首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
C3-like ADP-ribosyltransferaseses are produced by Clostridium species, Bacillus cereus, and various Staphylococcus aureus strains. The exoenzymes modify the low-molecular-mass GTPases RhoA, B, and C. In structural studies of C3-like exoenzymes, an ARTT-motif (ADP-ribosylating turn-turn motif) was identified that appears to be involved in substrate specificity and recognition (Han, S., Arvai, A. S., Clancy, S. B., Tainer, J. A. (2001) J. Mol. Biol. 305, 95-107). Exchange of Gln217, which is a key residue of the ARTT-motif, to Glu in C3 from Clostridium limosum results in inhibition of ADP-ribosyltransferase activity toward RhoA. The mutant protein is still capable of NAD-binding and possesses NAD+ glycohydrolase activity. Whereas recombinant wild-type C3 modifies Rho proteins specifically at an asparagine residue (Asn41), Gln217Glu-C3 is capable of ADP-ribosylation of poly-arginine but not poly-asparagine. Soybean trypsin inhibitor, a model substrate for many arginine-specific ADP-ribosyltransferases, is modified by the Gln217Glu-C3 transferase. Also in C3 ADP-ribosyltransferases from Clostridium botulinum and B. cereus, the exchange of the equivalent Gln residue to Glu blocked asparagine modification of RhoA but elicited arginine-specific ADP-ribosylation. Moreover, the Gln217Glu-C3lim transferase was able to ADP-ribosylate recombinant wild-type C3lim at Arg86, resulting in decrease in ADP-ribosyltransferase activity of the wild-type enzyme. The data indicate that the exchange of one amino acid residue in the ARTT-motif turns the asparagine-modifying ADP-ribosyltransferases of the C3 family into arginine-ADP-ribosylating transferases.  相似文献   

2.
Interaction of the Rho-ADP-ribosylating C3 exoenzyme with RalA   总被引:3,自引:0,他引:3  
RhoA, -B, and -C are ADP-ribosylated and biologically inactivated by Clostridium botulinum C3 exoenzyme and related C3-like transferases. We report that RalA GTPase, which is not ADP-ribosylated by C3, inhibits ADP-ribosylation of RhoA by C3 from C. botulinum (C3bot), Clostridium limosum (C3lim), and Bacillus cereus (C3cer) but not from Staphylococcus aureus (C3stau) in human platelet membranes and rat brain lysate. Inhibition by RalA occurs with the GDP- and guanosine 5'-3-O-(thio)triphosphate-bound forms of RalA and is overcome by increasing concentrations of C3. A direct interaction of RalA with C3 was verified by precipitation of the transferase with GST-RalA-Sepharose. The affinity constant (K(d)) of the binding of RalA to C3lim was 12 nm as determined by fluorescence titration. RalA increased the NAD glycohydrolase activity of C3bot by about 5-fold. Although RalA had no effect on glucosylation of Rho GTPases by Clostridium difficile toxin B, C3bot and C3lim inhibited glucosylation of RalA by Clostridium sordellii lethal toxin. Furthermore, C3bot decreased activation of phospholipase D by RalA. The data indicate that several C3 exoenzymes directly interact with RalA without ADP-ribosylating the GTPase. The interaction is of high affinity and interferes with essential functions of C3 and RalA.  相似文献   

3.
C3-like ADP-ribosyltransferases, which are produced by Clostridium botulinum, Clostridium limosum, Bacillus cereus and Staphylococcus aureus, are exoenzymes lacking a translocation unit. These enzymes specifically inactivate Rho GTPases in host target cells. Recently, a novel C3-like transferase from S. aureus with new properties was identified, raising questions regarding its function. As Rho GTPases are master regulators of several eukaryotic signal processes and S. aureus can invade eukaryotic cells, C3 might play a role as a virulence factor.  相似文献   

4.
The Rho family small GTPases are members of the Ras superfamily of small GTPases. Rho proteins were first determined to act as key regulators of many types of actin cytoskeletal-dependent cellular functions. Recent work by several investigators indicates that Rho GTPases are also critical modulators of several important intracellular and nuclear signal transduction pathways. Certain clostridial toxins and exoenzymes covalently modify, and thereby inactivate, specific types of Rho family GTPases. As such, these microbial enzymes have proven invaluable in helping to identify structural and functional attributes of Rho GTPases.  相似文献   

