首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
When nuclei from 3H-RNA-containing amebae (A. proteus), chased for as many as 8 cell generations, are implanted into unlabeled enucleate cells, the nuclei retain 30% or more of the cellular 3H-RNA (or at least 15 times the cytoplasmic concentration of 3H-RNA). After such cells divide, the daughter nuclei retain approximately the same proportion of total cellular 3H-RNA—although all (or almost all) of the nuclear RNA is liberated to the cytoplasm during mitosis. Thus, we conclude that RNA stably associated with the interphase nucleus has a particular affinity for the nucleus despite the fact it is in the cytoplasm when the chromosomes are condensed and the nuclear envelope is not intact.  相似文献   

2.
It was shown by autoradiography in previous papers that RNA which is synthesized before mitosis and located in the nuclei, enters the cytoplasm at the onset of mitosis and returns to the nuclei of the daughter cells after mitosis. In order to study thenature of this migrating RNA we performed a sedimentation analysis of RNA isolated from the cytoplasm and chromosomes (nuclei) of metaphase and interphase cells in the synchronized culture of the Chinese hamster. Whereas the cytoplasm of interphase cells is found to contain RNA with sedimentation constants not higher than 28S, the cytoplasm of metaphase cells includes precursors of ribosomal and messenger RNA with sedimentation constants 32S, 45S and even higher. This means that RNA migrating from nuclei to cytoplasm during cell division retains its nuclear character. It is suggested that this property provides for the return of RNA synthesized before mitosis to the nuclei of the daughter cells.  相似文献   

3.
Rat intestinal mucosa was separated by eversion and vibration to provide a sequence of fractions from predominantly villus cells to predominantly crypt cells. The proportions of these cell types in each fraction were computed from the concentrations of alkaline phosphatase (villus cells) and thymidine kinase (crypt cells) in each population. The isolated mucosal fractions varied from about 90% villus cells to 90% crypt cells. Following injection of the rats with [3H]thymidine, the nuclei were isolated from each mucosal cell fraction and the amount of radioactivity incorporated into DNA was measured as an index of crypt cell abundance. The isolated nuclei were also incubated with ribonucleoside triphosphates and the amount of RNA synthesized was measured. Nuclei labeled with [3H]thymidine were found only in fractions rich in crypt cells, whereas capacity for RNA synthesis remained very active in mucosal fractions consisting predominantly of villus cells. It is concluded that non-dividing villus cells continue to make RNA.  相似文献   

4.
5.
Summary The possibility that 32PO 4 3- (32Pi) labeling of both chloroplast and non-chloroplast RNAs during light-induced chloroplast development in Euglena is due, in part, to the break-down of existing RNAs and their resynthesis into labeled RNAs has been examined by comparing the RNA content of dark-grown, non-dividing cells after completion of light-induced chloroplast development with that of identical cells maintained in darkness for the same period of time. The involvement of the photo-conversion of protochlorophyll to chlorophyll and other photoreceptor systems in the labeling of RNA during chloroplast development has been considered by comparing the labeling pattern obtained with wild-type cells with the patterns obtained with mutants of Euglena which either lack detectable amounts of protochlorophyll and chlorophyll or form only rudimentary chloroplasts upon light induction.No significant difference in RNA content between dark-grown, non-dividing cells containing fully developed chloroplasts and the same cells maintained in darkness for the development period can be detected. This observation is interpreted to mean that in non-dividing cells precursors for chloroplast-associated RNAs are derived from pools and pre-existing RNAs, including non-chloroplast RNAs, and that the matebolic entrapment of 32Pi involves a light-dependent turnover and DNA-directed RNA synthesis in wild-type cells.The RNA profiles on sucrose gradients of mutants of Euglena show no remarkable deviation from the profile established for wild-type cells. The labeling patterns obtained after 24 hours of incubation in light and in darkness differ from that obtained for wild-type cells in that all mutants show less of a light-minus-dark difference than wild-type and that mutants lacking plastid-associated DNA and detectable amounts of chlorophyll incorporate considerably more 32Pi into RNA in darkness than wild-type. One such mutant shows no significant difference in its light-dark labeling pattern.These observations indicate that cells possessing normal proplastids capable of forming functional chloroplasts regulate metabolism of RNA in darkness in a different manner than with either rudimentary chloroplasts or containing no detectable plastids structures. The possible involvement of more than one photoreceptor system in metabolic control is discussed.Supported by a grant from the National Institutes of Health, GM 14595  相似文献   

