首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
Tseng YY  Yu CW  Liao VH 《The FEBS journal》2007,274(10):2566-2572
Because arsenic is the most prevalent environmental toxin, it is imperative that we understand the mechanisms of metalloid detoxification. In prokaryotes, arsenic detoxification is accomplished by chromosomal and plasmid-borne operon-encoded efflux systems. Bacterial ArsA ATPase is the catalytic component of an oxyanion pump that is responsible for resistance to arsenite (As(III)) and antimonite (Sb(III)). Here, we describe the identification of a Caenorhabditis elegans homolog (asna-1) that encodes the ATPase component of the Escherichia coli As(III) and Sb(III) transporter. We evaluated the responses of wild-type and asna-1-mutant nematodes to various metal ions and found that asna-1-mutant nematodes are more sensitive to As(III) and Sb(III) toxicity than are wild-type animals. These results provide evidence that ASNA-1 is required for C. elegans' defense against As(III) and Sb(III) toxicity. A purified maltose-binding protein (MBP)-ASNA-1 fusion protein was biochemically characterized, and its properties compared with those of ArsAs. The ATPase activity of the ASNA-1 protein was dependent on the presence of As(III) or Sb(III). As(III) stimulated ATPase activity by 2 +/- 0.2-fold, whereas Sb(III) stimulated it by 4.6 +/- 0.15-fold. The results indicate that As(III)- and Sb(III)-stimulated ArsA ATPase activities are not restricted to bacteria, but extend to animals, by demonstrating that the asna-1 gene from the nematode, C. elegans, encodes a functional ArsA ATPase whose activity is stimulated by As(III) and Sb(III) and which is critical for As(III) and Sb(III) tolerance in the intact organism.  相似文献   

5.
Resistance to arsenical compounds in Saccharomyces cerevisiae as well as in a growing number of prokaryotes and eukaryotes is mediated by members of the Acr3 family of transporters. In yeast cells, it has been clearly shown that Acr3p is localized to the plasma membrane and facilitates efflux of trivalent arsenic and antimony. However, until now, the energy dependence and kinetic properties of Acr3 proteins remained uncharacterized. In this work, we show that arsenite and antimonite uptake into everted membrane vesicles via the yeast Acr3 transporter is coupled to the electrochemical potential gradient of protons generated by the plasma membrane H(+)-translocating P-type ATPase. These results strongly indicate that Acr3p acts as a metalloid/H(+) antiporter. Two differential kinetic assays revealed that Acr3p-mediated arsenite/H(+) and antimonite/H(+) exchange demonstrates Michaelis-Menten-type saturation kinetics characterized by a maximum flux for permeating metalloids. The approximate K(m) values for arsenite and antimonite transport were the same, suggesting that Acr3p exhibits similar low affinity for both metalloids. Nevertheless, the maximal velocity of the transport at saturation concentrations of metalloids was approximately 3 times higher for arsenite than for antimonite. These findings may explain a predominant role of Acr3p in conferring arsenite tolerance in S. cerevisiae.  相似文献   

6.
微生物氧化As(III)和Sb(III)的研究进展   总被引:3,自引:0,他引:3  
砷(Arsenic,As)和锑(Antimony,Sb)属于同族元素,具有相似的化学性质,是公认的有毒类金属(metalloid),广泛存在于自然界中。随着人类的发展,环境中砷和锑的污染日益严重,类金属污染环境的修复已经刻不容缓。现已表明,自然界中的微生物在砷和锑的生物地球化学循环中发挥着重要的作用,尤其是微生物的氧化作用,可以将毒性较强的亚砷酸盐[Arsenite,As(III)]和亚锑酸盐[Antimonite,Sb(III)]氧化为毒性较低的砷酸盐[Arsenate,As(V)]和锑酸盐[Antimonate,Sb(V)],被认为是一种潜在的类金属污染环境修复方法。本文就国内外对As(III)氧化菌和Sb(III)氧化菌的多样性、As(III)和Sb(III)微生物氧化调控机制和应用的研究进展进行总结,旨在为深入了解和探索微生物介导的砷和锑生物地球化学循环及污染环境的微生物修复提供参考。  相似文献   

7.
Arsenic trioxide uptake by hexose permeases in Saccharomyces cerevisiae   总被引:2,自引:0,他引:2  
Arsenic trioxide is a toxic metalloid and carcinogen that is also used as an anticancer drug, and for this reason it is important to identify the routes of arsenite uptake by cells. In this study the ability of hexose transporters to facilitate arsenic trioxide uptake in Saccharomyces cerevisiae was examined. In the absence of glucose, strains with disruption of the arsenite efflux gene ACR3 accumulated high levels of (73)As(OH)(3). The addition of glucose inhibited uptake by approximately 80%. Disruption of FPS1, the aquaglyceroporin gene, reduced glucose-independent uptake by only about 25%, and the residual uptake was nearly completely inhibited by hexoses, including glucose, galactose, mannose, and fructose but not pentoses or disaccharides. A strain lacking FPS1, ACR3, and all genes for hexose permeases except for HXT3, HXT6, HXT7, and GAL2 exhibited hexose-inhibitable (73)As(OH)(3) uptake, whereas a strain lacking all 18 hexose transport-related genes (HXT1 to HXT17 and GAL2), FPS1 and ACR3, exhibited <10% of wild type (73)As(OH)(3) transport. When HXT1, HXT3, HXT4, HXT5, HXT7, or HXT9 was individually expressed in that strain, hexose-inhibitable (73)As(OH)(3) uptake was restored. In addition, the transport of [(14)C]glucose was inhibited by As(OH)(3). These results clearly demonstrate that hexose permeases catalyze the majority of the transport of the trivalent metalloid arsenic trioxide.  相似文献   

