首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
As candidate(s) for allelopathic substance(s), two plant growthinhibitors were isolated from aqueous leachate of leaves of mesquite, whichshowa strong allelopathy, and which were identified as syringin and(–)-lariciresinol by their spectral analyses. Syringin inhibited root andshoot growth of lettuce seedlings at concentrations greater than 0.8M, and root and shoot growth of barnyard grass seedlings atconcentrations greater than 2.7 and 26.9 M, respectively. Onthe other hand, (–)-lariciresinol inhibited root and shoot growth oflettuce seedlings at concentrations greater than 2.8 and 0.8M,and root and shoot growth of barnyard grass seedling at concentrations greaterthan 0.8 and 2.8 M, respectively. The contents of syringin and(–)-lariciresinol in the rhizosphere soil of mesquite were 0.34 and 0.38g/g soil, respectively. These results indicate that syringinand (–)-lariciresinol are allelopathic substance(s), and may play rolesinthe allelopathy of mesquite.  相似文献   

2.
When lettuce seeds were incubated in a concentric circle aroundfreeze-dried mesquite leaves in a dish containing agar culture medium, thegrowth, especially radicle growth, of the seedlings was inhibited, the morestrongly the closer they were to the leaves. This result indicates thatallelopathic substance(s) inhibiting the lettuce growth are exuded from themesquite leaves. A potent substance was isolated from the exudates of thefreeze-dried mesquite leaves and identified as L-tryptophan by spectralanalyses. L-Tryptophan inhibited the radicle growth of lettuce and barnyardgrass at concentrations greater than1.5×10–3 . The content ofL-tryptophan in the exudates of freeze-dried mesquite leaves (1 eq.) was 4.8×10–3 . Theseresults suggest that L-tryptophan may play an important role in the allelopathyof mesquite leaves.  相似文献   

3.
Summary Somatic hybridization of rice (Oryza sativa L.) and barnyard grass (Echinochloa oryzicola), a close relative of barnyard millet, was attempted using electrofusion and a new culture method developed for rice protoplasts (Kyozuka et al. 1987) to incorporate some of the agronomically important characters of the latter species into rice. Selection of hybrids was based on inactivation of rice protoplasts by iodoacetamide and the inability of barnyard grass protoplasts to divide. A total of 166 calli were identified as hybrids by isozyme and chromosome analyses. Hybrid calli were highly morphogenic, and 44 shoots were obtained. Most of them, however, were abnormal, and nine grew to plantlets whose morphology was distinct from that of either parent. Our study clearly demonstrates the totipotency of protoplasts in graminaceous monocots.  相似文献   

4.
Axillary shoots from three selected white ash (Fraxinus americana L.) clones were harvested from in vitro shoot cultures. Roots were initiated by pulsing excised shoots for eight days in the dark in MS medium supplemented with 2% sucrose, 0.7% agar, 5 M NAA, and 1 M IBA. Pulsed shoots were transferred to a root elongation medium consisting of 25% MS macrosalts, full-strength microsalts and organics, 1% sucrose, 0.7% agar and no auxins. When roots were visible (6–10 days after transfer to root elongation medium), microplants were transferred to vessels containing the same minimal medium and tall fescue (Festuca elatior var. arundinacea (Schreb.) Wimm.) leaf extracts, leaf leachates, or soil leachates from plant boxes with and without tall fescue sod. After four weeks in vitro, primary adventitious and secondary root growth was reduced by extracts obtained from 5 and 10 g ground leaves per 100 ml of medium. Leachates obtained from 5 g soaked leaves per 100 ml of medium stimulated primary root growth. Soil leachates from bare soil also stimulated primary root growth. Variation was observed among the clones for root growth when plantlets were grown in extracts or leachates from tall fescue.  相似文献   