6.
7.
During vegetative growth of the cellular slime mold Dictyostelium discoideum, RNA is rapidly labeled by radioactive precursor and both the 25 S and the 17 S ribosomal RNA species appear in the cytoplasm 6–7 min after the onset of labeling. Thirty minutes after further incorporation of radioactive RNA precursors has been blocked, less than 10% of the label in RNA is associated with the nuclear fraction. After aggregation of the slime mold amoebae, RNA appears in the cytoplasm at a reduced rate, the small ribosomal subunit appearing in the cytoplasmic fraction more slowly than the larger ribosomal subunit. Some labeled RNA remains in the nuclei of developing cells long after the incorporation of 3H-uridine is blocked.  相似文献   

8.
Conditions were established for the maximal synthesis of RNA by Xenopus cultured cell nuclei. These differed from those for mammalian nuclei in having a lower K+ optimum. The Xenopus nuclei showed all three RNA polymerase activities and processed rRNA to 28 S and 18 S species. Extracts of full-grown oocytes stimulated the rate of RNA synthesis 2.5-fold and caused it to continue linearly for at least 6 hr. This full effect could be produced by preincubation of the nuclei with oocyte extract, followed by their reisolation and assay under standard conditions, provided that the four ribonucleotide triphosphates were present during the preincubation. The stimulatory factor(s) were mainly present in the cytoplasm of the oocyte. They produced quantitatively identical stimulations of RNA synthesis in hamster nuclei. The overall stimulatory effect of cell extracts disappears in the egg, remains absent through cleavage, but reappears at the late blastula stage. This corresponds to the changes in RNA synthesis believed to occur in early development. The extracts affect polymerases I and III, but not II to a significant extent. They also stimulate the incorporation of [γ-32P]ATP and GTP into RNA, though to a lesser extent than the incorporation of [3H]UTP. The egg extract inhibits γ-32P incorporation. There therefore seems to be some effect on the initiation of new chain synthesis, but its magnitude is uncertain, and the effect could be indirect.  相似文献   

9.
RNA synthesis during pollen embryogenesis in cultured anther segments of Hyoscyamus niger (henbane) has been followed by autoradiography of 3H-uridine incorporation. Embryogenic divisions were initiated in binucleate pollen grains in which the generative nucleus or both generative and vegetative nuclei synthesized RNA. When the first haploid mitosis in culture resulted in pollen grains with two nearly identical nuclei, those in which both nuclei synthesized RNA became embryogenic. Binucleate pollen grains in which 3H-uridine incorporation was confined exclusively to the vegetative nucleus gradually became starch-filled and nonembryogenic. Based on the degree of involvement of the vegetative nucleus in embryoid formation, some differences were noted between the counts of autoradiographic silver grains over cells cut off by the generative and vegetative nuclei during progressive embryogenesis. The possible significance of RNA synthesis in the nuclei of binucleate pollen grains in determining the pathway of embryogenic divisions is discussed.  相似文献   

10.
Incubation of nuclei from rat liver or human leukemic cells in the presence of 3H-UTP2 and other factors results in th incorporation of label into a material precipitable by acid, alcohol or ether. This materials is isolated by phenolsds extraction, is sensititve to ribonuclease digestion and presumed to be RNA.

