首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Nicotinamide (NA) when added to human lymphocytes in vitro together with a mitogen, protected against the inhibition by gamma and UV radiation of stimulated cell growth. When stimulated by phytohemagglutinin (PHA), concanavalin A (Con A) or pokeweed mitogen (PWM) maximum protection has been observed with approximately 1 mM NA (dose reduction factor of 2-3). To obtain protection the cells had to be stimulated immediately after irradiation in the presence of NA. It is suggested that the intracellular level of NAD+ may be rate limiting for excision repair in human lymphocytes irradiated in the G0 phase. This level is presumably increased by exogenously supplied NA, leading to enhanced repair of DNA damage and increased survival.  相似文献   

2.
We have studied the ability of adenovirus type 12 (Ad12) to complement the Ad5 transformation-defective host rang (hr) mutants during infection of human cells (HeLa) or hamster cells (BHK-21). The group I mutant hr3 (mapped within 1.3 to 3.7 map units), which is incapable of synthesizing viral DNA, was complemented for both DNA synthesis and infectious virus production in nonpermissive HeLa cells during coinfection with Ad12. Similarly, the group II mutant hr6 (6.1 to 9.4 map units), which does synthesize DNA, was also shown to be complemented for virus production. When the host cells were BHK-21, an established hamster cell line that is permissive for Ad5 but nonpermissive for Ad12 DNA synthesis and virus production, coinfection with Ad5 and Ad12 did not overcome the block to Ad12 DNA synthesis. Coinfection of BHK-21 cells with Ad12 and either hr3 or hr6 leads to the complementation of only the group I mutant (hr3). The inability of Ad12 to complement hr6 in BHK-21 cells may be due to the failure of Ad12 to express an early gene product from the region corresponding to early region 1B (4.5 to 11 map units) Ad5 where hr6 and the other group II mutations are located.  相似文献   

3.
Effects of hyperthermia and nicotinamide on ADP-ribosyl transferase activity (ADPRT), unscheduled DNA synthesis (UDS), NAD+- and ATP-pools and cytotoxicity were investigated in gamma-irradiated human mononuclear leukocytes. A significant decrease in radiation-induced UDS after heat treatment for 45 min was found. Nicotinamide increased the UDS levels in irradiated cells, but no effect of hyperthermia on these increased UDS values was observed. In the presence of 2 mM nicotinamide radiation-induced ADPRT activity was reduced to about 50 per cent. However, hyperthermia for 45 min was found to have no effect on the enzyme activity for temperatures below 46 degrees C. Nicotinamide increased the NAD+ pool in unirradiated cells. Damaging the cells with gamma-radiation leads to a severe depletion of the NAD+ pool. The NAD+ pool is restored, however, if the cells repair for 5 h at 37 degrees C. When radiation-damaged cells were treated with hyperthermia, exogenously supplied nicotinamide could not be converted to NAD+ in sufficient amounts to prevent NAD+ depletion. These data indicate that the radiosensitizing effect of heat and nicotinamide could both be explained by effects on the enzyme ADPRT, i.e. nicotinamide by directly blocking the enzyme and hyperthermia by limiting the co-substrate (NAD+).  相似文献   

4.
本文观察了FL细胞中ADP-核糖基转移酶(ADPRT)底物NAD含量的细胞周期性变化及其与DNA复制之间的关系。FL细胞NAD含最在G_1期最高,而在S期DNA合成高峰后0—3小时(S/G_2期)达到最低点。ADPRT抑制剂3 AB能够抑制NAD含量的细胞周期性变化,而且S期DNA合成亦受到抑制,并呈现S期延长,提示ADP-核糖基化作用可能参与DNA复制过程。本文还观察了三种DNA损伤剂MNNG、MMS及4NQO对处于细胞周期不同时相的FL细胞NAD含量的影响,以及ADPRT抑制剂3 AB及尼克酰胺对此影响的作用。证明ADPRT抑制剂可以特异地抑制DNA损伤性NAD含量下降而对正常FL细胞NAD含量及代谢抑制剂2,4-DNP所致的NAD含量下降没有影响。从而有可能建立一个以测量细胞内NAD含量为指标的简便、快速、特异的检测DNA损伤因子的方法。  相似文献   

5.
NAD prevents a DNA repair-type synthesis that is dependent on polymerase I in toluene-treated, X-irradiated Bacillus subtilis. In unirradiated preparations, NAD had little effect on an ATP-dependent, semiconservative synthesis but partially inhibited a repair-type synthesis. In a mutant lacking polymerase I (polA1-), the presence of NAD did not affect dTTP utilization in DNA synthesis. Nicotinamide mononucleotide (NMN) partially reverses the NAD inhibition of repair-type DNA synthesis. NADP and FAD were ineffective as substitutes for NAD. Since NAD is the cofactor for polynucleotide ligase in Bacillus subtilis and NMN is known to discharge AMP from the active AMP ligase complex, it is proposed that activation of DNA ligase reduces dTMP incorporation by reducing sites for, or limiting DNA polymerase I action.  相似文献   

