首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Nociceptin activation of ORL1 (opioid receptor-like 1 receptor) has been shown to antagonize mu receptor-mediated analgesia at the supraspinal level. ORL1 and mu-opioid receptor (muR) are co-expressed in several subpopulations of CNS neurons involved in regulating pain transmission. The amino acid sequence of ORL1 also shares a high degree of homology with that of mu receptor. Thus, it is hypothesized that ORL1 and muR interact to form the heterodimer and that ORL1/muR heterodimerization may be one molecular basis for ORL1-mediated antiopioid effects in the brain. To test this hypothesis, myc-tagged ORL1 and HA-tagged muR are co-expressed in human embryonic kidney (HEK) 293 cells. Co-immunoprecipitation experiments demonstrate that ORL1 dimerizes with muR and that intracellular C-terminal tails of ORL1 and muR are required for the formation of ORL1/muR heterodimer. Second messenger assays further indicate that formation of ORL1/muR heterodimer selectively induces cross-desensitization of muR and impairs the potency by which [D-Ala(2),N-methyl-Phe(4),Gly-ol(5)]enkephalin (DAMGO) inhibits adenylate cyclase and stimulates p42/p44 mitogen-activated protein kinase (MAPK) phosphorylation. These results provide the evidence that ORL1/muR heterodimerization and the resulting impairment of mu receptor-activated signaling pathways may contribute to ORL1-mediated antiopioid effects in the brain.  相似文献   

2.
Receptor phosphorylation, arrestin binding, uncoupling from G protein and subsequent endocytosis have been implicated in G protein-coupled receptor desensitization after chronic agonist exposure. In search of proteins regulating the mu-opioid receptor endocytosis, we have recently established that activation of phospholipase D (PLD)2 is required for agonist-induced mu-opioid receptor endocytosis. In this study, we determined the effect of PLD2 activity on the desensitization and resensitization rate of the mu-opioid receptor. We clearly demonstrated that inhibition of PLD2-mediated phosphatidic acid formation by alcohol (1-butanol or ethanol) or overexpression of a dominant negative mutant of PLD2 prevented agonist-mediated endocytosis and resulted in a faster desensitization rate of the mu-opioid receptor after chronic (D-Ala2, Me Phe4, Glyol5)enkephalin treatment in human embryonic kidney 293 cells. Moreover, inhibition of PLD2 activity led to an impairment of the resensitization rate of the mu-opioid receptor. In summary, our data strongly suggest that PLD2 is a modulator of agonist-induced endocytosis, desensitization and resensitization of the mu-opioid receptor.  相似文献   

3.
The neurotransmitter gamma-aminobutyric acid (GABA) mediates inhibitory signaling in the brain via stimulation of both GABA(A) receptors (GABA(A)R), which are chloride-permeant ion channels, and GABA(B) receptors (GABA(B)R), which signal through coupling to G proteins. Here we report physical interactions between these two different classes of GABA receptor. Association of the GABA(B) receptor 1 (GABA(B)R1) with the GABA(A) receptor gamma2S subunit robustly promotes cell surface expression of GABA(B)R1 in the absence of GABA(B)R2, a closely related GABA(B) receptor that is usually required for efficient trafficking of GABA(B)R1 to the cell surface. The GABA(B)R1/gamma2S complex is not detectably functional when expressed alone, as assessed in both ERK activation assays and physiological analyses in oocytes. However, the gamma2S subunit associates not only with GABA(B)R1 alone but also with the functional GABA(B)R1/GABA(B)R2 heterodimer to markedly enhance GABA(B) receptor internalization in response to agonist stimulation. These findings reveal that the GABA(B)R1/gamma2S interaction results in the regulation of multiple aspects of GABA(B) receptor trafficking, allowing for cross-talk between these two distinct classes of GABA receptor.  相似文献   