5.
C3-like exoenzymes are ADP-ribosyltransferases that specifically modify some Rho GTPase proteins, leading to their sequestration in the cytoplasm, and thus inhibiting their regulatory activity on the actin cytoskeleton. This modification process goes through three sequential steps involving NAD-hydrolysis, Rho recognition, and binding, leading to Rho ADP-ribosylation. Independently, three distinct residues within the ARTT loop of the C3 exoenzymes are critical for each of these steps. Supporting the critical role of the ARTT loop, we have shown previously that it adopts a distinct conformation upon NAD binding. Here, we present seven wild-type and ARTT loop-mutant structures of C3 exoenzyme of Clostridium botulinum free and bound to its true substrate, NAD, and to its NAD-hydrolysis product, nicotinamide. Altogether, these structures expand our understanding of the conformational diversity of the C3 exoenzyme, mainly within the ARTT loop.  相似文献   

6.
C3 exoenzymes from bacterial pathogens ADP-ribosylate and inactivate low-molecular-mass GTPases of the Rho subfamily. Ral, a Ras subfamily GTPase, binds the C3 exoenzymes from Clostridium botulinum and C. limosum with high affinity without being a substrate for ADP ribosylation. In the complex, the ADP-ribosyltransferase activity of C3 is blocked, while binding of NAD and NAD-glycohydrolase activity remain. Here we report the crystal structure of C3 from C. botulinum in a complex with GDP-bound RalA at 1.8 A resolution. C3 binds RalA with a helix-loop-helix motif that is adjacent to the active site. A quaternary complex with NAD suggests a mode for ADP-ribosyltransferase inhibition. Interaction of C3 with RalA occurs at a unique interface formed by the switch-II region, helix alpha3 and the P loop of the GTPase. C3-binding stabilizes the GDP-bound conformation of RalA and blocks nucleotide release. Our data indicate that C. botulinum exoenzyme C3 is a single-domain toxin with bifunctional properties targeting Rho GTPases by ADP ribosylation and Ral by a guanine nucleotide dissociation inhibitor-like effect, which blocks nucleotide exchange.  相似文献   

7.
C3 exoenzyme is a mono-ADP-ribosyltransferase (ART) that catalyzes transfer of an ADP-ribose moiety from NAD+ to Rho GTPases. C3 has long been used to study the diverse regulatory functions of Rho GTPases. How C3 recognizes its substrate and how ADP-ribosylation proceeds are still poorly understood. Crystal structures of C3-RhoA complex reveal that C3 recognizes RhoA via the switch I, switch II, and interswitch regions. In C3-RhoA(GTP) and C3-RhoA(GDP), switch I and II adopt the GDP and GTP conformations, respectively, which explains why C3 can ADP-ribosylate both nucleotide forms. Based on structural information, we successfully changed Cdc42 to an active substrate with combined mutations in the C3-Rho GTPase interface. Moreover, the structure reflects the close relationship among Gln-183 in the QXE motif (C3), a modified Asn-41 residue (RhoA) and NC1 of NAD(H), which suggests that C3 is the prototype ART. These structures show directly for the first time that the ARTT loop is the key to target protein recognition, and they also serve to bridge the gaps among independent studies of Rho GTPases and C3.  相似文献   

8.
Several bacterial protein toxins target eukaryotic cells by modulating the functions of Rho GTPases that are involved in various signal processes and in the regulation of the actin cytoskeleton. The toxins inhibit Rho functions by ADP-ribosylation or glucosylation and activate them by deamidation and transglutamination. New findings indicate that the GTPases are also targeted by various 'injected' toxins which are introduced into the eukaryotic cells by the type-III secretion system. The injected toxins do not covalently modify Rho GTPases, but manipulate their regulatory GTPase cycle by acting as GTPase-activating proteins or guanine nucleotide exchange factors.  相似文献   