6.
Malignant cells display increased demands for energy production and DNA repair. Nicotinamide adenine dinucleotide (NAD) is required for both processes and is also continuously degraded by cellular enzymes. Nicotinamide phosphoribosyltransferase (Nampt) is a crucial factor in the resynthesis of NAD, and thus in cancer cell survival. Here, we establish the cytotoxic mechanism of action of the small molecule inhibitor CHS-828 to result from impaired synthesis of NAD. Initially, we detected cross-resistance in cells between CHS-828 and a known inhibitor of Nampt, FK866, a compound of a structurally different class. We then showed that nicotinamide protects against CHS-828-mediated cytotoxicity. Finally, we observed that treatment with CHS-828 depletes cellular NAD levels in sensitive cancer cells. In conclusion, these results strongly suggest that, like FK866, CHS-828 kills cancer cells by depleting NAD.  相似文献   

7.
Rape alcohol dehydrogenase is competitively inhibited with respect to NAD by nicotinamide, as well as by compounds containing adenine (adenine, adenosine, AMP, ADP, ATP). Adenine and adenosine are bound more firmly to the enzyme than nicotinamide. The two types of compound, as component parts of the NAD coenzyme, are bound to different sites on the enzyme. Adenine and adenosine compete for the adenine nucleotide bonding site, but they do not compete for the o-phenanthroline bonding site. Nicotinamide competes with o-phenanthroline for the binding site at which the metal is apparently present.  相似文献   

8.
NAD plays critical roles in various biological processes through the function of SIRT1. Although classical studies in mammals showed that nicotinic acid (NA) is a better precursor than nicotinamide (Nam) in elevating tissue NAD levels, molecular details of NAD synthesis from NA remain largely unknown. We here identified NA phosphoribosyltransferase (NAPRT) in humans and provided direct evidence of tight link between NAPRT and the increase in cellular NAD levels. The enzyme was abundantly expressed in the small intestine, liver, and kidney in mice and mediated [(14)C]NAD synthesis from [(14)C]NA in human cells. In cells expressing endogenous NAPRT, the addition of NA but not Nam almost doubled cellular NAD contents and decreased cytotoxicity by H(2)O(2). Both effects were reversed by knockdown of NAPRT expression. These results indicate that NAPRT is essential for NA to increase cellular NAD levels and, thus, to prevent oxidative stress of the cells. Kinetic analyses revealed that NAPRT, but not Nam phosphoribosyltransferase (NamPRT, also known as pre-B-cell colony-enhancing factor or visfatin), is insensitive to the physiological concentration of NAD. Together, we conclude that NA elevates cellular NAD levels through NAPRT function and, thus, protects the cells against stress, partly due to lack of feedback inhibition of NAPRT but not NamPRT by NAD. The ability of NA to increase cellular NAD contents may account for some of the clinically observed effects of the vitamin and further implies a novel application of the vitamin to treat diseases such as those associated with the depletion of cellular NAD pools.  相似文献   

9.
The effect of nicotinamide on unscheduled DNA synthesis was studied in resting human lymphocytes. In cells treated with UV irradiation or with MNNG, nicotinamide caused a two-fold stimulation of unscheduled DNA synthesis and retarded the rate of NAD+ lowering caused by these treatments. Nicotinamide also reduced the burst of poly(ADP-ribose) synthesis caused by MNNG treat-ment. Thus under conditions that it enhances unscheduled DNA synthesis, nicotinamide causes marked effects on the metabolism of NAD+ and poly(ADP-ribose). The effect of nicotinamide on unscheduled DNA synthesis was shown to be independent of protein or polyamine synthesis.  相似文献   

10.
The capacity of freshly explanted human peripheral blood lymphocytes (PBL) to support the replication of human adenovirus type 2 (Ad2) was investigated. Unlike other types of human cells, PBL were found to be highly nonpermissive. Ad2 adsorbed 30 to 40% of both T and non-T cells. Virus uncoating was very slow and inefficient, resulting in a 40-fold reduction compared with HEp-2 cells. On a population basis, viral DNA synthesis was reduced 460-fold and infectious virus production was reduced 10(6)-fold. Only 0.35% of PBL produced infectious centers, yielding 0.8 PFU per infected cell. Phytohemagglutinin stimulation increased DNA synthesis 23-fold, infectious centers 11-fold, and virus yield 14-fold. We conclude that resting human PBL are highly nonpermissive to Ad2 infection and that phytohemagglutinin can only marginally lift this nonpermissiveness.  相似文献   

