共查询到20条相似文献,搜索用时 15 毫秒
1.
A novel intermediate on the import pathway of cytochrome b2 into mitochondria: evidence for conservative sorting. 总被引:2,自引:2,他引:2
下载免费PDF全文

Cytochrome b2 is sorted into the intermembrane space of mitochondria by a bipartite N-terminal targeting and sorting presequence. In an attempt to define the sorting pathway we have identified an as yet unknown import intermediate. Cytochrome b2-dihydrofolate reductase (DHFR) fusion proteins were arrested in the presence of methotrexate (MTX) so that the DHFR domain was at the surface of the outer membrane while the N-terminus reached into the intermembrane space where the sorting signal was removed. This membrane-spanning, mature-sized species was efficiently chased into the mitochondria upon removal of MTX. Thus, an intermediate was generated which was exposed to the intermembrane space but was still associated with the inner membrane. This intermediate was also found upon direct import of cytochrome b2 and derived fusion proteins. These membrane-bound mature-sized cytochrome b2 species loop through the matrix and could be recovered in a complex with mt-Hsp70 and the inner membrane MIM44/ISP45, a component of the inner membrane import apparatus. This novel sorting intermediate can only be explained by a pathway in which cytochrome b2 passes through the matrix. The existence of such an intermediate is inconsistent with a pathway by which entrance of the mature part of cytochrome b2 into the matrix is stopped by the sorting sequence; however, its presence is fully consistent with the conservative sorting pathway. 相似文献
2.
3.
Mitochondrial biogenesis utilizes a complex proteinaceous machinery for the import of cytosolically synthesized preproteins. At least three large multisubunit protein complexes, one in the outer membrane and two in the inner membrane, have been identified. These translocase complexes cooperate with soluble proteins from the cytosol, the intermembrane space and the matrix. The translocation of presequence-containing preproteins through the outer membrane channel includes successive electrostatic interactions of the charged mitochondrial targeting sequence with a chain of import components. Translocation across the inner mitochondrial membrane utilizes the energy of the proton motive force of the inner membrane and the hydrolysis of ATP. The matrix chaperone system of the mitochondrial heat shock protein 70 forms an ATP-dependent import motor by interaction with the polypeptide chain in transit and components of the inner membrane translocase. The precursors of integral inner membrane proteins of the metabolite carrier family interact with newly identified import components of the intermembrane space and are inserted into the inner membrane by a second translocase complex. A comparison of the full set of import components between the yeast Sacccharomyces cerevisiae and the nematode Caenorhabditis elegans demonstrates an evolutionary conservation of most components of the mitochondrial import machinery with a possible greater divergence for the import pathway of the inner membrane carrier proteins. 相似文献
4.
G. Schatz 《Protein science : a publication of the Protein Society》1993,2(2):141-146
5.
Herein, we report cloning and subcellular localization of two alanine aminotransferase (ALT) isozymes, cALT and mALT, from liver of gilthead sea bream (Sparus aurata). CHO cells transfected with constructs expressing cALT or mALT as C- or N-terminal fusion with the enhanced green fluorescent protein (EGFP) showed that cALT is cytosolic, whereas mALT localized to mitochondria. Fusion of EGFP to mALT N-terminus or removal of amino acids 1-83 of mALT avoided import into mitochondria, supporting evidence that the mALT N-terminus contains a mitochondrial targeting signal. The amino acid sequence of mALT is the first reported for a mitochondrial ALT in animals. 相似文献
6.
Biogenesis of mitochondria depends on the coordinated action of at least six protein translocases present in both mitochondrial membranes. They use different energy sources to drive unidirectional transport of proteins across and into mitochondrial membranes. Here we present an overview on the energetic requirements of different mitochondrial import pathways. 相似文献
7.
The import of cytochrome c into Neurospora crassa mitochondria was examined at distinct stages in vitro. The precursor protein, apocytochrome c, binds to mitochondria with high affinity and specificity but is not transported completely across the outer membrane in the absence of conversion to holocytochrome c. The bound apocytochrome c is accessible to externally added proteases but at the same time penetrates far enough through the outer membrane to interact with cytochrome c heme lyase. Formation of a complex in which apocytochrome c and cytochrome c heme lyase participate represents the rate-limiting step of cytochrome c import. Conversion from the bound state to holocytochrome c, on the other hand, occurs 10-30-fold faster. Association of apocytochrome c with cytochrome c heme lyase also takes place after solubilizing mitochondria with detergent. We conclude that the bound apocytochrome c, spanning the outer membrane, forms a complex with cytochrome c heme lyase from which it can react further to be converted to holocytochrome c and be translocated completely into the intermembrane space. 相似文献
8.
