首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Tooth development was cooperatively regulated by the epithelial ameloblasts and mesenchymal odontoblasts. Ameloblasts secrete enamel matrix, critical for enamel formation. While there are several reports about establishment of immortalized ameloblast-like cells by introducing viral oncogene, we tried to establish a spontaneously immortalized ameloblast-lineage cell line, maintaining the cell type specific character, including the ability to induce in vitro bio-mineralization. The established cell line (ameloblast-lineage cell; ALC) maintained the expression of several ameloblast specific genes (Amelogenin, Tuftelin, and Enamelin) in long-term culture. They formed calcified nodules after the induction by medium switching from SMEM to DMEM, having high-level alkaline-phosphatase activity. The size and number of calcified nodule formation were enhanced by TGF-beta treatment. Six weeks after sub-cutaneous implantation of ALC to athymic nude mice, we ectopically observed enamel epithelium like structure formation, chondrogenesis, and calcification. These data indicate that ALC is a useful experimental tool to analyze ameloblast character.  相似文献   

2.
Tbx2 and Tbx3 are considered to be cognate genes within a Tbx2/3/4/5 subfamily of T-box genes and are expressed in closely overlapping areas in a variety of tissues, including the eye. Herein, we show that misexpression of Tbx2 and Tbx3 in Xenopus embryos gave rise to defective eye morphogenesis, which was reminiscent of the defect caused by attenuated Sonic hedgehog (Shh) signaling. Indeed, Tbx2/3 misexpression suppressed Gli1, Gli2, Ptc2 and Pax2, mediators or targets of Hedgehog (Hh) signals. From these data, Tbx2/3 may have a shared function in inhibiting Gli-dependent Shh signaling during eye development. Conversely, the expression of Tbx2/3 was severely affected by both Shh and a putative dominant negative form of Hh, as well as by both transactivator and transrepressor forms of Gli-fusion proteins, suggesting that the expression of Tbx2/3 may be regulated by a Gli-dependent Hh signal transduction pathway. Because the Shh signal has been considered to play crucial roles in the formation of the proximal-distal and dorsal-ventral axes in the eyes, these findings about the mutual regulatory mechanism between Tbx2/3 and Gli-dependent Hh signaling provide valuable insight into the cause of the localized expression of Tbx2/3 and their role during the formation of these axes. In addition, our findings also imply the conserved regulation and shared activity between the cognate genes of Tbx2 and Tbx3.  相似文献   

3.
The first-line chemotherapy treatment for Glioblastoma (GBM) - the most aggressive and frequent brain tumor - is temozolomide (TMZ). The Sonic hedgehog (SHH) pathway is involved with GBM tumorigenesis and TMZ chemoresistance. The role of SHH pathway inhibition in the potentiation of TMZ's effects using T98G, U251, and GBM11 cell lines is investigated herein. The combination of GANT-61 and TMZ over 72 hr suggested a synergistic effect. All TMZ-resistant cell lines displayed a significant decrease in cell viability, increased DNA fragmentation and loss of membrane integrity. For T98G cells, G2/M arrest was observed, while U251 cells presented a significant increase in reactive oxygen species production and catalase activity. All the cell lines presented acidic vesicles formation correlated to Beclin-1 overexpression. The combined treatment also enhanced GLI1 expression, indicating the presence of select resistant cells. The selective inhibition of the SHH pathway potentiated the cytotoxic effect of TMZ, thus becoming a promising in vitro strategy for GBM treatment.  相似文献   

4.
Sonic hedgehog (Shh) is a secreted morphogen crucial for appropriate cellular proliferation during mammalian development. The activated Shh signaling is known to predispose to human tumors such as medulloblastoma and basal cell carcinoma, while a role of Shh signaling in the other common tumors is still controversial. Here we showed the overexpression of Shh in five cell lines among 14 human oral squamous cell carcinoma (OSCC) cell lines. One of the Shh-expressing OSCC cell lines HSQ-89 showed the inhibition of G1/S transition and apoptotic cell death by treatment with Cyclopamine, a steroidal alkaloid that blocks the intracellular Shh signaling. Furthermore, we found that treatment with Y-27632, a specific inhibitor of Rho-associated kinase, mimicked the effect of Cyclopamine on the cell cycle progression of HSQ-89. Our study revealed the involvement of activated Shh signaling in the cellular proliferation of OSCC cells, indicating Shh signaling might be a good therapeutic target for OSCC.  相似文献   