11.
Unscheduled DNA synthesis has been measured in human fibroblasts under conditons of reduced rates of conversion of NAD to poly(ADP-ribose). Cells heterozygous for the xeroderma pigmentosum genotype showed normal rates of UV induced unscheduled DNA synthesis under conditions in which the rate of poly(ADP-ribose) synthesis was one-half the rate of normal cells. The addition of theophylline, a potent inhibitor of poly(ADP-ribose) polymerase, to the culture medium of normal cells blocked over 90% of the conversion of NAD to poly(ADP-ribose) following treatment with UV or N-methyl-N′-nitro-N-nitro-soguanidine but did not affect the rate of unscheduled DNA synthesis.  相似文献   

12.
Nicotinamide in concentrations of 5 mM and greater protected fibroblast target cells from lysis by lymphokine-activated killer cells (LAK cells). Protection was concentration dependent and was exerted at the level of the target cell. Nicotinamide did not interfere with effector-target cell conjugate formation or with the calcium dependent triggering step of the lytic process. Target cell lysis in cultures without nicotinamide was accompanied by fragmentation of target cell DNA. The DNA of target cells cultured with LAK cells in the presence of nicotinamide remained intact. 3-Aminobenzamide which, like nicotinamide, inhibits poly(ADP-ribose) synthetase but is not a precursor of NAD, was an effective inhibitor of target cell lysis while nicotinic acid, an alternative precursor of NAD in cells, was not. The data point to a central role for poly(ADP-ribose) synthetase in the events leading up to DNA fragmentation and the release of 51Cr from target cells damaged by lymphokine-activated killer cells.  相似文献   

13.
Poly(ADP-ribose) polymerase (PARP) binds to DNA single and double strand breaks and uses NAD in the synthesis of poly(ADP-ribose) (pADPr). Niacin deficiency in rats decreases bone marrow NAD(+) and limits pADPr synthesis in response to DNA damage, while pharmacological supplementation with nicotinic acid (NA) increases bone marrow NAD(+) and pADPr. The purpose of this study was to determine if niacin status alters the extent of DNA damage and chromosomal instability before and after treatment with the chemotherapy drug etoposide (ETO). Genotoxicity was evaluated using the comet, micronucleus and sister chromatid exchange (SCE) assays. Male Long-Evans rats were fed niacin deficient (ND), or pair-fed (PF) niacin replete (30mg niacin/kg) or NA supplemented (4g niacin/kg) diets for 3 weeks. Rats were gavaged with ETO (1-25mg/kg) suspended in corn oil or an equal volume of vehicle (CON). Comet analysis demonstrated that ETO-induced DNA damage (mean tail moment (MTM) and proportion of cells with significant damage) was greater in bone marrow cells from ND rats, compared to PF or NA rats. Surprisingly, niacin deficiency alone caused 6.2- and 2.8-fold increases in spontaneous micronucleus formation and SCE frequency, respectively. As expected, ETO treatment increased the level of micronuclei (MN) and SCEs in all diet groups; however, the absolute increases were greater in ND bone marrow. These data show that niacin is required for the maintenance of chromosomal stability and may facilitate DNA repair in vivo, in a tissue that is sensitive to niacin depletion and impaired pADPr metabolism. Pharmacological intakes of niacin do not appear to be further protective compared to adequate intakes. Niacin supplementation may help to protect the bone marrow cells of cancer patients with compromised nutritional status from the side effects of genotoxic chemotherapy drugs.  相似文献   

14.
15.
16.
Pyridine nucleotides are critical during oxidative stress due to their roles in reductive reactions and energetics. The aim of the present study was to examine pyridine nucleotide changes in six brain regions of mice after an intracerebroventricular injection of the oxidative stress inducing agent, t-butyl hydroperoxide (t-BuOOH). A secondary aim was to investigate the correlation between NAD+ levels and DNA fragmentation. Here, we demonstrate that t-BuOOH induced a rapid oxidation of NADPH and a slow depletion of NAD+ in most brain regions. A slight increase in NADH also occurred in five brain regions. NAD+ depletion was associated with increased DNA fragmentation. This suggests the initiation of a death cascade involving poly(ADP-ribose) polymerase (PARP), NAD+, ATP depletion and consequent cell death in brain tissue. PARP activity was accelerated in some brain regions after 20 min of oxidative stress. To counteract oxidative stress induced toxicity, NAD+ levels were increased in the brain using an intraperitoneal injection of nicotinamide. A surplus of brain NAD+ prevented DNA fragmentation in some brain regions. Nicotinamide administration also resulted in higher brain NADH, NADP+ and NADPH levels in some regions. Their synthesis was further upregulated during oxidative stress. Nicotinamide as a precursor for NAD+ may provide a useful therapeutic strategy in the treatment of neurodegeneration.  相似文献   

