首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Human peripheral blood monocyte-macrophages (M) generate a novel eicosanoid during in vitro culture. The metabolite is generated during incubation of the cells with 14C — arachidonic acid (AA). Lack of prior recognition of this metabolite probably results from the facts that: 1) on thin-layer chromatography (TLC) in two standard solvent systems, the novel metabolite co-chromatographed with either prostaglandin D2 or thromboxane B2, and 2) its generation, under the conditions studied, does not occur until between 90 and 180 minutes after culture initiaton which is a time period beyond that used for most leukocyte studies. The generation of the metabolite is inhibited by nordihydroguaiaretic acid (NDGA) but not by indomethacin. Base hydrolysis did not alter its migration on TLC. On both reversed phase and straight phase high pressure liquid chromatography (HPLC), the novel peak isolated by TLC elutes as a single major peak of radioactivity with a retention time different from the known leukotrienes, hydroxy acids, or their metabolites. Furthermore, the peak isolated on HPLC has a single ultraviolet absorption maximum at 270 nm. M cultured for 1 week prior to a 24 hour incubation with 14C-AA generated proportionally less of the novel eicosanoid (roughly 68% of total radiolabeled product) than did M cultured for 3 weeks prior to a similar incubation with 14C-AA (roughly 86% of total radiolabeled product). Under the conditions studied, the novel eicosanoid is the major AA metabolite generated from exogenous AA by cultured M and it appears to be generated in increasing quantity as the M differentiate.  相似文献   

2.
The 8000 X g pellet of rabbit placenta transformed arachidonic acid into a number of lipoxygenase and cyclooxygenase products of known structure. A metabolite was also produced which was inhibited by indomethacin and required calcium for its formation. This compound had a UV absorption maximum at 227 nm under acidic or neutral conditions and gave a bathochromic shift to 281 nm under alkaline conditions. Reduction of this metabolite with sodium borohydride produced prostaglandin (PG) F2 alpha (as determined by mass spectrometry), while catalytic hydrogenation increased the molecular weight by four mass units, indicating the presence of two double bonds. Based on the mass spectrum of the derivatized metabolite, the structure proved to be 9,15-dioxo-11-hydroxyprosta-5,13-dienoic acid. This compound is produced by the term placenta and does not appear to be formed from PGE2, PGF2 alpha, or PGD2. The compound is suppressed by GSH and NADPH, but its formation is not increased by NAD or NADP. PGH2 and PGG2 are not converted to 9,15-dioxo-11-hydroxyprosta-5,13-dienoic acid under similar in vitro incubation conditions. This therefore represents conversion of arachidonate to 9,15-dioxo-11-hydroxyprosta-5,13-dienoic acid through a Ca2+-dependent, non-PG dehydrogenase pathway.  相似文献   

3.
Human cortical hydronephrotic microsomes converted [14C] arachidonic acid to [14C] thromboxane B2 as the major metabolic product. Using [14C] PGH2 as substrate, similar enzymatic conversions were noted with HHT>TXB26KPGF1αPGE2PGF2α as the major products. Inhibition of thromboxane synthetase with imidazole 5 mM reduced thromboxane B2 production by 60% and the major product then was 6 keto PGF. After addition of imidazole, the metabolic profile showed 6KPGF1αPGE2HHT>PGF2α. Control experiments were carried out using normal cortical tissue obtained from kidneys removed surgically for carcinoma of kidney and rejected for transplantation secondary to fracture as a consequence of blunt trauma. These control kidneys, while they demonstrated an ability to generate thromboxane B2in vitro, had much less activity than hydronephrotic kidneys and with PGH2 as substrate PGE2TxB2. In addition, inhibition with imidazole produced mainly PGE2. Thus, like the rabbit and rat, there is enhanced thromboxane and prostacyclin synthesis in human ureteral obstruction and are, therefore, potential vasoactive compounds which may in part be responsible for the hemodynamic alterations occurring in human obstructive uropathy.  相似文献   