5.
Sugarcane (Saccharum officinarum L.) straw left in the field after harvest interferes with the growth of winter and summer weeds. In the last years, there was a progressive move away from burning sugarcane straw to retaining it on the soil surface after harvest to prevent soil degradation and environmental pollution. Water-soluble phenolics leachated from straw into soil may suppress weed growth. A study was carried out to investigate (1) the effect of biotic (unautoclaved) soil treated with burned and unburned sugarcane straw leachates on seedling growth and foliar proline content of beggarticks (Bidens subalternans L.) and wild mustard (Brassica campestris L.), (2) the modification of sugarcane straw phytotoxicity in abiotic (autoclaved) soil and biotic (unautoclaved) soil plus activated charcoal, and (3) changes of inorganic ions and phenolic contents in biotic soil after treatment with burned and unburned sugarcane straw leachate. Unburned straw leachate significantly inhibited root elongation of 7-d-old beggarticks and wild mustard seedlings. Burned straw leachate did not affect seedling growth of the assayed weeds suggesting that organic straw phytotoxins were involved. Experiments with activated charcoal, however, did not provide clear evidence supporting the involve of organic molecules in straw phytotoxicity. Unburned straw leachate incorporated in biotic soil was more inhibitory than in abiotic soil on root growth suggesting that microbial activity is involved in sugarcane straw interference. There was no evidence of nutrient microbial immobilization. Unburned sugarcane straw leachate increased total phenolic content in biotic soil more than in abiotic soil or biotic soil plus charcoal. Burned sugarcane straw leachate did not increase phenolic compounds levels in biotic soil. Linear regression analysis indicated a strong correlation between levels of soil phenolic contents and root growth inhibition. Soil characteristics evaluated in soil treated with burned and unburned sugarcane straw leachate suggest that straw phytotoxicity is related with organic molecules, such as phenolic compounds, rather than to variations in inorganic nutrients. Unburned straw leachate induced proline accumulation in seedling leaves of both beggarticks and wild mustard. Proline foliar content was higher in seedlings grown in biotic soil than in seedlings grown in biotic soil plus charcoal suggesting that straw organic constituents induced proline accumulation. Proline foliar content of seedlings grown in biotic soil treated with burned straw leachate was not significantly different from water control. The present study showed that sugarcane straw leachate interferes with seedling growth of beggarticks and wild mustard and that water-soluble phenolics can play a role in the seedling growth inhibition of the assayed weeds.  相似文献   

6.
In the central highlands of Mexico, mesquite (Prosopis spp) and huisache (Acacia tortuoso), N2 fixing trees or shrubs, dominate the vegetation and are used in an alley cropping system to prevent erosion and restore soil fertility. We investigated how much the leaves of both trees contribute to dynamics of carbon (C) and nitrogen (N) in soil by adding leaves of both species to soil sampled under the canopy of mesquite and huisache, outside their canopy and from fields cultivated with maize at three different sites and monitoring microbial biomass C, production of carbon dioxide (CO2), and dynamics of inorganic N (ammonium and nitrate) in an aerobic incubation. The soluble fraction and N content of the mesquite leaves were larger than in the huisache leaves, but lignin and polyphenol content were lower. Evolution of CO2 increased 2.7-times when mesquite and 2.4-times when huisache leaves were added to soil. During all stages of decomposition and in all treatments, C mineralization of leaves from mesquite was greater than from huisache leaves. Mesquite leaves induced an increase in mineral N of 25.6 mg N kg–1 soil after 56 days and those of huisache 9.8 mg N kg–1. Twenty-six percent of N from mesquite leaves and 11% of huisache was mineralized, if no priming effect was considered. Nitrogen release from the leaves was greater when the soil organic matter content was lower. It was found that soil under the canopy of mesquite and huisache effectively accumulated organic material, micro-organisms and valuable nutrients. In an alley cropping system huisache might be a better choice than mesquite as huisache grows faster than mesquite and sheds its leaves twice a year while mesquite only once, although the amount of N mineralized was larger from mesquite leaves than from those of huisache.  相似文献   

7.
The allelopathy of a serious weed, barnyard grass (Echinochloa crus-galli L.), was investigated. Root exudates of young barnyard grass showed allelopathic effects and plant-selective activity and inhibited root elongation of all plants tested. With respect to shoot growth, the exudates did not show inhibition of barnyard grass only. The allelopathic substance was isolated and identified as p-hydroxymandelic acid by NMR. p-Hydroxymandelic acid strongly inhibited shoot growth and root elongation of all plants tested. The effects of three congeners of p-hydroxymandelic acid were tested on rice shoot growth. In the biological activity exhibited in rice, shoot growth was related to the hydroxyl groups. Received October 7, 1998; accepted March 29, 1999  相似文献   