4.
Endocytosis of the mu-opioid receptor (MOPr) has been shown to play a protective role against the development of tolerance to opioid drugs by facilitating receptor reactivation and recycling. It has been further demonstrated, that the opioid-mediated and ADP-ribosylation factor (ARF)-dependent activation of phospholipase D2 (PLD2) is a prerequisite for MOPr endocytosis. In this study, we investigated which particular ARF protein is involved in opioid-mediated PLD2 activation and what are the mechanisms of ARF function in MOPr trafficking and signaling. By coexpressing the MOPr and dominant negative or constitutively active ARF mutants in human embryonic kidney (HEK) 293 cells and primary cultured cortical neurons as well as by using siRNA technology, we identified the ARF6 protein to be involved in the regulation of MOPr endocytosis. We also found that expression of an effector domain mutant of ARF6, which is incapable of activating PLD, blocked agonist-induced endocytosis suggesting that ARF6 function in MOPr trafficking is PLD2-mediated. Analogously, opioid-mediated activation of PLD2 is blocked in the presence of dominant negative ARF6 mutants. Finally, we also showed that ARF6 protein influences the recycling/reactivation of internalized MOPr and thus modulates agonist-induced MOPr desensitization. Together, these results provide evidence that ARF6 protein regulates MOPr trafficking and signaling via PLD2 activation and hence affects the development of opioid receptor desensitization and tolerance.  相似文献   

5.
The main analgesic effects of the opioid alkaloid morphine are mediated by the mu-opioid receptor. In contrast to endogenous opioid peptides, morphine activates the mu-opioid receptor without causing its rapid endocytosis. Recently, three novel C-terminal splice variants (MOR1C, MOR1D, and MOR1E) of the mouse mu-opioid receptor (MOR1) have been identified. In the present study, we show that these receptors differ substantially in their agonist-selective membrane trafficking. MOR1 and MOR1C stably expressed in human embryonic kidney 293 cells exhibited phosphorylation, internalization, and down-regulation in the presence of the opioid peptide [d-Ala(2),Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO) but not in response to morphine. In contrast, MOR1D and MOR1E exhibited robust phosphorylation, internalization, and down-regulation in response to both DAMGO and morphine. DAMGO elicited a similar desensitization (during an 8-h exposure) and resensitization (during a 50-min drug-free interval) of all four mu-receptor splice variants. After morphine treatment, however, MOR1 and MOR1C showed a faster desensitization and no resensitization as compared with MOR1D and MOR1E. These results strongly reinforce the hypothesis that receptor phosphorylation and internalization are required for opioid receptor reactivation thus counteracting agonist-induced desensitization. Our findings also suggest a mechanism by which cell- and tissue-specific C-terminal splicing of the mu-opioid receptor may significantly modulate the development of tolerance to the various effects of morphine.  相似文献   

6.
Are the proposed substance P receptor sub-types,substance P receptors?   总被引:6,自引:0,他引:6  
S P Watson 《Life sciences》1984,35(8):797-808
Recently, a number of laboratories have postulated the existence of receptor sub-types for substance P. This review is intended to represent a critical appraisal of these reports. In the majority of cases, the evidence for the existence of receptor sub-types has been obtained from observed potency differences of agonists. The problems with this approach are discussed. In addition, information obtained through substance P antagonists, binding studies and investigations of second messenger systems is presented and discussed in relation to the above receptor subdivisions. It is concluded that the present results are consistent with the existence of three receptor sub-types; however, it is suggested that substance P is the natural agonist for only one of these receptors, and that substance K and tuftsin may be the transmitters for the other two receptor sub-types.  相似文献   

7.
Receptor internalization from the cell surface occurs through several mechanisms. Some of these mechanisms, such as clathrin coated pits, are well understood. The M(2) muscarinic acetylcholine receptor undergoes internalization via a poorly-defined clathrin-independent mechanism. We used isotope coded affinity tagging and mass spectrometry to identify the scaffolding protein, receptor for activated C kinase (RACK1) as a protein enriched in M(2)-immunoprecipitates from M(2)-expressing cells over those of non-M(2) expressing cells. Treatment of cells with the agonist carbachol disrupted the interaction of RACK1 with M(2). We further found that RACK1 overexpression inhibits the internalization and subsequent down regulation of the M(2) receptor in a receptor subtype-specific manner. Decreased RACK1 expression increases the rate of agonist internalization of the M(2) receptor, but decreases the extent of subsequent down-regulation. These results suggest that RACK1 may both interfere with agonist-induced sequestration and be required for subsequent targeting of internalized M(2) receptors to the degradative pathway.  相似文献   