4.
15(S)-Hydroxy-5,8,11,13-eicosatetraenoic acid (15-HETE) was by far the most abundant metabolite of arachidonic acid in chopped human bronchi, as identified by reverse phase HPLC, uv spectrometry, and GC/MS. The quantitation of monohydroxyeicosatetraenoic acids (mono-HETEs) was performed by the use of 16(S)-hydroxy-9(Z),12(Z),14(E)-heneicosatrienoic acid as internal standard. Thus, significant amounts of 15-HETE were obtained in incubations of bronchi in buffer alone, but the addition of exogenous arachidonic acid (3-100 microM), dose-dependently increased the formation, with maximal levels reached at around 10 min. In contrast, challenge with ionophore A23187 or anti-human IgE did not stimulate the production of 15-HETE in the bronchi. Nordihydroguaiaretic acid inhibited the production of 15-HETE, whereas indomethacin did not. Small amounts of 8,15-diHETEs were detected in incubations with exogenous 15H(P)ETE. Lipoxins were however not detected under any of the incubation conditions used. Furthermore, removal of the airway epithelium substantially diminished the production of 15-HETE in the bronchi. Finally, bronchi were obtained from three patients with asthma, and the amounts of 15-HETE in these specimens were significantly higher than those found in tissues from nonasthmatics. Also, in peripheral lung parenchyma and pulmonary blood vessels 15-HETE was the major mono-HETE after stimulation with arachidonic acid but the levels were about 10 times lower than in the bronchi. As another difference, challenge of the parenchyma with the ionophore A23187 made 5-HETE the predominant mono-HETE. Taken together, airway epithelium appears to be the major source of 15-HETE in the human lung and the findings in specimens of asthmatics raise the possibility that 15-HETE somehow is involved in airway inflammation.  相似文献   

5.
The present study was designed to determine whether platelets transfer arachidonic acid or prostaglandin endoperoxide intermediates to macrophages which may be further metabolized into cyclooxygenase products. Adherent peritoneal macrophages were prepared from rats fed either a control diet or an essential fatty acid-deficient diet, and incubated with a suspension of washed rat platelets. Macrophage cyclooxygenase metabolism was inhibited by aspirin. In the presence of a thromboxane synthetase inhibitor, 7-(1-imidazolyl)heptanoic acid, immunoreactive 6-ketoprostaglandin F1 alpha formation was significantly increased 3-fold. Since this increase was greater (P less than 0.01) than that seen with either 7-(1-imidazolyl)heptanoic acid-treated platelets or aspirin-treated macrophages alone, these results indicate that shunting of endoperoxide from platelets to macrophages may have occurred. In further experiments, macrophages from essential fatty acid-deficient rats were substituted for normal macrophages. Essential fatty acid-deficient macrophages, depleted of arachidonic acid, produced only 2% of the amount of eicosanoids compared to macrophages from control rats. When platelets were exposed to aspirin, stimulated with thrombin, and added to essential fatty acid-deficient macrophages, significantly more immunoreactive 6-ketoprostaglandin F1 alpha was formed than in the absence of platelets. This increased macrophage immunoreactive 6-ketoprostaglandin F1 alpha synthesis, therefore, must have occurred from platelet-derived arachidonic acid. These data indicate that in vitro, in the presence of an inhibition of thromboxane synthetase, prostaglandin endoperoxides, as well as arachidonic acid, may be transferred between these two cell types.  相似文献   

6.
Human peripheral blood monocytes, prelabeled with [3H]arachidonic acid (AA), release labeled eicosanoids in response to soluble or particulate stimuli. Treatment with 12-O-tetradecanoate phorbol-13 acetate (20 nM), calcium ionophores, A23187 (2 microM) or ionomycin (1 microM), or serum-treated zymosan (300 micrograms) resulted in production of cyclooxygenase (CO) metabolites, 6-keto-PG-F1 alpha, thromboxane-B2, PGE2, PGF2 alpha, PGD2, PGB2, 12-L-hydroxy-5,8,10-heptadecatrienoic acid; 15-lipoxygenase products, including 15-hydroxyeicosatetraenoic acid (HETE); and unmetabolized AA. Labeled 5-lipoxygenase (LO) products, 5-HETE, and leukotriene-B4 were detected only after exposure to ionophore or serum-treated zymosan. The calcium dependence of 5-LO activation was confirmed in experiments where calcium was omitted from the incubation medium, and EGTA (0.5 mM) was added, as well as by direct measurement of increased intracellular calcium in phagocytosing monocytes. Combined or sequential treatment with two stimuli increased the release of unmetabolized AA without a commensurate augmentation of labeled metabolites, indicating that release of CO and LO metabolites does not necessarily reflect the extent of phospholipase activation. Quantitation of individual eicosanoids by RIA confirmed results by using radionuclides. These studies show the following. Activation of human monocyte phospholipase may be regulated by at least two pathways, one "12-O-tetradecanoate phorbol-13 acetate-like," which is largely independent of calcium, and another which is mediated by increased intracellular Ca2+ ("ionophore-like"). "Physiologic" stimulation of monocyte arachidonate release, such as that seen accompanying phagocytosis of opsonized particles, may occur via either a calcium-sensitive or calcium-insensitive pathway or both. Calcium may regulate eicosanoid formation at the level of phospholipase or 5-LO. Free AA, CO products, and 12- or 15-LO products are ordinarily released after phagocytosis, but leukotriene-B4, 5-HETE, or other 5-LO metabolites are produced only under conditions where calcium concentrations are optimal.  相似文献   