9.
ADP-ribosylation factor (Arf) GTP-binding proteins are among the best-characterized members of the Ras superfamily of GTPases, with well-established functions in membrane-trafficking pathways. A recent watershed of genomic and structural information has identified a family of conserved related proteins: the Arf-like (Arl) GTPases. The best-characterized Arl protein, Arl2, regulates the folding of beta tubulin, and recent data suggest that Arl1 and Arf-related protein 1 (ARFRP1) are localized to the trans-Golgi network (TGN), where they function, in part, to regulate the tethering of endosome-derived transport vesicles. Other Arl proteins are localized to the cytosol, nucleus, cytoskeleton and mitochondria, which indicates that Arl proteins have diverse roles that are distinct from the known functions of traditional Arf GTPases.  相似文献   

10.
Small Rho GTPases are key regulators of the cytoskeleton in a great variety of cells. Rho function mediates morphological changes as well as locomotor activity. Using astrocyte cultures established from neonatal mice we investigated the role of Rho in process formation during astrocyte stellation. Using a scratch-wound model, we examined the impact of Rho on a variety of morphological and functional variables such as stellation and migratory activity during wound healing. C3 proteins are widely used to study cellular Rho functions. In addition, C3 derived from Clostridium botulinum (C3bot) is considered selectively to promote neuronal regeneration. Because the latter requires a balanced activity of neurones and glial cells, the effects of C3 protein on glial cells such as astrocytes have to be considered carefully. Low nanomolar concentrations of C3 proteins significantly promoted process outgrowth and increased process branching. Besides enzymatic inactivation of Rho by ADP-ribosylation, changes in protein levels of the various Rho GTPases may also contribute to the observed effects. Furthermore, incubation of scratch-wounded astrocyte cultures with C3bot accelerated wound healing. By inhibiting the Rho downstream effector ROCK with the selective inhibitor Y27632 we were able to demonstrate that the accelerated wound closure resulted from both enhanced polarized process formation and increased migratory activity of astrocytes into the lesion site. These results suggest that Rho negatively regulates astrocytic process growth and migratory responses after injury and that its inactivation by C3bot in nanomolar concentrations promotes astrocyte migration.  相似文献   

11.
Fertilization of the sea urchin egg triggers a Ca(2+)-dependent cortical granule exocytosis and cytoskeletal reorganization, both of which are accompanied by an accelerated protein synthesis. The signaling mechanisms leading to these events are not completely understood. The possible role of Rho GTPases in sea urchin egg activation was studied using the Clostridium botulinum C3 exotoxin, which specifically ADP-ribosylates Rho proteins and inactivates them. We observed that incubation of eggs with C3 resulted in in situ ADP-ribosylation of Rho. Following fertilization, C3-treated eggs were capable of performing cortical granule exocytosis but not the first cytokinesis. C3 caused in both unfertilized eggs and early embryos alterations in the state of actin polymerization and inhibition of the spindle formation. Moreover, C3 diminished markedly the rate of protein synthesis. These findings suggested that Rho is involved in regulating the acceleration of protein synthesis that accompanies the egg activation by sperm.  相似文献   

12.
Clostridium botulinum exoenzyme C3 inactivates the small GTPase Rho by ADP-ribosylation. We used a C3 fusion toxin (C2IN-C3) with high cell accessibility to study the kinetics of Rho inactivation by ADP-ribosylation. In primary cultures of rat astroglial cells and Chinese hamster ovary cells, C2IN-C3 induced the complete ADP-ribosylation of RhoA and concomitantly the disassembly of stress fibers within 3 h. Removal of C2IN-C3 from the medium caused the recovery of stress fibers and normal cell morphology within 4 h. The regeneration was preceded by the appearance of non-ADP-ribosylated RhoA. Recovery of cell morphology was blocked by the proteasome inhibitor lactacystin and by the translation inhibitors cycloheximide and puromycin, indicating that intracellular degradation of the C3 fusion toxin and the neosynthesis of Rho were required for reversal of cell morphology. Escherichia coli cytotoxic necrotizing factor CNF1, which activates Rho by deamidation of Gln(63), caused reconstitution of stress fibers and cell morphology in C2IN-C3-treated cells within 30-60 min. The effect of CNF1 was independent of RhoA neosynthesis and occurred in the presence of completely ADP-ribosylated RhoA. The data show three novel findings; 1) the cytopathic effects of ADP-ribosylation of Rho are rapidly reversed by neosynthesis of Rho, 2) CNF1-induced deamidation activates ADP-ribosylated Rho, and 3) inhibition of Rho activation but not inhibition of Rho-effector interaction is a major mechanism underlying inhibition of cellular functions of Rho by ADP-ribosylation.  相似文献   