Lidia Wrobel Agata Trojanowska Malgorzata E. Sztolsztener Agnieszka Chacinska 《Molecular biology of the cell》2013,24(5):543-554
The mitochondrial intermembrane space assembly (MIA) pathway is generally considered to be dedicated to the redox-dependent import and biogenesis of proteins localized to the intermembrane space of mitochondria. The oxidoreductase Mia40 is a central component of the pathway responsible for the transfer of disulfide bonds to intermembrane space precursor proteins, causing their oxidative folding. Here we present the first evidence that the function of Mia40 is not restricted to the transport and oxidative folding of intermembrane space proteins. We identify Tim22, a multispanning membrane protein and core component of the TIM22 translocase of inner membrane, as a protein with cysteine residues undergoing oxidation during Tim22 biogenesis. We show that Mia40 is involved in the biogenesis and complex assembly of Tim22. Tim22 forms a disulfide-bonded intermediate with Mia40 upon import into mitochondria. Of interest, Mia40 binds the Tim22 precursor also via noncovalent interactions. We propose that Mia40 not only is responsible for disulfide bond formation, but also assists the Tim22 protein in its integration into the inner membrane of mitochondria. 相似文献
9.
10.
Proteins that are destined for the matrix of mitochondria are transported into this organelle by two translocases: the TOM complex, which transports proteins across the outer mitochondrial membrane; and the TIM23 complex, which gets them through the inner mitochondrial membrane. Two models have been proposed to explain how this protein-import machinery works -- a targeted Brownian ratchet, in which random motion is translated into vectorial motion, or a 'power stroke', which is exerted by a component of the import machinery. Here, we review the data for and against each model. 相似文献
11.
Targeting of cytochrome b2 into the mitochondrial intermembrane space: specific recognition of the sorting signal. 总被引:9,自引:10,他引:9
下载免费PDF全文

Cytochrome b2 contains 2-fold targeting information: an amino-terminal signal for targeting to the mitochondrial matrix, followed by a second cleavable sorting signal that functions in directing the precursor into the mitochondrial intermembrane space. The role of the second sorting sequence was analyzed by replacing one, two or all of the three positively charged amino acid residues which are present at the amino-terminal side of the hydrophobic core by uncharged residues or an acidic residue. With a number of these mutant precursor proteins, processing to the mature form was reduced or completely abolished and at the same time targeting to the matrix space occurred. The accumulation in the matrix depended on a high level of intramitochondrial ATP. At low levels of matrix ATP, the mutant proteins were sorted into the intermembrane space like the wild-type precursors. The results: (i) suggest the existence of one or more matrix components that specifically recognize the second sorting signal and thereby trigger the translocation into the intermembrane space; (ii) indicate that the mutant signals have reduced ability to interact with the recognition component(s) and then embark on the default pathway into the matrix by interacting with mitochondrial hsp70 in conjunction with matrix ATP; (iii) strongly argue against a mechanism by which the hydrophobic segment of the sorting sequence stops translocation in the hydrophobic phase of the inner membrane. 相似文献
12.
BACKGROUND: Mitochondria evolved from intracellular bacterial symbionts. Establishing mitochondria as organelles required a molecular machine to import proteins across the mitochondrial outer membrane. This machinery, the TOM complex, is composed of at least seven component parts, and its creation and evolution represented a sizeable challenge. Although there is good evidence that a core TOM complex, composed of three subunits, was established in the protomitochondria, we suggest that the receptor component of the TOM complex arose later in the evolution of this machine. RESULTS: We have solved by nuclear magnetic resonance the structure of the presequence binding receptor from the TOM complex of the plant Arabidopsis thaliana. The protein fold suggests that this protein, AtTom20, belongs to the tetratricopeptide repeat (TPR) superfamily, but it is unusual in that it contains insertions lengthening the helices of each TPR motif. Peptide titrations map the presequence binding site to a groove of the concave surface of the receptor. In vitro functional assays and peptide titrations suggest that the plant Tom20 is functionally equivalent to fungal and animal Tom20s. CONCLUSIONS: Comparison of the sequence and structure of Tom20 from plants and animals suggests that these two presequence binding receptors evolved from two distinct ancestral genes following the split of the animal and plant lineages. The need to bind equivalent mitochondrial targeting sequences and to make similar interactions within an equivalent protein translocation machine has driven the convergent evolution of two distinct proteins to a common structure and function. 相似文献
13.