7.
Mammalian cells have developed specific pathways for the incorporation, remodeling, and release of arachidonic acid. Acyltransferase and transacylase pathways function to regulate the levels of esterified arachidonic acid in specific phospholipid pools. There are several distinct, differentially regulated phospholipases A2 in cells that mediate agonist-induced release of arachidonic acid. These pathways are important in controlling cellular levels of free arachidonic acid. Both arachidonic acid and its oxygenated metabolites are potent bioactive mediators that regulate a myriad of physiological and pathophysiological processes.  相似文献   

8.
Upon melittin stimulation, cultured SCC-13 keratinocytes release prostaglandins E2, F, 6-keto-F, thromboxane B2, leukotriene B4, and 6-sulfido-peptide-containing leukotrienes (SRS) into serum free medium. Release of prostaglandins E2, F, and SRS, normalized to cell protein, is 3- to 10-fold higher from rapidly growing than confluent cultures. Cells growing with hydrocortisone in the medium produce approximately twice the level of the cyclooxygenase-mediated metabolites PGE2 and PGF as those without hydrocortisone, but similar levels of the lipoxygenase-mediated metabolite SRS. The results demonstrate the potential utility of squamous carcinoma lines for investigating biochemical pathways of arachidonic acid metabolism in keratinocytes.  相似文献   

9.
The origin of arachidonic acid (AA) found in the epidermis is not known. Two possibilities exist: either de novo synthesis within the epidermal keratinocyte, or transport of AA formed at distant tissue sites. The current study examined the ability of cultured murine and human keratinocytes to metabolize exogenously added linoleic acid (LA). Conversion of radiolabeled substrate (14C-LA) into 18:3(n-6), 20:2(n-6), 20:3(n-6), and 20:4(n-6) (AA) was noted. The conversion of non-radiolabeled 18:3(n-6) or 20:2(n-6) was also examined and the pattern of metabolites synthesized suggests that the preferred metabolic pathway for conversion of linoleic acid into arachidonic acid is via the classically described pathway in which a delta 6 desaturase constitutes the initial reaction. Although cultured skin fibroblasts are known to convert linoleic acid into arachidonic acid, the current study demonstrates that cultured epidermal keratinocytes can also avidly metabolize exogenous linoleic acid. The ability of cultured keratinocytes, and not of whole epidermis in vivo, to convert linoleic acid into arachidonic acid suggests that specific enzymatic activities may be induced by the tissue culture system itself. Hence, findings of metabolic capabilities in cultured cells may not necessarily be extrapolated to the in vivo situation.  相似文献   

10.
Human isolated monocytes possess low levels of procoagulant activity, which was stimulated 10-30 fold by brief (2 hr) exposure to 10 micrograms/ml endotoxin. This activity was expressed in normal or factor XII-deficient plasma, but lost in plasma deficient in factors X or VII, indicating that it was due to thromboplastin. The stimulation of monocyte thromboplastin by endotoxin was inhibited in a dose-dependent manner by two phospholipase A2 inhibitors, 4-bromophenacyl bromide and quinacrine, and by two lipoxygenase inhibitors, eicosatetraynoic acid and nordihydroguaiaretic acid. Two cyclooxygenase inhibitors, aspirin and indomethacin, prevented endotoxin-induced increases in thromboxane B2 production but had no effect on thromboplastin production. These results suggest that a component in the sequence of lipid deacylation, arachidonic acid release, and metabolism via lipoxygenase may mediate the stimulation of monocyte thromboplastin activity by endotoxin.  相似文献   