8.
Plant Growth Inhibitory Compounds from Aqueous Leachate of Wheat Straw   总被引:3,自引:0,他引:3  
When seedlings of lettuce, cress, rice and wheat were incubated with the leachate of wheat straw, the roots growth of lettuce and garden cress were particularly inhibited. The leachate of wheat straw (100 g eq./l) showed 80.5 and 79.4% inhibition for lettuce and cress roots, respectively. The inhibitory activity was stronger as the concentration of wheat straw leachate was greater. This result indicates that allelochemical(s) inhibiting the roots growth of lettuce and cress are leached from the wheat straw into the water. Two potent compounds were isolated from the leachate of the wheat straw and identified as syringoylglycerol 9-O-β-d-glucopyranoside and l-tryptophan by spectral analyses. Syringoylglycerol 9-O-β-d-glucopyranoside inhibited the roots growth of lettuce and cress at concentrations greater than 0.1 and 10.0 μM, respectively. On the other hand, l-tryptophan inhibited the roots growth of lettuce and cress at concentrations greater than 0.1 and 1.0 μM, respectively. The content of syringoylglycerol 9-O-β-d-glucopyranoside and l-tryptophan in the leachate of wheat straw (100 g eq./l) was 18.4 ± 0.7 and 6.2 ± 0.6 μM, respectively. Syringoylglycerol 9-O-β-d-glucopyranoside (18.4 μM) showed 21.5 and 13.5% inhibition in the lettuce and cress roots assay, respectively. On the other hand, 6.2 μM of l-tryptophan showed 47.5 and 35.0% inhibition in the lettuce and cress roots assay, respectively. These results suggested that l-tryptophan may be a major contributor to the allelopathy in aqueous leachate of wheat straw and syringoylglycerol 9-O-β-d-glucopyranoside may be a minor contributor.  相似文献   

9.
The time-dependence of Mn accumulation was confirmed in potato foliage (Solanum tuberosum. L.cv. Norland) grown in solution culture. Older leaves grown at 0.61 mM Mn had substantially higher Mn concentrations than younger leaves and stem samples. Levels of Mn in older leaves increased steadily from 4000 µg g–1 at one week to 8–10,000 µg g–1 at 6 weeks, but were relatively constant in the emerging leaves. Even foliage grown at low Mn levels (0.01 mM Mn) had 4 fold gradients in Mn concentration from younger (40 µg g–1) to older leaves (180 µg g–1).At 0.61 mM Mn, concentrations of 3–4000 µg g–1 in the youngest fully-developed leaves did not bring about any decline in yield, and levels of up to 5000 µg g–1 occurred in individual potato leaves before Mn toxicity symptoms were observed. Potato foliage grown at the high Mn had similar leaf numbers, but showed an increased stem length and smaller leaves than foliage grown at 0.01 mM Mn. In particular, the leaf area of the middle and lower leaf fractions were affected by the high Mn level.The ability of rapidly growing plants to withstand high concentrations of Mn is discussed in relation to the pattern of dry matter and Mn accumulation shown by potato foliage.  相似文献   

10.
An allelopathic interaction of a pasture-forest intercropping system was evaluated by field and greenhouse experiments and by laboratory assays. A study site was situated in the farm of Hoshe Forestry Experiment Station at Nantou County, Taiwan. After deforestation of Chinese fir (Cunninghamia lanceolata), a split plot design of 8 treatments was set up: open ground without planting as control, planted with kikuyu grass, planted with kikuyu grass andAlnus formosana, planted with kikuyu grass andZelkova formosana, planted with kikuyu grass andCinnamomum camphora, planted withA. formosana, planted withZ. formosana, and planted withC. camphora. Field measurements showed that weeds grew luxuriantly six months after treatment in plots which had not been planted with kikuyu grass. However, the growth of weeds was significantly retarded but that of woody plants was not affected when the plots were planted with kikuyu grass. As compared with the tap water control, the aqueous leachate of kikuyu grass stimulated the seedling growth ofC. camphora andA. formosana, but the extract stimulated the growth ofC. camphora and inhibited that ofA. formosana. In contrast, the aqueous extracts of three hardwood plants exhibited variable inhibition on the root initiation of kikuyu grass, and the extract ofZ. formosana revealed the highest phytotoxic effect. The aforementioned extracts and leachates were bioassayed against seed germination and radicle growth of four test plants, namely annual rye grass, perennial rye gras, tall fescue, and Chinese cabbage and against seedling growth ofMiscanthus floridulus. The extract ofZ. formosana revealed the highest phytotoxic effect on the test species while that of kikuyu grass showed the least effect. By means of paper chromatography and high performance liquid chromatography, phytotoxic phenolics were identified and the amount of phytotoxins present was highest in the extract ofZ. formosana but was lowest in that of kikuyu grass. The degree of phytotoxicity and amount of phytotoxins was in good correlation, indicating that a selective allelopathic effect was involved. The findings suggest that allelopathy may contribute benefits in the intercropping system to reduce the need for herbicides and to lessen the labour cost for weed control.Paper No. 346 of the Scientific Journal Series of the Institute of Botany, Academia Sinica, Taipei, Taiwan, Republic of China. This study was supported in part by grants of Academia Sinica, Taipei, and Council of Agriculture, Executive Yuan of the Republic of China.  相似文献   