In order to study the individual steps involved in the import of phosphatidylcholine (PC) into rat liver mitochondria, a number of PC analogues were introduced into the outer membrane of isolated mitochondria. Two fluorescent PC species, i.e. 1-palmitoyl-2-(16-bimanylthio)hexadecanoyl-PC (bimane-PC) and 1-palmitoyl-2-(10-pyrene)decanoyl-PC (pyrene-PC), and one radiolabeled PC species, i.e. 1-palmitoyl-2-[1-14C]oleoyl-PC (14C-POPC), were studied. The PC analogues were introduced from small unilamellar vesicles with the use of PC-specific transfer protein. The amount of PC imported was quantified by reisolation of the mitochondria. Import of the fluorescent PC species was monitored by on-line fluorescence spectroscopy. The distribution of the newly inserted PC between the outer and the inner membrane was assessed by separation of the two membranes using digitonin treatment. All analogues tested remained exclusively localized in the outer membrane thereby suggesting that additional (extramitochondrial) factors are required to initiate transfer of PC to the inner membrane. 相似文献
14.
Okamoto K Brinker A Paschen SA Moarefi I Hayer-Hartl M Neupert W Brunner M 《The EMBO journal》2002,21(14):3659-3671
Unfolding and import of preproteins into mitochondria are facilitated by a molecular motor in which heat shock protein 70 (Hsp70) in the matrix plays an essential role. Here we present two different experimental approaches to analyze mechanisms underlying this function of Hsp70. First, preproteins containing stretches of glutamic acid (polyE) or glycine (polyG) repeats in front of folded domains were imported into mitochondria. This occurred although Hsp70 cannot pull on these stretches to unfold the folded domains, since it does not bind to polyE and polyG. Secondly, preproteins containing titin immunoglobulin (Ig)-like domains were imported into mitochondria, despite the fact that forces of >200 pN are required to mechanically unfold these domains. Since molecular motors generate forces of approximately 5 pN, Hsp70 could not promote unfolding of the Ig-like domains by mechanical pulling. Our observations suggest that Hsp70 acts as an element of a Brownian ratchet, which mediates unfolding and translocation of preproteins across the mitochondrial membranes. 相似文献
15.
The sorting signal of cytochrome b2 promotes early divergence from the general mitochondrial import pathway and restricts the unfoldase activity of matrix Hsp70. 总被引:1,自引:2,他引:1
下载免费PDF全文

Cytochrome b2 is imported into mitochondria and sorted to the intermembrane space by a bipartite N-terminal presequence, which is a matrix targeting sequenced followed by an intermembrane space sorting signal. The N-terminus of the mature protein forms a folded heme binding domain that depends on the unfoldase function of matrix (mt) Hsp70 for import. We report that the distance between the presequence and the heme binding domain is critical for the ability of mt-Hsp70 to promote import of the domain. Hybrid proteins with 40 or more amino acids between the presequence and the heme binding domain are arrested in the import machinery. The translocation arrest can be overcome by unfolding of the preprotein or by inactivation of the intermembrane space sorting signal. Moreover, the sorting signal prevents backsliding of the precursor polypeptide in the import site in the initial import step, when the signal has not made contact with the matrix. The results indicate that the sorting signal interacts with component(s) of the inner membrane/intermembrane space during the initial import step and promotes an early divergence of b2 preproteins from the general matrix import pathway, precluding an unfolding role for mt-Hsp70 in the translocation of most of the mature portions of a preprotein. We propose a sorting model of cytochrome b2 which explains the apparently divergent previous results by a unifying hypothesis. 相似文献
16.
Import of proteins into mitochondria. Energy-dependent, two-step processing of the intermembrane space enzyme cytochrome b2 by isolated yeast mitochondria 总被引:32,自引:0,他引:32
Import of in vitro-synthesized cytochrome b2 (a soluble intermembrane space enzyme) was studied wih isolated yeast mitochondria. Import requires an electrochemical gradient across the inner membrane and is accompanied by cleavage of the precursor to the corresponding mature form. This conversion proceeds via an intermediate form of cytochrome b2, which can be detected as a transient species when mitochondria are incubated with the cytochrome b2 precursor for short times or at low temperatures. Conversion of the precursor to the intermediate form is energy-dependent and catalyzed by an o-phenanthroline-sensitive protease located in the soluble matrix. The intermediate is subsequently converted to mature cytochrome b2 in a reaction which is o-phenanthroline-insensitive and requires neither an energized inner membrane nor a soluble component of the intermembrane space. Whereas mature cytochrome b2 is soluble, the intermediate formed by isolated mitochondria is membrane-bound and exposed to the intermembrane space. The same intermediate is detected as a transient species during cytochrome b2 maturation in intact yeast cells (Reid, G. A., Yonetani, T., and Schatz, G (1982) J. Biol. Chem. 257, 13068-13074). The in vitro studies reported here suggest that a part of the cytochrome b2 precursor polypeptide chain is transported to the matrix where it is cleaved to a membrane-bound intermediate form by the same protease that processes polypeptides destined for the matrix space or for the inner membrane. In a second reaction, the cytochrome b2 intermediate is converted to mature cytochrome b2 which is released into the intermembrane space. The binding of heme is not necessary for converting the intermediate to the mature polypeptide. 相似文献
17.