11.
Receptor-ligand interaction in mononuclear phagocytes is intimately linked to alterations in membrane phospholipids and release of arachidonic acid (AA). In addition, synthesis of bioactive lipids from released AA can result in further modification of cell responses. Upon challenge with opsonized zymosan, [3H]-arachidonic acid ([3H]-AA)-labeled human monocytes released 25 +/- 2% of their incorporated radiolabel within 30 min. Pretreatment of the monocytes with 5 X 10(-4) M isobutylmethylxanthine (IBMX) or 1 X 10(-3) M dibutyryl cyclic AMP (d-cAMP) inhibited total [3H]-AA release in the presence of zymosan by 47% and 42%, respectively. Analysis of incorporated [3H]-AA in cellular phospholipid pools indicated that significant amounts of label were lost from both phosphatidylcholine (PC) and phosphatidylinositol (PI) during zymosan stimulation. Treatment with d-cAMP substantially inhibited the loss of label from PC, but had no affect on PI. HPLC analysis of cell supernatants from zymosan-treated cells indicated that 5-HETE was the predominant metabolite generated from [3H]-AA, and its production was depressed during treatment with d-cAMP. Phospholipase activity in human monocyte homogenates was not effected by d-cAMP or IBMX at the highest concentrations used, whether these were added directly to the homogenate or by pretreatment of whole cells, demonstrating that inhibition required an intact cell. These results suggest that human monocytes exposed to opsonized zymosan release AA via two mechanisms and that modulation by cAMP is indirectly effecting a phospholipase directed towards PC.  相似文献   

12.
The effects of a conjugated linoleic acid (CLA) mixture of single isomers (50:50, w/w, cis9,trans11:trans10,cis12) and the individual isomers on (a) the production of resting and calcium ionophore stimulated (14)C-eicosanoids and (b) the incorporation of (14)C-arachidonic acid (AA) into membrane phospholipids of human saphenous vein endothelial cells were investigated. The CLA mixture and the individual isomers were found to inhibit resting production of (14)C-prostaglandin F(2a) by 50, 43 and 40%, respectively. A dose dependent inhibition of stimulated (14)C-prostaglandins was observed with the CLA mixture (IC(50) 100 microM). The cis9,trans11 and trans10,cis12 (50 microM) isomers individually inhibited the overall production of stimulated (14)C-prostaglandins (between 35 and 55% and 23 and 42%, respectively). When tested at a high concentration (100 microM), cis9,trans11 was found to inhibit eicosanoid production in contrast to trans10,cis12 that caused stimulation. The overall degree of (14)C-AA incorporation into membrane phospholipids of the CLA (mixture and individual isomers) treated cells was found to be lower than that of control cells and the cis9,trans11 isomer was found to increase the incorporation of (14)C-AA into phosphatidylcholine. Docosahexaenoic acid, eicosapentaenoic acid and linoleic acid did not alter the overall degree of incorporation of (14)C-AA. The results of this study suggest that both isomers inhibit eicosanoid production, and although trans10,cis12 exhibits pro-inflammatory activity at high concentrations, the CLA mixture maintains its beneficial anti-inflammatory action that contributes to its anti-carcinogenic and anti-atherogenic properties.  相似文献   

13.
Long-chain conversion of linoleic acid (LA) and eicosanoid formation was followed in 6 healthy females who were given for 6 weeks liquid formula diets which contained no arachidonic acid but, for 2 weeks each, a LA supply of 0 energy% (en%), 4 en%, and 20 en%, respectively. RESULTS: higher LA intake resulted in higher LA percentages in investigated lipids, but not in higher amounts of LA present in plasma cholesterol esters or phosphatidylcholine of LDL and HDL comparing liquid formula diet (LFD) 4 and LFD 20. A higher intake of LA resulted in a decrease of arachidonic acid, which was most prominent in HDL phosphatidycholine. Eicosanoids derived from cyclo-oxygenase activity were unchanged by LA intake, while an increase of cytochrome P450-dependent tetranorprostanedioic acid formation was observed with LFD 20. CONCLUSION: LA intake of 4 en% appears to be a recommendable intake, without signs of stimulated eicosanoid biosynthesis or oxidation.  相似文献   