11.
Tsukaya H  Shoda K  Kim GT  Uchimiya H 《Planta》2000,210(4):536-542
 Heteroblasty in Arabidopsis thaliana was analyzed in a variety of plants with mutations in leaf morphology using a tissue-specific β-glucuronidase gene marker. Some mutants exhibited their mutant phenotypes specifically in foliage leaves. The phenotypes associated with the foliage-leaf-specific mutations were also found to be induced ectopically in cotyledons in the presence of the lec1 mutation. Moreover, the features of an emf1lec1 double mutant showed that cotyledons can be partially converted into carpelloids. When heteroblastic traits were examined in foliage leaves in the presence of certain mutations or natural deviations by histochemical analysis of the expression of the tissue-specific marker gene, it was found that ectopic expression of the developmental program for the first foliage leaves in lec1 cotyledons seemed to affect the heteroblastic features of the first set of foliage leaves, while foliage leaves beyond the third position appeared normal. Similarly, in wild-type plants, discrepancies in heteroblastic features, relative to standard features, of foliage leaves at early positions seemed to be eliminated in foliage leaves at later positions. These results suggest that heteroblasty in foliage leaves might be affected in part by the heteroblastic stage of the preceding foliage leaves but is finally controlled autonomously at each leaf position. Received: 9 July 1999 / Accepted: 17 August 1999  相似文献   

12.
Root rot of pawpaw (Carica papaya L.) reported in Nigeria is caused byPythium aphanidermatum which was consistently isolated from diseased plant parts and highly pothogenic. Out of 16 different media tested, it grew best on corn-meal-agar (CMA) and CMA supplemented with cellulose and sucrose. The highest number of oospores/ml was on CMA with average diameter of 19.9±0.1 µm. The symptom is characterized by dark brown rot of roots, absence of secondary roots and disintegration of internal tissue of the main root. These cause the progressive decline of the aerial parts of the tree untill it dies.  相似文献   

13.
An organ-specific-growth inhibitory substance was isolated from an aqueous methanol extract of red pine needles and determined by spectral data as 1-mono(16-hydroxyhexadecanoyl)glycerol. This substance inhibited root growth of cress (Lepidium sativum L.) and barnyard grass (Echinochloa crus-galli (L.) Beauv) seedlings at concentrations greater than 0.01 and 0.03???M, respectively. The concentrations required for 50?% growth inhibition on roots of cress and barnyard grass were 0.16 and 3.4???M, respectively. However, the inhibitory activity of the substance on shoots of cress and barnyard grass was very weak. The endogenous concentration of 1-mono(16-hydroxyhexadecanoyl)glycerol in the pine needles was 4.6???mol?kg?1. Two related compounds, 1-monohexadecanoylglycerol and 16-hydroxyhexadecanlic acid had no activity up to 1,000???M on cress roots and shoots. The effectiveness of 1-mono(16-hydroxyhexadecanoyl)glycerol on root growth inhibition and the occurrence of 1-mono(16-hydroxyhexadecanoyl)glycerol in pine needles suggest the substance may play an important role in the allelopathy of red pine. Root-specific-growth-inhibition by the substance may be one of the strategies for red pine to compete with neighboring plants for nutrients and space because root growth of competitive plants may be very important for their whole plant development.  相似文献   

14.
The water hyacinth (Eichhornia crassipes (Mart.) Solms.) plants in lakes and reservoirs have gained considerable attention in tropical and sub-tropical parts of the world due to its rapid growth. The amount of nutrients released from the dead plant materials is of particular interest. Thus, decomposition of water hyacinth plant parts under aerobic conditions was studied in the laboratory. Roots, petioles, and leaves of water hyacinth were enclosed separately in one litre polypropylene bottles which contained 500 ml of lake water. To study the influence of bacteria on the decomposition, antibiotics were added to half of the bottles. We observed that decomposition of leaves and petioles without antibiotics were relatively rapid through day 61, with almost 92.7 and 97.3% of the dry mass removed, respectively. Weight loss due to bacterial activities during 94 days decomposition was 22.6, 3.9, and 30.5% from leaf, petiole, and root litter. Decomposition of litter in lake water indicated that after 94 days 0.6, 0, and 0.6 g m–2 of leaf, petiole, and root N was dissolved in leachate, while 23.1, 14.4, and 6.0 g m–2 of leaf, petiole, and root N was either volatilized or remained as particulate organic N. Moreover, 0.2, 0, and 0.1 g m–2 of leaf, petiole, and root P remained dissolved in the leachate, while 3.1, 3.4, and 1.1 g m–2 of leaf, petiole, and root P was either precipitated or remained as particulate organic P. The carbon dynamics during the decomposition indicated that 7.4, 28.8, and 3.7 g m–2 of leaf, petiole, and root C remained dissolved in the leachate after 94 days while 228.0, 197.6, and 107.4 g m–2 of leaf, petiole, and root C was either diffused or remained as particulate organic C. These findings are useful for quantifying the nutrient cycles of very shallow lakes with water hyacinth under aerobic water environment. Further examination of the fate of the plant litter as it moves down in deep anaerobic water environment, is necessary to understand the leaching process better.  相似文献   