13.
Pseudomonas aeruginosa causes life-threatening infections in compromised and cystic fibrosis patients. Pathogenesis stems from a number of virulence factors, including four type III translocated cytotoxins: ExoS, ExoT, ExoY and ExoU. ExoS is a bifunctional toxin: the N terminus (amino acids 96-219) encodes a Rho GTPase Activating Protein (GAP) domain. The C terminus (amino acids 234-453) encodes a 14-3-3-dependent ADP-ribosyltransferase domain which transfers ADP-ribose from NAD onto substrates such as the Ras GTPases and vimentin. Ezrin/radixin/moesin (ERM) proteins have recently been identified as high-affinity substrates for ADP-ribosylation by ExoS. Expression of ExoS in HeLa cells led to a loss of phosphorylation of ERM proteins that was dependent upon the expression of ADP-ribosyltransferase activity. MALDI-MS and site-directed mutagenesis studies determined that ExoS ADP-ribosylated moesin at three C-terminal arginines (Arg553, Arg560 and Arg563), which cluster Thr558, the site of phosphorylation by protein kinase C and Rho kinase. ADP-ribosylated-moesin was a poor target for phosphorylation by protein kinase C and Rho kinase, which showed that ADP-ribosylation directly inhibited ERM phosphorylation. Expression of dominant active-moesin inhibited cell rounding elicited by ExoS, indicating that moesin is a physiological target in cultured cells. This is the first demonstration that a bacterial toxin inhibits the phosphorylation of a mammalian protein through ADP-ribosylation. These data explain how the expression of the ADP-ribosylation of ExoS modifies the actin cytoskeleton and indicate that ExoS possesses redundant enzymatic activities to depolymerize the actin cytoskeleton.  相似文献   

14.
Botulinum C3 ADP-ribosyltransferase modifies a approximately 24 kDa membrane protein believed to bind guanine nucleotides. Cholera toxin ADP-ribosylation factors are approximately 19 kDa GTP-binding proteins that directly activate the toxin. To evaluate a possible relationship between C3 ADP-ribosyltransferase substrate and ADP-ribosylation factor, they were partially purified from bovine brain. ADP-ribosylation factor, but not C3 ADP-ribosyltransferase substrate, stimulated auto-ADP-ribosylation of the choleragen A1 subunit whereas C3 ADP-ribosyltransferase substrate, but not ADP-ribosylation factor, was ADP-ribosylated by C3 ADP-ribosyltransferase. Thus, although both may be GTP-binding proteins, no functional similarity between ADP-ribosylation factor and C3 ADP-ribosyltransferase substrate was found.  相似文献   

15.
The C3 toxin produced by Clostridium botulinum (C3bot) catalyzes the mono-ADP-ribosylation of the small GTPases Rho A, B and C, resulting in their inactivation. Recently, a specific endocytotic uptake mechanism of C3bot was identified in macrophages and myeloid leukemia cells. Here, we present a novel delivery system based upon a mutant C3bot devoid of ADP-ribosylation activity (C3Mut) and wild-type streptavidin (Stv). The C3Mut moiety mediates endocytosis into macrophages, whereas Stv functions as an adaptor protein for attaching biotinylated molecules to facilitate their subsequent internalization. First, a bioconjugate consisting of recombinant C3Mut and Stv was generated via a thioether linkage that tightly interacted with biotinylated bovine serum albumin as demonstrated by dot blot analysis. We then showed the internalization of C3Mut-Stv into J774A.1 macrophages by confocal microscopy and observed translocation into the cytosol using cell fractionation. The C3Mut-Stv bioconjugate did not affect cell viability. Next, we prepared mono-biotinylated RNase A, which was attached to the C3Mut-Stv transporter, and demonstrated its C3Mut-Stv-mediated delivery into the cytosol of J774A.1 cells. Finally, C3Mut-Stv also promoted the efficient uptake of mono-biotinylated lysozyme into J774A.1 cells, highlighting its versatility. This study intriguingly demonstrates the use of the novel C3Mut-Stv delivery system for protein transduction and may provide a basis for future applications, in particular, of cytotoxic RNase A mutants.  相似文献   