Energy requirements for unfolding and membrane translocation of precursor proteins during import into mitochondria 总被引:10,自引:0,他引:10
N Pfanner J Rassow B Guiard T S?llner F U Hartl W Neupert 《The Journal of biological chemistry》1990,265(27):16324-16329
ATP is involved in conferring transport competence to numerous mitochondrial precursor proteins in the cytosol. Unfolded precursor proteins were found not to require ATP for import into mitochondria, suggesting a role of ATP in the unfolding of precursors. Here we report the unexpected finding that a hybrid protein containing the tightly folded passenger protein dihydrofolate reductase becomes unfolded and specifically translocated across the mitochondrial membranes independently of added ATP. Moreover, interaction of the precursor with the mitochondrial receptor components does not require ATP. The results suggest that ATP is not involved in the actual process of unfolding during membrane translocation of precursors. ATP rather appears to be necessary for preventing the formation of improper structures of precursors in the cytosol and for folding of imported polypeptides on (and release from) chaperone-like molecules in the mitochondrial matrix. 相似文献
18.
Point mutations destabilizing a precursor protein enhance its post-translational import into mitochondria. 总被引:20,自引:5,他引:20
下载免费PDF全文

In order to study the role of protein unfolding during post-translational protein import into mitochondria, we destabilized the structure of a mitochondrial precursor protein by site-directed mutagenesis. The precursor consisted of the first 16 residues of the yeast cytochrome oxidase subunit IV precursor fused to mouse dihydrofolate reductase. Labilization of the folded precursor structure was monitored by increased susceptibility to protease and diminished ability of methotrexate to block import of the precursor into isolated yeast mitochondria. On comparing the original precursor with two mutant forms that were destabilized to different degrees, increased labilization correlated with an increased rate and efficiency of import into mitochondria. This supports the view that the precursor must unfold in order to enter the mitochondria. 相似文献
19.
Localization of a synthetic presequence that blocks protein import into mitochondria 总被引:6,自引:0,他引:6
In the accompanying paper (Glaser, S. M., and Cumsky, M. G. (1990) J. Biol. Chem. 265, 8808-8816) we demonstrated that pL4-(1-22), a synthetic peptide corresponding to the N-terminal 22 residues of the cytochrome c oxidase subunit IV presequence, blocked protein import into mitochondria. Import inhibition was reversible and occurred at a step subsequent to the initial recognition and binding of precursor proteins to the mitochondrial surface. In the present work we have studied the nature of the association between the peptide and mitochondria, as well as determined its intramitochondrial location. We found that pL4-(1-22) was imported into mitochondria in a manner that was dependent upon the delta psi and that the majority of the mitochondrially associated peptide was in the membrane fraction. Density gradient analysis of total membranes indicated that pL4-(1-22) cofractionated with the inner membrane, although the possibility that it was present in both membranes could not be ruled out. It appeared to be inserted within the bilayer since it could not be extracted with salts, chaotropic agents, or high pH. We observed a steady decrease in the amount of pL4-(1-22) found within peptide-treated mitochondria over time. Coincident with this decrease was an increase in the ability of those mitochondria to import and process precursor proteins, suggesting that the peptide was ultimately turned over. The results presented here correlate well with those of the accompanying paper. Together they suggest that pL4-(1-22) blocks import at the level of the mitochondrial membranes, although the exact nature of the import block is not yet clear. 相似文献
20.
Protein import into yeast mitochondria is accelerated by the outer membrane protein MAS70. 总被引:29,自引:11,他引:29
下载免费PDF全文

The yeast mitochondrial outer membrane contains a major 70 kd protein with an amino-terminal hydrophobic membrane anchor and a hydrophilic 60 kd domain exposed to the cytosol. We now show that this protein (which we term MAS70) accelerates the mitochondrial import of many (but not all) precursor proteins. Anti-MAS70 IgGs or removal of MAS70 from the mitochondria by either mild trypsin treatment or by disrupting the nuclear MAS70 gene inhibits import of the F1-ATPase beta-subunit, the ADP/ATP translocator, and of several other precursors into isolated mitochondria by up to 75%, but has little effect on the import of porin. Intact cells of a mas70 null mutant import the F1-ATPase alpha-subunit and beta-subunits, cytochrome c1 and other precursors at least several fold more slowly than wild-type cells. Removal of MAS70 from wild-type mitochondria inhibits binding of the ADP/ATP translocator to the mitochondrial surface, indicating that MAS70 mediates one of the earliest import steps. Several precursors are thus imported by a pathway in which MAS70 functions as a receptor-like component. MAS70 is not essential for import of these precursors, but only accelerates this process. 相似文献