8.
Signal transduction through G protein-coupled receptors (GPCRs) is regulated by receptor desensitization and internalization that follow agonist stimulation. Nitric oxide (NO) can influence these processes, but the cellular source of NO bioactivity and the effects of NO on GPCR-mediated signal transduction are incompletely understood. Here, we show in cells and mice that beta-arrestin 2, a central element in GPCR trafficking, interacts with and is S-nitrosylated at a single cysteine by endothelial NO synthase (eNOS), and that S-nitrosylation of beta-arrestin 2 is promoted by endogenous S-nitrosogluthathione. S-nitrosylation after agonist stimulation of the beta-adrenergic receptor, a prototypical GPCR, dissociates eNOS from beta-arrestin 2 and promotes binding of beta-arrestin 2 to clathrin heavy chain/beta-adaptin, thereby accelerating receptor internalization. The agonist- and NO-dependent shift in the affiliations of beta-arrestin 2 is followed by denitrosylation. Thus, beta-arrestin subserves the functional coupling of eNOS and GPCRs, and dynamic S-nitrosylation/denitrosylation of beta-arrestin 2 regulates stimulus-induced GPCR trafficking.  相似文献   

9.
This paper describes a method for localization of substance P receptors in the rat central nervous system using 125I labeled substance P in an autoradiographic procedure. Particularly high densities of substance P receptors were observed in the olfactory bulb, dentate gyrus, amygdala, superior colliculus, and locus coeruleus. Surprisingly low densities of substance P receptors were found in the substantia nigra pars reticulata, a region which contains high concentrations of substance P.  相似文献   

10.
The activation state of the EGF receptor (EGF-R) is tightly controlled in the cell so as to prevent excessive signalling, with the dangerous consequences that this would have on cell growth and proliferation. This control occurs at different levels, with a key level being the trafficking and degradation of the EGF-R itself. Multiple guanosine triphosphatases belonging to the Arf, Rab and Rho families and their accessory proteins have key roles in these processes. In this study, we have identified ARAP1, a multidomain protein with both Arf GTPase-activating protein (GAP) and Rho GAP activities, as a novel component of the machinery that controls the trafficking and signalling of the EGF-R. We show that ARAP1 localizes to multiple cell compartments, including the Golgi complex, as previously reported, and endosomal compartments, where it is enriched in the internal membranes of multivesicular bodies. ARAP1 distribution is controlled by its phosphorylation and by its interactions with the 3- and 4-phosphorylated phosphoinositides through its five PH domains. We provide evidence that ARAP1 controls the late steps of the endocytic trafficking of the EGF-R, with ARAP1 knockdown leading to EGF-R accumulation in a sorting/late endosomal compartment and to the inhibition of EGF-R degradation that is accompanied by prolonged signalling.  相似文献   

11.
The surface density of neurotransmitter receptors at synapses is a key determinant of synaptic efficacy. Synaptic receptor accumulation is regulated by the transport, postsynaptic anchoring, and turnover of receptors, involving multiple trafficking, sorting, motor, and scaffold proteins. We found that neurons lacking the BEACH (beige-Chediak/Higashi) domain protein Neurobeachin (Nbea) had strongly reduced synaptic responses caused by a reduction in surface levels of glutamate and GABAA receptors. In the absence of Nbea, immature AMPA receptors accumulated early in the biosynthetic pathway, and mature N-methyl-d-aspartate, kainate, and GABAA receptors did not reach the synapse, whereas maturation and surface expression of other membrane proteins, synapse formation, and presynaptic function were unaffected. These data show that Nbea regulates synaptic transmission under basal conditions by targeting neurotransmitter receptors to synapses.  相似文献   