The addition of Cu++ to the incubation system is necessary to inhibit RNA breakdown and allows the isolation of undegraded RNA without interefering with th incorporation of radiosactivity. The time patterns of labl incorporation by the two nuclei preparations are different. Whereas label incorporation by th two nuclei preparations are different. Whereas labelincorporation by liver nuclei continues to increase up to 60 minutes, incorporation by th leukemic nuclei is high during the first 10 minutes and continues at a slower rate up to 45 minutes of incubation. further, th two nuclei preparations also synthesize diferent RNA species. While liver nuclei synthesize RNA sedimenting at 4.5S and 7S to 13S, leukemic nuclei synthesize a heterogeneous, polydisperse type of RNA.  相似文献   

11.
12.
Summary RNA synthesis was examined by radioautography in mouse doudenal epithelium using 3H-uridine as a tracer of the salvage pathway and 3H-orotic acid as a tracer of the de novo pathway. The incorporation of the two precursors was estimated by counting silver grains in light-microscopic and electron-microscopic radioautographs at successive levels of crypt and villus. With both precursors, silver grains were found over all epithelial nuclei, but in numbers varying by location. Thus, after 3H-uridine injection, the number of grains was high over nucleolus and nucleoplasm in the base of the crypt, declined gradually in the middle and top of the crypt, and was low along the villus. After 3H-orotic acid, the number of grains was fairly low throughout, but peaked over the nucleoplasm in lower villus cells. The 3H-uridine reaction over nucleolus and nucleoplasm in crypt cells was interpreted as synthesis by the salvage pathway of ribosomal RNA and heterogeneous RNA, respectively, whereas the 3H-orotic acid reaction over the nucleoplasm of some villus cells indicated that these cells synthesized heterogeneous RNA by the de novo pathway.  相似文献   

13.
Syngeneic spleen cells from normal, non-immune Fischer 344/N rats and allogeneic spleen cells from normal Wistar-Furth rats became cytotoxic, in vitro, to chemically induced Fischer rat sarcoma (MC3-R) target cells following incubation with xenogeneic Immune RNA (I-RNA) extracted from spleens of guinea pigs immunized with MC3-R tumor cells. I-RNA extracted from intact spleen cells or from the cytoplasmic fraction of spleen cells were equally active. RNA extracted from isolated spleen cell nuclei was inactive, as were all RNA fractions from spleen cells of nonspecifically immunized guinea pigs. Syngeneic I-RNA extracted from intact spleen cells or the cytoplasmic fraction of cells from spleens of Fischer rats bearing growing MC3-R transplants mediated cytotoxic reactions against MC3-R target cells when incubated with normal Fischer rat spleen cells. RNA from the nuclei of spleen cells of rats bearing MC3-R tumors was considerably less active. All RNA fractions from spleen cells of normal non-immune Fischer rats were inactive. The immunologically active component of xenogeneic and Syngeneic I-RNA, therefore, were found to be localized in the cytoplasm of specifically sensitized lymphoid cells.  相似文献   

14.
Short fragments consisting of about 100 to 140 deoxyribonucleotides serve as intermediates in the elongation of polyoma DNA. In nuclei isolated from polyoma-infected 3T6 mouse fibroblasts these fragments are initiated by stretches of RNA. We investigated the nature of the ribo- and deoxyribonucleotides at the RNA-DNA link. DNA was synthesized in vitro from each of the four α-32P-labelled deoxynucleoside triphosphates, the nascent strands were hydrolysed with alkali and the transfer of isotope to ribonucleotides was studied after fractionation of strands according to size. Each strand contained on the average one RNA-DNA link at the 5′ end of DNA. All four common ribo- and deoxyribonucleotides were present at the RNA-DNA link with close to equal frequency, irrespective of chain length or incubation time.In a second approach, daughter strands synthesized in vivo were treated with alkali and the 5′-OH ends of DNA liberated were 32P-labelled using polynucleotide kinase. All four deoxynucleotides were labelled by this treatment confirming the corresponding results of the in vitro experiments.During the discontinuous synthesis of polyoma DNA the switch from RNA to DNA synthesis is thus not effected by a specific sequence at the RNA-DNA junction, in contrast to Escherichia coli where the sequence p(rPy)p(dC)p was reported.  相似文献   

