pM and 1,100 binding sites/cell. LIF/D-factor dose-dependently suppressed incorporation of [3H]thymidine into MC3T3-E1 cells. In addition, it potentiated the alkaline phosphatase activity induced by retinoic acid, though LIF/D-factor alone had no effect on enzyme activity. These results suggest that LIF/D-factor is involved in not only osteoclastic bone resorption but also osteoblast differentiation in conjugation with other osteotropic factors.  相似文献   

7.
Human keratinocytes and activated monocytes produces factors which can stimulate the proliferation of thymocytes. The same activity has also been implicated in regulating the expression of plasma proteins in liver cells during the acute phase reaction. To assess whether factors produced by such cells can directly influence liver cells to change the production of acute phase plasma proteins, we studied in tissue culture the response pattern of hepatic cells from three species: human hepatoma cells ( HepG2 cells), and primary cultures of rat and mouse hepatocytes. Conditioned media from the squamous carcinoma COLO-16 cells, normal epidermal cells, and activated peripheral monocytes were able to stimulate the synthesis of specific acute phase plasma proteins: alpha 1-antichymotrypsin in HepG -2 cells, alpha 1-antichymotrypsin, alpha 1-acid glycoprotein, alpha 1-acute phase protein, and alpha 2-macroglobulin in rat hepatocytes, and alpha 1-acid glycoprotein, haptoglobin, and hemopexin in mouse hepatocytes. Only in rat cells, dexamethasone was found to have further enhancing effect. The increased production of plasma proteins could be explained by an elevated level of functional mRNA. Comparing thymocyte-stimulating activities with the effects on plasma protein production, we found some difference both between the conditioned media of epidermal cells and monocytes, and between the responses of the three hepatic cell systems. Furthermore, gel chromatography of conditioned media resulted in partial separation of activities regulating liver cells and thymocytes. Since there is no strict correlation between thymocyte- and hepatocyte-stimulating activities, the presence of different sets of specific factors is assumed.  相似文献   

8.
Cell migration is a key event in tissue repair and remodeling. PDGF, a growth factor for multiple target cells, has been shown to be a potent chemoattractant for a variety of mesenchymal cells. However, it is likely that PDGF-mediated cell migration will be influenced by other cytokines that can be produced during physiological and pathological conditions. Leukemia inhibitory factor (LIF), a cytokine that is produced by a variety of cells including osteoblasts, may promote bone formation, but the mechanism is not known. Since osteoblasts are responsible for laying down new matrix during skeletal remodeling, in this report we have examined whether PDGF or LIF influences the migration of osteoblasts. Among several cytokines and growth factors tested, only PDGF was able to elicit a major chemotactic (directed migration) and a minor chemokinetic (random-migration) response in osteoblasts. LIF alone was not active in either chemotaxis or chemokinesis but when included with PDGF it caused a reduction in chemokinesis. Further, pretreatment of osteoblasts with LIF caused an increase in PDGF-driven chemotaxis. Finally, osteoblasts exposed briefly to LIF synthesized a higher level of non-collagenous proteins upon further treatment with PDGF. These observations are consistent with a role for LIF in promoting bone formation, both by influencing directional migration of osteoblasts and in laying down new matrix. © 1996 Wiley-Liss, Inc.  相似文献   

9.
10.
Treatment of rat hepatoma H-35 cells with purified human recombinant interleukin-11 (IL-11) resulted in the stimulated production of several major acute phase plasma proteins. The qualitative and quantitative changes were comparable to those mediated by IL-6 or leukemia inhibitor factor (LIF). Like IL-6, IL-11 acted synergistically with IL-1 on type 1 acute phase proteins. The combination of IL-11 and dexamethasone yielded a magnitude of stimulation which was more similar to the combination of LIF and dexamethasone than IL-6 and dexamethasone. IL-11 elicited in treatment of primary cultures of rat hepatocytes a qualitative change of plasma protein production which was similar to that in H-35 cells. Comparison of rat and human hepatoma cells indicated that the IL-11 response did not correlate with that of IL-6 or LIF, suggesting that the action of IL-11 was mediated by an IL-11-specific receptor system. However, the intracellular transduction of the IL-11, IL-6, and LIF signals to the acute phase protein genes seems to rely, in part, on common elements as judged from their stimulatory effects on the transfected expression vector containing the IL-6 response element of the rat beta-fibrinogen gene. The finding that IL-11 shares liver-regulating properties with IL-6 and LIF suggests that IL-11 has the potential of contributing to the control of systemic homeostasis and hepatic acute phase response.  相似文献   