12.
Protease-activated receptor 1 (PAR1), a G protein-coupled receptor for the coagulant protease thrombin, is irreversibly activated by proteolysis. Unactivated PAR1 cycles constitutively between the plasma membrane and intracellular stores, thereby providing a protected receptor pool that replenishes the cell surface after thrombin exposure and leads to rapid resensitization to thrombin signaling independent of de novo receptor synthesis. Here, we show that AP2, a clathrin adaptor, binds directly to a tyrosine-based motif in the cytoplasmic tail of PAR1 and is essential for constitutive receptor internalization and cellular recovery of thrombin signaling. Expression of a PAR1 tyrosine mutant or depletion of AP2 by RNA interference leads to significant inhibition of PAR1 constitutive internalization, loss of intracellular uncleaved PAR1, and failure of endothelial cells and other cell types to regain thrombin responsiveness. Our findings establish a novel role for AP2 in direct regulation of PAR1 trafficking, a process critically important to the temporal and spatial aspects of thrombin signaling.  相似文献   

13.
Disabled1 regulates the intracellular trafficking of reelin receptors   总被引:8,自引:0,他引:8  
Reelin is a huge secreted protein that controls proper laminar formation in the developing brain. It is generally believed that tyrosine phosphorylation of Disabled1 (Dab1) by Src family tyrosine kinases is the most critical downstream event in Reelin signaling. The receptors for Reelin belong to the low density lipoprotein receptor family, most of whose members undergo regulated intracellular trafficking. In this study, we propose novel roles for Dab1 in Reelin signaling. We first demonstrated that cell surface expression of Reelin receptors was decreased in Dab1-deficient neurons. In heterologous cells, Dab1 enhanced cell surface expression of Reelin receptors, and this effect was mediated by direct interaction with the receptors. Moreover, Dab1 did not stably associate with the receptors at the plasma membrane in the resting state. When Reelin was added to primary cortical neurons, Dab1 was recruited to the receptors, and its tyrosine residues were phosphorylated. Although Reelin and Dab1 colocalized well shortly after the addition of Reelin, Dab1 was no longer associated with internalized Reelin. When Src family tyrosine kinases were inhibited, internalization of Reelin was severely abrogated, and Reelin colocalized with Dab1 near the plasma membrane for a prolonged period. Taken together, these results indicate that Dab1 regulates both cell surface expression and internalization of Reelin receptors, and these regulations may play a role in correct laminar formation in the developing brain.  相似文献   

14.
The third intracellular loop domain of G protein-coupled receptors regulates their desensitization, internalization, and resensitization. Colorectal and pancreatic cancers, but not the nonmalignant tissue, express a splice variant of the cholecystokinin 2 receptor (CCK2R) called CCK(2i4sv)R that, because of intron 4 retention, contains an additional 69 amino acids within its third intracellular loop domain. This structural alteration is associated with agonist-independent activation of Src kinase (Olszewska-Pazdrak, B., Townsend, C. M., Jr., and Hellmich, M. R. (2004) J. Biol. Chem. 279, 40400-40404). The purpose of the study was to determine the roles of intron 4 retention and Src kinase on CCK(2i4sv)R desensitization, internalization, and resensitization. Gastrin1-17 (G17) binds to both CCK2R and CCK(2i4sv)R and induces intracellular Ca2+ ([Ca2+]i) increases. Agonist-induced increases in [Ca2+]i were used to assess receptor activity. Src kinase activity was inhibited by transducing cells with a retrovirus containing a dominant-negative mutant Src (A430V). The subcellular location of enhanced green fluorescent protein-tagged receptors was monitored using laser scanning confocal microscopy. Both receptor variants desensitized at the same rate; however, CCK(2i4sv)R resensitized five times faster than CCK2R. Without agonist, 80% of CCK(2i4sv)R is located in an intracellular compartment. In contrast, 80% of CCK2R was located on the plasma membrane. Treatment with inverse agonist (YM022) or expression of dominant-negative Src blocked the constitutive internalization of CCK(2i4sv)R, resulting in its accumulation on the plasma membrane. Expression of dominant-negative Src slowed the rate of CCK(2i4sv)R resensitization. Inhibition of Src did not affect G17-induced internalization of either receptor variant. Constitutive internalization of CCK(2i4sv)R increases its rate of resensitization by creating an intracellular pool of receptors that can rapidly recycle back to the plasma membrane.  相似文献   