15.
The behavior of nuclear proteins in Amoeba proteus was studied by tritiated amino acid labeling, nuclear transplantation, and cytoplasmic amputation. During prophase at least 77% (but probably over 95%) of the nuclear proteins is released to the cytoplasm. These same proteins return to the nucleus within the first 3 hr of interphase. When cytoplasm is amputated from an ameba in mitosis (shen the nuclear proteins are in the cytoplasm), the resultant daughter nuclei are depleted in the labeled nuclear proteins. The degree of depletion is less than proportional to the amount of cytoplasm removed because a portion of rapidly migrating protein (a nuclear protein that is normally shuttling between nucleus and cytoplasm and is thus also present in the cytoplasm) which would normally remain in the cytoplasm is taken up by the reconstituting daughter nuclei. Cytoplasmic fragments cut from mitotic cells are enriched in both major classes of nuclear proteins, i.e. rapidly migrating protein and slow turn-over protein. An interphase nucleus implanted into such an enucleated cell acquires from the cytoplasm essentially all of the excess nuclear proteins of both classes. The data indicate that there is a lack of binding sites in the cytoplasm for the rapidly migrating nuclear protein. The quantitative aspects of the distribution of rapidly migrating protein between the nucleus and the cytoplasm indicate that the distribution is governed primarily by factors within the nucleus.  相似文献   

16.
《Experimental mycology》1983,7(4):344-361
The systemic fungicide metalaxyl preferentially inhibits [3H]uridine incorporation into RNA by mycelium ofPhytophthora megasperma f. sp.medicaginis. Even at high concentrations of metalaxyl inhibition is not complete but circa 80%. Neither uptake of [3H]uridine nor its conversion into UTP is inhibited, indicating that interference with RNA synthesis takes place. Synthesis of RNA that lacks poly(A) sequences is more affected than that of poly(A)+ RNA. Metalaxyl has no effect on the activity of RNA polymerases present in mycelial extracts fromPhytophthora nor on that of polymerases I and II that have been partially purified with a procedure involving precipitation with polyethyleneimine, selective elution of RNA polymerases from the polyethyleneimine precipitate, ammonium sulfate fractionation, and DEAE-Sephadex chromatography. RNA polymerase II in mycelial extracts is half-maximally inhibited by α-amanitin at concentrations below 0.01 ¼g/ml. Both metalaxyl and α-amanitin inhibit endogenous RNA polymerase activity of isolated nuclei ofPhytophthora. According to their sensitivity to metalaxyl and α-amanitin, three types of endogenous activity can be distinguished: (a) an α-amanitin-sensitive type, the activity of which is stimulated by ammonium sulfate; (b) an α-amanitin-insensitive but metalaxyl-sensitive type; and (c) a type insensitive to both metalaxyl andα-amanitin. The first type of activity is characteristic of RNA polymerase II; the identity of the latter two remains to be elucidated. Metalaxyl andα-amanitin do not have any effect on free nuclear polymerases when assayed at a concentration of 50 mM ammonium sulfate with poly[d(A-T)] as exogeneously added template in the presence of actinomycin D to inhibit endogenous RNA polymerase activity. At 250 mM ammonium sulfate the free polymerase activity becomes α-amanitin sensitive but remains metalaxyl insensitive. Metalaxyl apparently inhibits RNA synthesis by specific interference with template-bound andα-amanitin-insensitive RNA polymerase activity. Endogenous polymerase activity of nuclei isolated from a metalaxyl-resistant mutant ofP. megasperma f. sp.medicaginis is not inhibited by metalaxyl, indicating that interference with RNA synthesis is the primary action of metalaxyl and that modification of the target site may lead to resistance.  相似文献   