17.
18.
Nicotinamide adenine dinucleotide (NAD) is an essential co-enzyme mediating various enzymatic reactions. Mitochondrial NAD particularly occupies a considerable amount of total NAD in cells, and serves as a co-enzyme in tricarboxylic acid cycle (TCA cycle), β-oxidation, and oxidative phosphorylation. Despite the importance of mitochondrial NAD, its synthesis pathway remains unknown. It has been proposed that NAD synthesis enzyme, Nmnat3, was localized in mitochondria, but its physiological relevance to the metabolism in mitochondria was not fully elucidated. Previously, we have reported that murine Nmnat3 protein was strongly expressed in the cytoplasm of mature erythrocytes, in which mitochondria were absent, and Nmnat3-deficient mice (Nmnat3-KO mice) exhibited splenomegaly and hemolytic anemia due to reduced NAD levels in mature erythrocytes. These results challenged the role of Nmnat3 in mitochondrial NAD synthesis. In this study, we demonstrated that mitochondrial NAD levels in various tissues, except for red blood cells, were unchanged in Nmnat3-KO mice. We also analyzed the metabolites in glycolysis and TCA cycle and found that there were no differences between Nmnat3-KO and WT mice. In addition, the aged Nmnat3-KO mice had comparable NAD levels to that observed in WT mice. Our results indicated that Nmnat3 is dispensable in the maintenance of mitochondrial NAD levels, and that other NAD regulatory pathways may exist in mitochondria.  相似文献   

19.
U Weyer  W Doerfler 《The EMBO journal》1985,4(11):3015-3019
In hamster cells human adenovirus type 12 (Ad12) is deficient in DNA replication and late gene expression whereas adenovirus type 2 (Ad2) can replicate. Functions located in the E1 region of the Ad2 or adenovirus type 5 (Ad5) genome can complement the deficiencies of the Ad12 genome in hamster cells, but, infectious viral particles are not produced. We have now investigated the activity of the major late promoter of Ad2 and of Ad12 DNA in human and hamster cells. This promoter governs the expression of most of the late viral functions. We have inserted the major late promoter (MLP) of Ad2 or of Ad12 DNA in front of the chloramphenicol acetyl transferase gene in the pSVO-CAT construct. Upon transfection into uninfected human and hamster cells, the pAd12MLP-CAT construct shows no significant activity; the pAd2MLP-CAT construct exhibits low activity. In Ad12-infected human cells, both constructs are active. These findings support the notion that other viral factors are required for MLP activity of Ad2 or Ad12 DNA in permissive human cells. In Ad2-infected hamster cells, both the pAd2MLP-CAT and the pAd12MLP-CAT constructs are active. Apparently, the Ad12 MLP can be activated by Ad2 functions, as already demonstrated for the entire Ad12 genome in double-infected cells or in Ad2- or Ad5-transformed cells superinfected with Ad12. In Ad12-infected hamster cells, however, the MLP of Ad12 DNA is inactive but that of Ad2 DNA shows activity. Thus the MLP of Ad12 DNA somehow differentiates between cellular auxiliary functions of different species.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

20.
The biosynthesis of NAD has been examined in 3T3 cells. The net synthesis of pyridine nucleotides does not occur when cells are cultured in the absence of performed pyridine ring compounds; however, growth continues normally for up to four cell doublings resulting in cells with a total pyridine nucleotide content that is reduced by as much as 12-fold. The mechanism that adjust the relative amounts of NADP and NAD are also altered such that the amount of NADP relative to NAD increases 5-fold. Both nicotinate and nicotinamide can be used as a precursor for NAD biosynthesis, however nicotinate is utilized less efficiently than nicotinamide. The presence of functional pathways for the biosynthesis of NAD from nicotinate via nicotinate mononucleotide and nicotinate adenine dinucleotide and from nicotinamide via nicotinamide mononucleotide has been demonstrated by identification of biosynthetic intermediates following short term exposure of cells to radiolabelled precursors. When cells are grown in Dulbecco's modified Eagle's medium which contains 33 μM nicotinamide the biosynthesis of NAD proceeds by a single pathway with nicotinamide mononucleotide as the only intermediate. Nicotinamide ribonucleoside which previously has been postulated to be an intermediate in the conversion of nicotinamide to NAD is not an intermediate in NAD biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号