15.
α-Amino-3-hydroxy-5-methyl-isoxazole-4-propionic acid receptors (AMPARs) are the primary mediators of excitatory synaptic transmission in the brain. Alterations in AMPAR localization and turnover have been considered critical mechanisms underpinning synaptic plasticity and higher brain functions, but the molecular processes that control AMPAR trafficking and stability are still not fully understood. Here, we report that mammalian AMPARs are subject to ubiquitination in neurons and in transfected heterologous cells. Ubiquitination facilitates AMPAR endocytosis, leading to a reduction in AMPAR cell-surface localization and total receptor abundance. Mutation of lysine residues to arginine residues at the glutamate receptor subunit 1 (GluA1) C-terminus dramatically reduces GluA1 ubiquitination and abolishes ubiquitin-dependent GluA1 internalization and degradation, indicating that the lysine residues, particularly K868, are sites of ubiquitination. We also find that the E3 ligase neural precursor cell expressed, developmentally down-regulated 4 (Nedd4) is enriched in synaptosomes and co-localizes and associates with AMPARs in neurons. Nedd4 expression leads to AMPAR ubiquitination, leading to reduced AMPAR surface expression and suppressed excitatory synaptic transmission. Conversely, knockdown of Nedd4 by specific siRNAs abolishes AMPAR ubiquitination. These data indicate that Nedd4 is the E3 ubiquitin ligase responsible for AMPAR ubiquitination, a modification that regulates multiple aspects of AMPAR molecular biology including trafficking, localization and stability.  相似文献   

16.
Exposure to opioids results in the activation of opioid receptors; this is followed by receptor endocytosis. Previously, we showed that delta opioid receptors undergo rapid agonist-mediated internalization and that mutations in the C-tail result in a substantial loss of agonist-mediated internalization. In this study, we investigated the fate of receptors following rapid internalization. We found that the majority of the wild type receptors recycled back to the surface after acute agonist treatment. The kinetics of internalization and recycling of the receptor were virtually identical to the kinetics of internalization and recycling of the radiolabeled agonist. In contrast, the kinetics of internalization and recycling of a C-tail mutant receptor were substantially altered, suggesting an involvement of the C-tail in the recycling process. It is possible that in addition to agonist-mediated internalization, opioid receptors undergo constitutive, agonist-independent internalization. We directly examined this possibility using an antibody-prebinding assay. The wild type delta opioid receptors exhibited agonist-independent internalization via the clathrin-coated pit pathway. We also examined the role of receptor internalization and recycling in the modulation of its function by quantitating the level of opioid-stimulated phosphorylation of MAP kinase (MAPK) under conditions of receptor internalization and recycling. We found that agonist treatment caused a rapid increase in the level of phosphorylated MAPK that was rapidly desensitized. The removal of the agonist, which results in receptor recycling, led to the resensitization of the receptor, as evidenced by the agonist's ability to reinduce MAPK phosphorylation. Mutant receptors that underwent rapid recycling exhibited enhanced resensitization, suggesting a role for receptor recycling in the resensitization process. Taken together, these results indicate that agonist-mediated internalization and recycling modulate opioid receptor function and that the receptor C-tail plays an important role in both processes.  相似文献   

17.
Eph receptors orchestrate cell positioning during normal and oncogenic development. Their function is spatially and temporally controlled by protein tyrosine phosphatases (PTPs), but the underlying mechanisms are unclear and the identity of most regulatory PTPs are unknown. We demonstrate here that PTP1B governs signaling and biological activity of EphA3. Changes in PTP1B expression significantly affect duration and amplitude of EphA3 phosphorylation and biological function, whereas confocal fluorescence lifetime imaging microscopy (FLIM) reveals direct interactions between PTP1B and EphA3 before ligand-stimulated receptor internalization and, subsequently, on endosomes. Moreover, overexpression of wild-type (w/t) PTP1B and the [D-A] substrate-trapping mutant decelerate ephrin-induced EphA3 trafficking in a dose-dependent manner, which reveals its role in controlling EphA3 cell surface concentration. Furthermore, we provide evidence that in areas of Eph/ephrin-mediated cell-cell contacts, the EphA3-PTP1B interaction can occur directly at the plasma membrane. Our studies for the first time provide molecular, mechanistic, and functional insights into the role of PTP1B controlling Eph/ephrin-facilitated cellular interactions.  相似文献   