11.
Leukemia inhibitory factor (LIF) is a multifunctional cytokine belonging to the interleukin-6 subfamily of helical cytokines, all of which use the glycoprotein (gp) 130 subunit for signal transduction. The specific receptor for LIF, gp190, binds this cytokine with low affinity and is also required for signal transduction. We have recently reported that glycosylated LIF produced by transfected Chinese hamster ovary cells also binds to a lectin-like receptor, mannose 6-phosphate/insulin-like growth factor II receptor (Man-6-P/IGFII-R) (Blanchard, F., Raher, S., Duplomb, L., Vusio, P., Pitard, V., Taupin, J. L., Moreau, J. F., Hoflack, B., Minvielle, S., Jacques, Y., and Godard, A. (1998) J. Biol. Chem. 273, 20886-20893). The present study shows that (i) mannose 6-phosphate-containing LIF is naturally produced by a number of normal and tumor cell lines; (ii) other cytokines in the interleukin-6 family do not bind to Man-6-P/IGFII-R; and (iii) another unrelated cytokine, macrophage-colony-stimulating factor, is also able to bind to Man-6-P/IGFII-R in a mannose 6-phosphate-sensitive manner. No functional effects or signal transductions mediated by this lectin-like receptor were observed in various biological assays after LIF binding, and mannose 6-phosphate-containing LIF was as active as non-glycosylated LIF. However, mannose 6-phosphate-sensitive LIF binding resulted in rapid internalization and degradation of the cytokine on numerous cell lines, which suggests that Man-6-P/IGFII-R plays an important role in regulating the amounts of LIF available in vivo.  相似文献   

12.
OVA-specific T cells were immortalized by infection with radiation leukemia virus (RadLV). Some clones derived from such population were shown to exhibit helper activity. We then tested clones without such function and found among them some that secreted macrophage migration inhibition factor (MIF) and leukocyte migration inhibition factor (LIF) upon exposure to the antigen in vitro. The lymphokine-producing clones, which were Thy-1+, Ly-1+ and Ly-2-, did not secrete MIF and LIF constitutively. Like other antigen-specific T cells, the immortalized clones could not be stimulated by free soluble antigen but required macrophages for presentation and for triggering the lymphokine production. The antigen-activated clones exclusively produced MIF and LIF, but not interleukin 2 or colony-stimulating factor. They neither provided helper activity nor induced delayed-type hypersensitivity. The data suggest that the T-cell clones carry the antigen receptors and that their antigen-inducible biological function is restricted to the migration inhibitory factor production.  相似文献   

13.
Cross-talk among gp130 cytokines in adipocytes   总被引:3,自引:0,他引:3  
  相似文献   

14.
The neurotrophic cytokines ciliary neurotrophic factor and leukemia inhibitory factor (LIF) play a key role in neuronal and oligodendrocyte survival and as protective factors in neuroinflammation. To further elucidate the potential of endogenous LIF in modulating neuroinflammation, we studied myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis in LIF knockout mice (LIF(-/-) mice). In the late phase of active myelin oligodendrocyte glycoprotein-induced experimental autoimmune encephalomyelitis, LIF(-/-) mice exhibited a markedly milder disease course. The inflammatory infiltrate in LIF(-/-) mice was characterized by an increase in neutrophilic granulocytes early and fewer infiltrating macrophages associated with less demyelination later in the disease. In good correlation with an effect of endogenous LIF on the immune response, we found an Ag-specific T cell-priming defect with impaired IFN-gamma production in LIF(-/-) mice. On the molecular level, the altered recruitment of inflammatory cells is associated with distinct patterns of chemokine production in LIF(-/-) mice with an increase of CXCL1 early and a decrease of CCL2, CCL3, and CXCL10 later in the disease. These data reveal that endogenous LIF is an immunologically active molecule in neuroinflammation. This establishes a link between LIF and the immune system which was not observed in the ciliary neurotrophic factor knockout mouse.  相似文献   