16.
Bacterial protein toxins that modify host regulatory GTPases   总被引:1,自引:0,他引:1  
Many bacterial pathogens produce protein toxins to outmanoeuvre the immune system of the host. Some of these proteins target regulatory GTPases such as those belonging to the RHO family, which control the actin cytoskeleton of the host cell. In this Review, I discuss a diversity of mechanisms that are used by bacterial effectors and toxins to modulate the activity of host GTPases, with a focus on covalent modifications such as ADP-ribosylation, glucosylation, adenylylation, proteolysis, deamidation and transglutamination.  相似文献   

17.
Rho proteins, which are involved in recepto-mediated regulation of the actin cytoskeleton, are substrates for ADP-ribosylation by Clostridium botulinum C3 toxins. Recently, it was shown that Rho and other members of the Rho subfamily of low-molecular-mass GTP-binding proteins are glucosylated by C. difficile toxins A and B. Glucosylation occurs at threonine-37, which is a crucial amino acid residue for the regulatory functions of the small GTP-binding proteins. These toxins should prove useful as tools for studying the functions of Rho proteins.  相似文献   

18.
Several bacterial toxins target Rho GTPases, which constitute molecular switches in several signaling processes and master regulators of the actin cytoskeleton. The biological activities of Rho GTPases are blocked by C3-like transferases, which ADP-ribosylate Rho at Asn41, but not Rac or Cdc42. Large clostridial cytotoxins (e. g., Clostridium difficile toxin A and B) glucosylate Rho GTPases at Thr37 (Rho) or Thr35 (Rac/Cdc42), thereby inhibiting Rho functions by preventing effector coupling. The 'injected' toxins ExoS, YopE and SptP from Pseudomonas aeruginosa, Yersinia and Salmonella ssp., respectively, which are transferred into the eukaryotic target cells by the type-III secretion system, inhibit Rho functions by acting as Rho GAP proteins. Rho GTPases are activated by the cytotoxic necrotizing factors CNF1 and CNF2 from Escherichia coli and by the dermonecrotizing toxin DNT from B. bronchiseptica. These toxins deamidate/transglutaminate Gln63 of Rho to block the intrinsic and GAP-stimulated GTP hydrolysis, thereby constitutively activating the GTPases. Rho GTPases are also activated by SopE, a type-III system injected protein from Salmonella ssp., that acts as a GEF protein.  相似文献   

19.
小分子GTP蛋白涉及肿瘤发生中多条信号通路的改变。类核糖基化因子肿瘤抑制基因1(ADP-ribosylation factor-like tumor suppressorgene1,ARLTS1),是小分子GTP蛋白Ras超家族中ARF家族的成员之一。该基因是低显性基因,可因启动子超甲基化而失调。有两种ARLTSl的多态性与肿瘤的家族风险相关。ARLTS1表达下调与部分肿瘤发生有重要关系,而恢复其表达则会诱导caspase依赖的细胞凋亡发生,并减少肿瘤的体内生长。通过基因微阵列实验发现,转导ARLTS1基因诱导细胞凋亡过程中众多涉及细胞存活、增殖和发育的信号通路。  相似文献   

20.
C3G (Crk SH3-domain-binding guanine-nucleotide-releasing factor) is a ubiquitously expressed member of a class of molecules called GEFs (guanine-nucleotide-exchange factor) that activate small GTPases and is involved in pathways triggered by a variety of signals. It is essential for mammalian embryonic development and many cellular functions in adult tissues. C3G participates in regulating functions that require cytoskeletal remodelling such as adhesion, migration, maintenance of cell junctions, neurite growth and vesicle traffic. C3G is spatially and temporally regulated to act on Ras family GTPases Rap1, Rap2, R-Ras, TC21 and Rho family member TC10. Increased C3G protein levels are associated with differentiation of various cell types, indicating an important role for C3G in cellular differentiation. In signalling pathways, C3G serves functions dependent on catalytic activity as well as protein interaction and can therefore integrate signals necessary for the execution of more than one cellular function. This review summarizes our current knowledge of the biology of C3G with emphasis on its role as a transducer of signals to the actin cytoskeleton. Deregulated C3G may also contribute to pathogenesis of human disorders and therefore could be a potential therapeutic target.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号