18.
Pharmacological receptors for substance P and neurokinins   总被引:31,自引:0,他引:31  
The three neurokinins identified in mammals, substance P, neurokinin A and neurokinin B, as well as their C-terminal biologically active fragments, have been used to characterize the responses of a variety of isolated organs. Three preparations selective either for substance P (the dog carotid artery), or for neurokinin A (the rabbit pulmonary artery) or for neurokinin B (the rat portal vein) are described. A neurokinin receptor classification is attempted using the neurokinins and their fragments to determine the order of potency of agonists. Three receptor subtypes have been identified: the NK-P, on which substance P (SP) is more active than neurokinin A (NKA) and neurokinin B (NKB), and the neurokinins are more active than their respective fragments; the NK-A on which NKA greater than NKB greater than SP, and some NKA fragments are more discriminative than their precursor; the NK-B on which NKB greater than NKA greater than SP, and fragments of NKB are less active than their precursor. Among the peptides studied, some potent compounds have been identified that could provide selective receptor ligands.  相似文献   

19.
Morphine and other opiates mediate their effects through activation of the μ-opioid receptor (MOR), and regulation of the MOR has been shown to critically affect receptor responsiveness. Activation of the MOR results in receptor phosphorylation, β-arrestin recruitment, and internalization. This classical regulatory process can differ, depending on the ligand occupying the receptor. There are two forms of β-arrestin, β-arrestin1 and β-arrestin2 (also known as arrestin2 and arrestin3, respectively); however, most studies have focused on the consequences of recruiting β-arrestin2 specifically. In this study, we examine the different contributions of β-arrestin1- and β-arrestin2-mediated regulation of the MOR by comparing MOR agonists in cells that lack expression of individual or both β-arrestins. Here we show that morphine only recruits β-arrestin2, whereas the MOR-selective enkephalin [D-Ala(2),N-Me-Phe(4),Gly(5)-ol]enkephalin (DAMGO), recruits either β-arrestin. We show that β-arrestins are required for receptor internalization and that only β-arrestin2 can rescue morphine-induced MOR internalization, whereas either β-arrestin can rescue DAMGO-induced MOR internalization. DAMGO activation of the receptor promotes MOR ubiquitination over time. Interestingly, β-arrestin1 proves to be critical for MOR ubiquitination as modification does not occur in the absence of β-arrestin1 nor when morphine occupies the receptor. Moreover, the selective interactions between the MOR and β-arrestin1 facilitate receptor dephosphorylation, which may play a role in the resensitization of the MOR and thereby contribute to overall development of opioid tolerance.  相似文献   

20.
The C- and N-terminal fragments of substance P were compared to the parent molecule with respect to their ability to: (a) contract the isolated guinea pig ileum, (b) induce salivation in the rat, (c) excite single cat dorsal horn neurones, and (d) induce scratching by intracranial injections in mice. C-terminal fragments as small as the heptapeptide were potent SP agonists on all assay systems. C-terminal fragments containing five amino acids or less were, at most, only weakly active. The C-terminal hexapeptide was a potent SP receptor stimulant on the isolated guinea pig ileum and, when directly applied by microiontophoresis, on cat dorsal horn neurons. However, the same compound was only 2-5% as potent as substance P in eliciting salivation and scratching in vivo, an indication that this fragment may be especially labile to enzymatic degradation. N-terminal fragments were totally inactive on the isolated guinea pig ileum. On the rat salivation and central nervous system assays, however, N-terminal fragments were capable of weak SP-like activity. It is concluded that SP receptors exist in multiple forms which we have labelled SP1 and SP2 receptors for those insensitive or sensitive to N-terminal fragments, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号