14.
Cultured endothelial cells from human umbilical vein were incubated with (3H)arachidonic acid for 24 hours. The label was incorporated into phospholipids (79.3 %), neutral lipids (15.6 %) and non-esterified fatty acids (4.7 %). Upon challenge with the calcium ionophore A 23187, 5.3 % of the total radioactivity were found in supernatant and corresponded to 6-keto-prostaglandin F (1.6 %) and free arachidonic acid (3.7 %). This release was accompanied by a concomitant and selective decrease of phosphatidylcholine. It is concluded that the entry of calcium promoted by A 23187 activates a phospholipase A2 regulating the availability of arachidonic acid to the prostacyclin synthetase.  相似文献   

15.
Addition of 15L-hydroperoxy-5,8,11,13-eicosatetraenoic acid (15-HPETE) to human leukocytes led to the formation of a novel series of compounds containing four conjugated double bonds. The yield of tetraenes was increased approx. 100-fold when ionophore A23187 (5 μM) was added simultaneously with 15-HPETE. The structure of the major tetraene was established by physical methods as well as by chemical degradation and found to be 5,6,15L-trihydroxy-7,9,11,13-eicosatetraenoic acid.  相似文献   

16.
The effects of antiinflammatory steroids on arachidonic acid metabolite release from human lung fragments were analyzed. Incubation of lung fragments for 24 hr with 10(-6) M dexamethasone inhibited the net release of the prostacyclin metabolite 6-keto-PGF1 alpha, PGE2, and PGF2 alpha from lung fragments stimulated with anti-IgE but failed to inhibit the anti-IgE-induced release of PGD2, TXB2, and iLTC4. The IC50 of dexamethasone for inhibition of both spontaneous and anti-IgE-induced 6-keto-PGF1 alpha release was approximately 2 X 10(-8) M, and a 6-hr preincubation with the drug was required for 50% inhibition of prostaglandin release. Other agents were tested for activity in stimulating arachidonic acid metabolite release from human lung fragments. FMLP (fmet-leu-phe) stimulated the release of all metabolites tested (6-keto-PGF1 alpha, PGD2, PGE2, PGF2 alpha, TXB2, iLTC4); platelet-activating factor (PAF), but not lysoPAF, stimulated the release of PGD2, TXB2, and iLTC4. In contrast to the case with anti-IgE, where dexamethasone failed to inhibit net PGD2 and TXB2 release, the steroid inhibited the release of these metabolites stimulated by both FMLP and PAF. The steroid inhibited iLTC4 release induced by the highest concentration of PAF (10(-6)M) but did not inhibit iLTC4 release stimulated by either 10(-7) M PAF, FMLP, or anti-IgE. Because neither FMLP nor PAF caused the release of PGD2 or TXB2 from purified human lung mast cells, and because they also failed to induce histamine release from lung fragments, it is suggested that these stimuli produce PGD2 and TXB2 release in lung fragments through an action on a cell distinct from the mast cell. This suggestion is supported by the selective inhibition of the release of these arachidonic acid metabolites by dexamethasone. We suggest that the inhibitory action of steroids on arachidonic acid metabolite in human lung fragments contributes to their therapeutic efficacy in pulmonary diseases.  相似文献   