15.
The related cytokines, interleukin-6 (IL-6), oncostatin M (OSM), and leukemia inhibitory factor (LIF) direct the formation of specific heteromeric receptor complexes to achieve signaling. Each complex includes the common signal-transducing subunit gp130. OSM and LIF also recruit the signaling competent, but structurally distinct OSMRbeta and LIFRalpha subunits, respectively. To test the hypothesis that the particularly prominent cell regulation by OSM is due to signals contributed by OSMRbeta, we introduced stable expression of human or mouse OSMRbeta in rat hepatoma cells which have endogenous receptors for IL-6 and LIF, but not OSM. Both mouse and human OSM engaged gp130 with their respective OSMRbeta subunits, but only human OSM also acted through LIFR. Signaling by OSMRbeta-containing receptors was characterized by highest activation of STAT5 and ERK, recruitment of the insulin receptor substrate and Jun-N-terminal kinase pathways, and induction of a characteristic pattern of acute phase proteins. Since LIF together with LIFRalpha appear to form a more stable complex with gp130 than OSM with gp130 and OSMRbeta, co-activation of LIFR and OSMR resulted in a predominant LIF-like response. These results suggest that signaling by IL-6 cytokines is not identical, and that a hierarchical order of cytokine receptor action exists in which LIFR ranks as dominant member.  相似文献   

16.
Leukemia inhibitory factor (LIF) and oncostatin M (OSM) induce DNA synthesis in Swiss 3T3 cells through common signaling mechanism(s), whereas other related cytokines such as interleukin-6 and ciliary neurotrophic factor do not cause this response. Induction of DNA replication by LIF or prostaglandin F2alpha (PGF2alpha) occurs, in part, through different signaling events. LIF and OSM specifically trigger STAT1 cytoplasmic to nuclear translocation, whereas PGF2alpha fails to do so. However, LIF and PGF2alpha can trigger increases in ERK1/2 activity, which are required for their mitogenic responses because U0126, a MEK1/2 inhibitor, prevents both ERK1/2 activation and induction of DNA synthesis by LIF or PGF2alpha treatment. PGF2alpha induces cyclin D expression and full phosphorylation of retinoblastoma protein. In contrast, LIF fails to promote increases in cyclin D mRNA/protein levels; consequently, LIF induces DNA synthesis without promoting full phosphorylation of retinoblastoma protein (Rb). However, both LIF and PGF2alpha increase cyclin E expression. Furthermore, LIF mitogenic action does not involve protein kinase C (PKC) activation, because a PKC inhibitor does not block this effect. In contrast, PKC activity is required for PGF2alpha mitogenic action. More importantly, the synergistic effect between LIF and PGF2alpha to promote S phase entry is independent of PKC activation. These results show fundamental differences between LIF- and PGF2alpha-dependent mechanism(s) that induce cellular entry into S phase. These findings are critical in understanding how LIF and other related cytokine-regulated events participate in normal cell cycle control and may also provide clues to unravel crucial processes underlying cancerous cell division.  相似文献   

17.
Hepatocytes were isolated from adult livers and cultured for periods of up to 5 days as monolayers at an initial density of 10(6) cells/10cm2 in Williams E medium containing insulin, dexamethasone and 5% foetal-calf serum. The daily production of 11 plasma proteins was measured by electroimmunoassay and compared with the concentrations of the same proteins in the plasma of normal rats and of those with experimental inflammation. Hepatocytes from normal rats synthesized proteins in relative amounts which were similar to the relative proportions of the same proteins in the plasma of turpentine-injected animals. The pattern changed only slowly during 5 days in culture, but it did so profoundly either when the medium was devoid of dexamethasone or when human cytokines (from endotoxin-stimulated monocytes or unstimulated human squamous-carcinoma cell line COLO-16) were added. The cytokines consistently increased the synthesis of alpha 2-macroglobulin and fibrinogen and depressed that of albumin; variable increases in the synthesis of alpha 1-acute-phase globulin, alpha 1-acid glycoprotein, haptoglobin and alpha 1-proteinase inhibitor, and variable decreases in transferrin synthesis, were seen, whereas the synthesis of antithrombin III, alpha 1-macroglobulin and prothrombin remained virtually unaffected. The cytokine effects on protein synthesis required the presence of dexamethasone. The hepatocyte-stimulating activity derived from monocytes chromatographed on Sephadex G-100 corresponding to 30 000 Da, as opposed to the lymphocyte-activating factor, which was eluted as a molecule of approx. 15 000 Da. This suggests that both activities probably reside with distinct molecular species in the preparations of human cytokines.  相似文献   