5.
Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant or spontaneous disorder characterized by multiple cutaneous basal cell carcinomas, odontogenic keratocysts, skeletal anomalies and facial dysmorphology, including cleft lip and palate. Causative mutations for NBCCS occur in the PTCH1 gene on chromosome 9q22.3-q31, which encodes the principle receptor for the Hedgehog signalling pathway. We have investigated the molecular basis of craniofacial defects seen in NBCCS using a transgenic mouse model expressing Shh in basal epithelium under a Keratin-14 promoter. These mice have an absence of flat bones within the skull vault, hypertelorism, open-bite malocclusion, cleft palate and arrested tooth development. Significantly, increased Hedgehog signal transduction in these mice can influence cell fate within the craniofacial region. In medial edge epithelium of the palate, Shh activity prevents apoptosis and subsequent palatal shelf fusion. In contrast, high levels of Shh in odontogenic epithelium arrests tooth development at the bud stage, secondary to a lack of cell proliferation in this region. These findings illustrate the importance of appropriately regulated Hedgehog signalling during early craniofacial development and demonstrate that oro-facial clefting and hypodontia seen in NBCCS can occur as a direct consequence of increased Shh signal activity within embryonic epithelial tissues.  相似文献   

6.
7.
WW domain containing oxidoreductase, designated WWOX, FOR or WOX1, is a known pro-apoptotic factor when ectopically expressed in various types of cancer cells, including glioblastoma multiforme (GBM). The activation of sonic hedgehog (Shh) signaling, especially paracrine Shh secretion in response to radiation, is associated with impairing the effective irradiation of cancer cells. Here, we examined the role of Shh signaling and WOX1 overexpression in the radiosensitivity of human GBM cells. Our results showed that ionizing irradiation (IR) increased the cytoplasmic Shh and nuclear Gli-1 content in GBM U373MG and U87MG cells. GBM cells with exogenous Shh treatment exhibited similar results. Pretreatment with Shh peptides protected U373MG and U87MG cells against IR in a dose-dependent manner. Cyclopamine, a Hedgehog/Smoothened (SMO) inhibitor, reversed the protective effect of Shh in U87MG cells. Cyclopamine increased Shh plus IR-induced H2AX, a marker of DNA double-strand breaks, in these cells. To verify the role of Shh signaling in the radiosensitivity of GBM cells, we tested the effect of the Gli family zinc finger 1 (Gli-1) inhibitor zerumbone and found that it could sensitize GBM cells to IR. We next examined the role of WOX1 in radiosensitivity. Overexpression of WOX1 enhanced the radiosensitivity of U87MG (possessing wild type p53 or WTp53) but not U373MG (harboring mutant p53 or MTp53) cells. Pretreatment with Shh peptides protected both WOX1-overexpressed U373MG and U87MG cells against IR and increased the cytoplasmic Shh and nuclear Gli-1 content. Zerumbone enhanced the radiosensitivity of WOX1-overexpressed U373MG and U87MG cells. In conclusion, overexpression of WOX1 preferentially sensitized human GBM cells possessing wild type p53 to radiation therapy. Blocking of Shh signaling may enhance radiosensitivity independently of the expression of p53 and WOX1. The crosstalk between Shh signaling and WOX1 expression in human glioblastoma warrants further investigation.  相似文献   

8.
9.
10.
《Developmental cell》2022,57(17):2048-2062.e4
  1. Download : Download high-res image (164KB)
  2. Download : Download full-size image
  相似文献   