15.
G. Naidoo  S. Naidoo 《Oecologia》1992,90(3):445-450
Summary Flooding responses in Sporobolus virginicus (L.) Kunth., a perennial C4 grass, propagated from plants collected on the fringes of a mangrove swamp, were examined in a glasshouse study over 42 days. Flooding significantly reduced soil redox potential, induced adventitious root development, shifted resource allocation from below- to above-ground components without affecting total biomass accumulation and significantly decreased below-ground/above-ground biomass ratios. Although soil waterlogging significantly increased alcohol dehydrogenase activity (ADH) after 30 h, significant increase in central air space by 45–50% of the cross-sectional stem area eliminated root hypoxia, and ADH activity decreased to levels equivalent to drained controls after 42 days. In addition, flooded plants exhibited significantly higher carbon dioxide assimilation rates but similar relative growth rates (RGR) to drained controls. The results indicate that S. virginicus responds to water-logging by a combination of metabolic, morphological and anatomical mechanisms, which may account for its widespread distribution in coastal lagoons, estuaries and marshes.  相似文献   

16.
The effects of root feeding by larvae of Sitona hispidulus (F.) (a common weevil pest of white clover) on the rate of transfer of nitrogen between plants of white clover (Trifolium repens L.) and perennial ryegrass (Lolium perenne L.) were investigated using a nutrient slant board technique. Clover plants, labelled with 15N were grown adjacent to ryegrass plants and were either infested with Sitona larvae or not infested. Ryegrass plants associated with the infested clover plants had a significantly higher dry matter yield and nitrogen content (75% and 74% respectively) than the uninvested plants, after 33 days exposure to insect herbivory. It was concluded that root feeding insects could play an important role in the cycling of nitrogen in grass/clover swards.  相似文献   

17.
High rooting percentages and high-quality adventitious root systems for papaya (Carica papaya L.) were obtainedin vitro by appropriate auxin source, duration of exposure to auxin and use of riboflavin. Root initiation of papaya shoots was higher using IBA than IAA, NAA or PCPA. Maximum rooting percentage (96%) was achieved by exposure of shoots to a medium containing 10 µM IBA for 3 days before transfer to a hormone-free medium. However, the resultant plants had small shoots and callused roots. Shoot and root growth were improved when shoots were transferred after 2 days from medium containing 10 µM IBA to hormone-free medium containing 10 µM riboflavin. Good root initiation, and root and shoot growth were also obtained when shoots were incubated for 2 days in darkness on a medium containing 10 µM IBA and 31 µM riboflavin before transfer to light. Alternatively, cultures could be placed in the light on medium containing 10 µM IBA, and after 1 day the medium overlaid with 300 µM riboflavin (1 ml over 10 ml of medium).  相似文献   

18.
A number of defense polypeptides from latent seeds of weed cereal barnyard grass (Echinochloa crusgalli L.) has been isolated and characterized using an acidic extraction and high performance liquid chromatography methods in combination with MALDI-TOF mass spectrometry and Edman sequencing. Members of three antimicrobial peptide families and two protease inhibitor families were found to be localized in barnyard grass seeds. Their biological activity concerning to Gram-Positive and Gram-Negative phytopathogenic bacteria, as well as oomycete Phytophthora infestans, has been investigated. Diversity of barnyard grass defense peptides is a significant factor that provides a resistance of E. crusgalli seeds to germination and latent phases.  相似文献   

19.
Summary Leaves and litter of two phanerogams (Acaena magellanica (Lam.) Vahl and Poa flabellata (Lam.) Hook. f.) were collected in spring on the subantarctic island of South Georgia. Leaves immersed in water lost up to 80% of their total available soluble carbohydrates after 6–8 h. The loss of K+ and PO 4 3- followed a similar pattern to that shown by the carbohydrates. Up to 9 daily freeze/thaw cycles gave no increase in metabolite loss for senescent leaves. GLC analysis showed sucrose to be the principal leachate from Acaena. Sucrose, glucose and fructose were the main leachates from Poa. A significant proportion of the soluble carbohydrates in standing dead leaves was trehalose. The relationship of such leachates to microbial decomposition is discussed.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号