18.
A human T cell line, Peer, that expresses the T cell helper phenotype produces discrete activation and growth factors for tonsillar B cells. The B cell activation factor produced by Peer is biochemically and physiologically distinct from other lymphokines known to enhance B cell proliferation, namely, interleukin 1, interleukin 2, interferon, and previously characterized B cell growth factors (BCGF). The BCGF produced by Peer is functionally similar to previously described BCGF but has a m.w. of approximately 30,000 daltons. The identification and characterization of a T cell-derived activation factor that can induce apparently resting (Go phase) B cells to enter S phase in the absence of an exogenous first signal has important implications in the additional dissection of the complex steps in the human B cell cycle.  相似文献   

19.
Mononuclear cells, obtained from the spleens and lungs of influenza virus-seropositive C57BL/6 mice at 2 to 4 days after re-infection with homologous virus (strain A/Bangkok/1/79), produced a low m.w. factor in vitro that prevents the biologic expression, but not production, of the lymphokine, leukocyte migration inhibition factor (LIF). The low m.w. factor inhibited LIF activity without destroying the LIF molecule inasmuch as simple dialysis restored lymphokine activity to culture supernatants. Production of the low m.w. factor was observed from 2 to 4 days after re-infection, at which time the delayed-type hypersensitivity response to viral Ag was suppressed. In contrast, LIF was produced by splenocytes and lung mononuclear cells obtained at all times tested after re-infection (from 2 to 30 days). Production of the low m.w. factor required re-infection of influenza A virus-seropositive mice with type A virus; re-infection with influenza B virus failed to induce production. Ag specificity was also required in vitro for splenocytes to produce the factor; cells from type A virus-re-infected mice required type A Ag stimulation. Cell depletion studies with mAb plus C revealed that macrophages and T cells along with Ag stimulation were required for factor production by spleen cells. However, mononuclear cells obtained within 4 days from the lungs of re-infected mice did not require in vitro Ag stimulation for production of the low m.w. factor, and factor production was dependent upon the presence of CD4+ (L3T4) cells in the culture. Fractionation of culture supernatants over a Sephadex G-50 column indicated that the factor had a molecular mass of 2 to 3 kDa, and by FPLC chromatofocusing over a Mono P column, the factor eluted at a pH of approximately 8.2. Thus, re-exposure of influenza virus-seropositive mice to homologous virus resulted in the production of a low m.w. factor that prevented the biologic expression of LIF, but not its production. Lymphokines are an important component of the delayed-type hypersensitivity response; the presence of mononuclear cells secreting a low m.w. factor and LIF concomitantly at the site of virus replication (lungs) and the capacity of the factor to block the biologic expression of LIF in vitro suggest that the factor may have a role in the regulation of a delayed-type hypersensitivity response in vivo during re-infection.  相似文献   

20.
Recent evidence has proved that cytokines can stimulate the production of 5-lipoxygenase products. Leukotriene B4 (LTB4) is a major mediator of leukocyte activation in acute inflammatory reactions, which produce chemotaxis, lysosomal enzyme release, and cell aggregation. Leukocyte inhibitory factor (LIF) also causes biological responses related to inflammation, i.e., LIF directly induces specific granule secretion by polymorphonuclears (PMNs) and potentiates many formyl-methionyl-leucyl-phenylalanine (FMLPs) mediated responses. Since arachidonic acid products are important mediators of inflammation, we have studied the effects of LIF on the arachidonic acid cascade products LTB4 and thromboxane A2 (TxA2). Resuspended at a final concentration of greater than 95% polymorphonuclear PMNs were isolated and tested with some cytokines on the release of LTB4 and TxA2. Peripheral blood mononuclear cells were isolated and seeded in Petri dishes and incubated for 60 min. Adherent macrophages were used for the cytokine stimulation study. Both types of leukocytes were treated with LIF, interleukin 6 (IL 6), and granulocyte-monocyte colony stimulating factor (GM-CSF) at different concentrations, and test agents A23187 and FMLP. Radioimmunoassay for LTB4 and TxB2 was determined by the resulting supernatants. Treatment of PMNs and macrophages with LIF at different concentrations proved to generate significant increases in LTB4 and TxA2 production. This was compared with IL 6 and GM-CSF, which had no effects. In these experiments, TxA2 generations could not be attributed to platelet contamination of PMN suspensions. The quantity of platelet contamination was not sufficient to influence how much TxB2 was produced. The similarities of LIF to other arachidonate stimulating cytokines suggest a similar mode of action in producing hematologic changes typical of tissue injury.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号