11.
Studies with gene knockout mice have shown that Sonic hedgehog (Shh) is required for early development of hair follicles, but the role of this gene in the late stages of follicle development is not clear. By using an organ culture system of embryonic mouse skin, the role of Shh signaling in the early and late stages of follicle development was investigated. In the early stage of follicle development, the downward growth of the follicular epithelium was suppressed by cyclopamine, an inhibitor of Shh signaling, and accelerated by recombinant Shh. In addition, cyclopamine impaired dermal papilla formation, accompanied by the rearrangement of papilla cells, but not the elongation of the follicular epithelium at the later stage. These results suggest that Shh signaling is required for the proliferation of epithelial cells in the early development of hair follicles and for the morphogenetic movement of mesenchymal cells at the later stage of follicle development.  相似文献   

12.
13.
HoxD expression and cartilage pattern formation were compared after application of a recombinant amino-terminal peptide of Sonic hedgehog protein (Shh-N) and implantation of cells expressing the Sonic hedgehog (Shh) gene. During digit duplication after implantation of a Shh-N-soaked bead, BMP-2 and Patched expression was transiently induced in the anterior limb mesenchyme 20 h after grafting, but was reduced to the basal level 48 h after grafting. On the contrary, when Shh-expressing cells were grafted to the anterior limb bud, expression domains of the BMP-2 and Patched genes were initially induced in the restricted region in close proximity to the grafted cells. Induced expression of BMP-2 and Patched was maintained in the anterior-peripheral region of the limb bud for 42 h after grafting. In either case, HoxD12 and HoxD13 were consistently induced in the anterior-distal limb mesenchyme, accompanying mirror-image duplication of the digit pattern. Induction and maintenance of HoxD expression were consistent with the resultant digit pattern. A steep gradient of Shh activity provided by Shh-expressing cells is most adequate to induce complete digit pattern, as compared to the shallow gradient provided by Shh-N protein released from a bead. These results suggest that positional identity is respecified by Shh-N activity within the first 24 h during digit duplication, and that Shh-N on its own is not acting as a long-range signaling molecule to determine positional identity at a distance in the limb bud.  相似文献   

14.
Lack of Sonic hedgehog (Shh) signaling, mediated by the Gli proteins, leads to severe pulmonary hypoplasia. However, the precise role of Gli genes in lung development is not well established. We show Shh signaling prevents Gli3 proteolysis to generate its repressor forms (Gli3R) in the developing murine lung. In Shh(-/-) or cyclopamine-treated wild-type (WT) lung, we found that Gli3R level is elevated, and this upregulation appears to contribute to defects in proliferation and differentiation observed in the Shh(-/-) mesenchyme, where Gli3 is normally expressed. In agreement, we found Shh(-/-);Gli3(-/-) lungs exhibit enhanced growth potential. Vasculogenesis is also enhanced; in contrast, bronchial myogenesis remains absent in Shh(-/-);Gli3(-/-) compared with Shh(-/-) lungs. Genes upregulated in Shh(-/-);Gli3(-/-) relative to Shh(-/-) lung include Wnt2 and, surprisingly, Foxf1 whose expression has been reported to be Shh-dependent. Cyclins D1, D2, and D3 antibody labelings also reveal distinct expression patterns in the normal and mutant lungs. We found significant repression of Tbx2 and Tbx3, both linked to inhibition of cellular senescence, in Shh(-/-) and partial derepression in Shh(-/-); Gli3(-/-) lungs, while Tbx4 and Tbx5 expressions are less affected in the mutants. Our findings shed light on the role of Shh signaling on Gli3 processing in lung growth and differentiation by regulating several critical genes.  相似文献   