17.
In this work, the uptake and release of [3H]arachidonic acid by the diacyl and ether species of phosphatidylcholine (PC) and phosphatidylethanolamine (PE) in human platelets were studied. Uptake of [3H]arachidonic acid into 1,2-diacyl-PC and 1,2-diacyl-PE was much greater than into the ether phospholipids of the same class. In [3H]arachidonoyl-labeled platelets stimulated by thrombin, there was a decrease in total [3H] arachidonoyl-PC. This was accounted for mostly by a decrease in 1-acyl-2-[3H]arachidonoyl-PC while the level of 1-O-alkyl-2-[3H]arachidonoyl-PC (a precursor for platelet-activating factor) increased slightly. However, in ionophore A23187-stimulated platelets, the reduction of total [3H]arachidonoyl-PC was due to a decrease in both 1-acyl-2-[3H]arachidonoyl-PC and 1-O-alkyl-2-[3H] arachidonoyl-PC, suggesting that ionophore should yield more platelet-activating factor than thrombin. In both thrombin- and ionophore-stimulated platelets, there was a net increase in total [3H]arachidonoyl-PE. This consisted of a decrease in 1,2-diacyl-PE, which was essentially complete by 1 min, followed by an increase in 1-O-alk-1'-enyl-2-[3H]arachidonoyl-PE, which was slower and not apparent until 3-5 min after thrombin. During reincubation of labeled platelets with saline, the 1-O-alkyl-2-[3H]arachidonoyl-PC increased by a factor of 2, between 0 and 4 h, with no significant change in the radioactivity of any other phospholipid. Thus, upon stimulation of human platelets, arachidonic is released from both 1,2-diacyl-PC and 1,2-diacyl-PE for metabolism by platelet cyclooxygenase and lipoxygenase, while certain ether pools of PC and PE also collect arachidonic acid.  相似文献   

18.
T lymphocytes prelabeled with [14C] arachidonic acid failed to synthesize any eicosanoids even following stimulation with phytohemagglutinin, but they did release free [14C] arachidonic acid. Co-culture of unlabeled monocytes with the prelabeled T lymphocytes resulted in the sysnthesis of [14C] thromboxane B2, a major monocyte-derived eicosanoid. These data show that monocytes can utilize T lymphocyte-derived arachidonic acid for the synthesis of eicosanoids.  相似文献   

19.
Slices of dog spleen converted [14C]-arachidonic acid (AA) to a polar material which conjugated with [3H]-glutatione. Nordihydroguaiaretic acid (NDGA) and 5,8,11,14, Eicosatetraynoic acid (ETYA) but not indomethacin, inhibited the conversion of [14C]-arachidonic acid by the spleen slices into the polar material indicating that it is derived through the lipoxygenase pathway. Physicochemical analysis of the polar metabolite of arachidonic acid after thin-layer chromatography and high pressure liquid chromatography revealed that it has chemical properties identical to authentic leukotriene C4 standard (LTC4). The biological activity of the purified material was found to be similar to the slow reacting substance of anaphylaxis (SRS-A), viz, it caused contraction of the guinea-pig ileum which was abolished by FPL-55172, a specific SRS-A receptor antagonist. These data suggest that dog spleen slices convert arachidonic acid through lipoxygenase pathway into a polar material that appears to be identical to LTC4.  相似文献   

20.
Intraperitoneal injection of zymosan into mice induces a peritonitis characterized by cellular influx, plasma leakage and the appearance of arachidonic acid (AA) metabolites. We report that zymosan injection also stimulates the accumulation of AA, docosahexaenoic acid, linoleic acid, and phospholipase A2 (PLA2) activity. The amount of the unsaturated fatty acids (UnFA) varies both with the zymosan dose and time. Significantly increased levels of UnFA were first detected 15 min after zymosan injection. Maximal levels of the UnFA were reached 1 to 2 h post zymosan injection (AA: 725 +/- 29 ng/mouse, docosahexaenoic acid: 296 +/- 23 ng/mouse, linoleic acid: 4489 +/- 179 ng/mouse) and declined to saline control levels by 8 h. PLA2 activity was significantly increased 5 to 15 min after zymosan injection. Maximal levels of PLA2 activity occurred 15 to 30 min after zymosan injection (31.8 +/- 9.1 nmol phospholipid/mg protein/h) and then decreased by 30% through 24 h. Neither the appearance of UnFA nor PLA2 activity correlated with cellular influx, but both were coincident with plasma exudation at 5 to 15 min after zymosan. However, maximal exudation occurred 1 to 2 h post zymosan injection similar to that seen with the UnFA but not PLA2. These latter results suggest that a significant portion of the UnFA found in the peritoneal cavity of zymosan-injected mice originates from the plasma. PLA2 activity at the early time points (5 to 15 min) may also contribute to the levels of UnFA via hydrolysis of tissue and/or cellular phospholipids.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号