17.
The RNA and protein content of perennial ryegrass root-tip galls induced by Longidorus elongatus were measured from transverse sections and the morphology described. Galls progressed through five distinct stages and were viable for only 10-12 days at 18 C, after which they collapsed and became necrotic. In the initial stage hypertrophy occurred and cells contained enlarged nuclei and nucleoli, a greater proportion of cytoplasm, and increased concentrations of protein. This was followed by hyperplasia; cells divided to give two or four daughter cells, accompanied by a proportionate reduction in volumes of cytoplasm, nuclei, and nucleoli and reduced concentrations of RNA and protein. The third stage was secondary hypertrophy with enlarged, amoeboid nuclei and nucleoli and a significant increase in concentration of RNA and protein. In the final two stages, as feeding by L. elongatus progressively removed cell contents, most cells were devoid of inclusions and galls collapsed and were invaded by soil bacteria. This ordered development and exploitation of galls suggests that L. elongatus may have two phases in its feeding.  相似文献   

18.
NEWLY SYNTHESIZED RNA IN NUCLEI ISOLATED FROM NERVE AND GLIAL CELLS   总被引:1,自引:1,他引:0  
—Nuclear RNA from neurones, astrocytes and other glial cells was pulse-labelled in vivo with [3H]uridine and analysed by sucrose density-gradient centrifugation after various periods of incorporation. Thirty min after the injection of the isotope, rapidly-labelled RNA appeared in all three cell types, a heterogeneous fraction sedimenting above 30S, the others at 25 and 12S. The transformation rate of the two latter components was equally rapid in all three types of nuclei studied. These components are assumed to be of messenger nature. The heavy fractions underwent transformations which in other cells have been described to lead to rRNA formation. The temporal pattern as well as the sequence of changes were similar in nuclei from neurones and astrocytes, the only difference being that a 35S intermediate was found in the former and a 32S in the latter. In non-astrocytic glial nuclei, synthesis and transformation of the 45S component were delayed as compared to the other cell types and the processing of this component may involve both a 32S and a 35S intermediate. Moreover, the radioactivity incorporated in all the nuclear RNA species was always lower in these cells.  相似文献   

19.
Embryonic mouse fibroblasts divide approximately twelve times in vitro prior to cessation of mitotic activity. During this period of cellular senescence the thermosensitivity of the RNA polymerase activity of isolated nuclei has been examined as a means of detecting the possible accumulation of defective enzyme molecules, as has been found by other workers for several cytoplasmic enzymes during the ageing of human fibroblasts in vitro.
The total RNA polymerase activity of nuclei isolated from old (10th generation) cells is more thermoresistant than that of young (2nd generation) cells. However, the net RNA polymerase activity of nuclei from non-dividing (confluent) cells is more thermoresistant than that of exponentially growing cells of the same age. When allowance is made for the state of growth of the cultures, little difference is seens in the thermosensitivity of the activities of nuclei from old and young cells. Neither is there any difference between the thermosensitivity of the net activity of an established line of murine fibroblasts (L-cells) and cells in primary culture.
Preheating nuclei increases the inhibition of their total RNA polymerase activity by or-α-amanitin, indicating that RNA polymerase II is the most heat resistance species present. There appears to be no difference between the thermosensitivity of the α-amanitin sensitive and resistance species of the enzyme in the nuclei of old and young cells.
It is concluded that old cells resemble non-dividing young cells in containing a higher proportion of RNA polymerase II in their nuclei, resulting in greater thermoresistance of the total RNA polymerase activity over that of exponentially growing cells. However, there appears to be no increase in thermosensitivity of the enzymes with age.  相似文献   

20.
RNA synthesis in rat cerebral hemispheres at 1, 5, and 10 days of age and the relative contribution brought by neuronal and glial nuclei to RNA synthesis was investigated. The experiments were carried out both in vivo (by i.p. injection of [3H]uridine) and in vitro (either by incubation of tissue slices with [3H]uridine or by determination of RNA polymerase activities). The labeling of RNA decreases from 1 to 10 days of age both in vivo and in vitro; the decrease is of the same extent in neuronal and glial nuclei. RNA polymerase activity Mg2+-dependent does not change significantly from 1 to 10 days of age either in total, in neuronal, or in glial nuclei, whereas the Mn2+-dependent activity increases significantly over the same developmental period studied. The significance of RNA polymerase assay as an index of in vivo RNA synthesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号