15.
Sonic hedgehog (Shh) is a key signal in establishing different digit fates along the anterior-posterior axis of the vertebrate limb bud. Although the anterior digits appear to be specified by differential concentrations of Shh in a traditional, morphogen-like response, recent studies have suggested that posterior digits are specified by an extended time of exposure to Shh rather than, or in addition to, a threshold concentration of Shh. This model for digit patterning depends upon continued Shh signaling in the posterior limb through mid-to-late bud stages. We find that cyclopamine, a potent antagonist of Shh signaling, can down-regulate hedgehog target genes in the posterior limb throughout the time Shh is expressed, indicating that continued active Shh signaling indeed takes place. To further explore the relative roles of time and concentration of Shh during limb development, we carried out two additional series of experiments. To test the effect of limiting the time, but not the amount of Shh produced, we treated chick embryos with the hedgehog antagonist cyclopamine at various stages of limb development. We find that short exposures to Shh result in specification of only the most anterior digits and that more posterior digits are specified sequentially with increasing times of uninterrupted Shh activity. To test the effect of limiting the level of Shh produced, but not the time of exposure, we genetically modified Shh production in mice. As previously shown, reducing both the concentration of Shh produced and the duration of Shh exposure results in a loss of posterior digits. We find that maintaining a low level of Shh production throughout the normal time frame of ZPA signaling results in a near complete restoration of the posterior-most digits. These data are consistent with, and lend additional support to, the model that concentration of Shh seen and duration of exposure both contribute to the dose-dependent specification of digit identities, but for the posterior-most digits the temporal component is the more critical parameter.  相似文献   

16.
The present study was designed to investigate the direct role of Shh molecule on cytodifferentiation and cusp formation. Affi-gel blue beads soaked in exogenous Shh-N, Shh antibody or BSA control protein were implanted between the epithelium and mesenchyme of isolated molar germs at the cap stage. The recombinants were grafted for culture under the kidney capsules respectively. In compared to the control, additional Shh-N protein could not enhance the ameloblasts and odontoblasts differentiation of the explanted tooth germs. While, application of Shh antibody retarded these events. After 4 weeks of subrenal culture, the teeth dissected from the explants treated with Shh-N were multicuspid. Most of the teeth harvested from the Shh antibody group were small and single irregularly shaped cusp was visible. The main cusp height in this group was reduced. The results indicated Shh signaling pathway is critical for odontoblast and ameloblast differentiation and patterns cusp formation. Lu Zhang and Fang Hua contribute equally.  相似文献   

17.
Neural stem cells are self-renewing cells capable of differentiating into all neural lineage cells in vivo and in vitro. In the present study, coordinated induction of midbrain dopaminergic phenotypes in an immortalized multipotent neural stem cell line can be achieved by both overexpression of nuclear receptor Nurr1, and fibroblast growth factor-8 (FGF-8), and sonic hedgehog (Shh) signals. Nurr1 overexpression induces neuronal differentiation and confers competence to respond to extrinsic signals such as Shh and FGF-8 that induce dopaminergic fate in a mouse neural stem cell line. Our findings suggest that immortalized NSCs can serve as an excellent model for understanding mechanisms that regulate specification of ventral midbrain DA neurons and as an unlimited source of DA progenitors for treating Parkinson disease patients by cell replacement.  相似文献   

18.
19.
Ectodermal organs, such as the tooth, salivary gland, hair, and mammary gland, develop through reciprocal epithelial–mesenchymal interactions. Tooth morphologies are defined by the crown width and tooth length (macro-morphologies), and by the number and locations of the cusp and roots (micro-morphologies). In our current study, we report that the crown width of a bioengineered molar tooth, which was reconstructed using dissociated epithelial and mesenchymal cells via an organ germ method, can be regulated by the contact area between epithelial and mesenchymal cell layers. We further show that this is associated with cell proliferation and Sonic hedgehog (Shh) expression in the inner enamel epithelium after the germ stage has formed a secondary enamel knot. We also demonstrate that the cusp number is significantly correlated with the crown width of the bioengineered tooth. These findings suggest that the tooth micro-morphology, i.e. the cusp formation, is regulated after the tooth width, or macro-morphology, is determined. These findings also suggest that the spatiotemporal patterning of cell proliferation and the Shh expression areas in the epithelium regulate the crown width and cusp formation of the developing tooth.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号