8.
The Leishmania major aquaglyceroporin, LmAQP1, is responsible for the transport of antimonite [Sb(III)], an activated form of Pentostam or Glucantime. Downregulation of LmAQP1 provides resistance to trivalent antimony compounds and increased expression of LmAQP1 in drug‐resistant parasites can reverse the resistance. Besides metalloid transport, LmAQP1 is also permeable to water, glycerol, methylglyoxal, dihydroxyacetone and sugar alcohols. LmAQP1 also plays a physiological role in volume regulation and osmotaxis. In this study, we examined the role of extracellular C‐loop glutamates (Glu143, Glu145 and Glu152) in LmAQP1 activity. Alteration of both Glu143 and Glu145 to alanines did not affect either the biochemical or physiological properties of the protein, suggesting that neither residue is critical for LmAQP1 activity. Alteration of Glu152 to alanine, aspartate and glutamine affected metalloid transport in the order, wild‐type > E152Q > E152D > E152A. In fact, axenic amastigotes expressing E152A LmAQP1 accumulated negligible levels of either arsenite [As(III)] or Sb(III). Alteration of Glu152 significantly affected volume regulation and osmotaxis, suggesting that Glu152 is critical for the physiological activity of the parasite. More importantly, alteration of Glu152 to alanine did not affect glycerol permeability. Although the metalloids, As(III) and Sb(III), are believed to be transported through aquaglyceroporin channels as they behave as inorganic molecular mimic of glycerol, this is the first report where metalloid and glycerol transport can be dissected by a single mutation at the extracellular pore entry of LmAQP1 channel.  相似文献   

9.
Resistance to arsenite (As(III)) by cells is generally accomplished by arsenite efflux permeases from Acr3 or ArsB unrelated families. We analyzed the function of three Acr3 proteins from Corynebacterium glutamicum, CgAcr3-1, CgAcr3-2, and CgAcr3-3. CgAcr3-1 conferred the highest level of As(III) resistance and accumulation in vivo. CgAcr3-1 was also the most active when everted membranes vesicles from Escherichia coli or C. glutamicum mutants were assayed for efflux with different energy sources. As(III) and antimonite (Sb(III)) resistance and accumulation studies using E. coli or C. glutamicum arsenite permease mutants clearly show that CgAcr3-1 is specific for As(III). In everted membrane vesicles expressing CgAcr3-1, dissipation of either the membrane potential or the pH gradient of the proton motive force did not prevent As(III) uptake, whereas dissipation of both components eliminated uptake. Further, a mutagenesis study of CgAcr3-1 suggested that a conserved cysteine and glutamate are involved in active transport. Therefore, we propose that CgAcr3-1 is an antiporter that catalyzes arsenite-proton exchange with residues Cys129 and Glu305 involved in efflux.  相似文献   

10.
The ArsAB extrusion pump encoded by the ars operon of Escherichia coli plasmid R773 confers resistance to the toxic trivalent metalloids arsenite [As(III)] and antimonite [Sb(III)]. The ArsA ATPase, the catalytic subunit of the pump, has two homologous halves, A1 and A2. At the interface of these two halves are two nucleotide-binding domains and a metalloid-binding domain. Cys-113 and Cys-422 have been shown to form a high-affinity metalloid binding site. The crystal structure of ArsA shows two other bound metalloid atoms, one liganded to Cys-172 and His-453, and the other liganded to His-148 and Ser-420. The contribution of those putative metalloid sites was examined. There was little effect of mutagenesis of residues His-148 and Ser-420 on metalloid binding. However, a C172A ArsA mutant and C172A/H453A double mutant exhibited significantly decreased affinity for Sb(III). These results suggest first that there is only a single high-affinity metalloid binding site in ArsA, and second that Cys-172 controls the affinity of this site for metalloid and hence the efficiency of metalloactivation of the ArsAB efflux pump.  相似文献   

11.
The arsRDABC operon of Escherichia coli plasmid R773 encodes the ArsAB extrusion pump for the trivalent metalloids As(III) and Sb(III). ArsA, the catalytic subunit has two homologous halves, A1 and A2. Each half has a consensus signal transduction domain that physically connects the nucleotide-binding domain to the metalloid-binding domain. The relation between metalloid binding by ArsA and transport through ArsB is unclear. In this study, direct metalloid binding to ArsA was examined. The results show that ArsA binds a single Sb(III) with high affinity only in the presence of Mg(2+)-nucleotide. Mutation of the codons for Cys-113 and Cys-422 eliminated Sb(III) binding to purified ArsA. C113A/C422A ArsA has basal ATPase activity similar to that of the wild type but lacks metalloid-stimulated activity. Accumulation of metalloid was assayed in intact cells, where reduced uptake results from active extrusion by the ArsAB pump. Cells expressing the arsA(C113A/C422A)B genes had an intermediate level of metalloid resistance and accumulation between those expressing only arsB alone and those expressing wild type arsAB genes. The results indicate that, whereas metalloid stimulation of ArsA activity enhances the ability of the pump to reduce the intracellular concentration of metalloid, high affinity binding of metalloid by ArsA is not obligatory for transport or resistance. Yet, in mixed populations of cells bearing either arsAB or arsA(C113A/C422A)B growing in subtoxic concentrations of arsenite, cells bearing wild type arsAB replaced cells with mutant arsA(C113A/C422A)B in less than 1 week, showing that the metalloid binding site confers an evolutionary advantage.  相似文献   

12.
Arsenic is an environmental toxin and a worldwide health hazard. Since this metalloid is ubiquitous in nature, virtually all living organisms require systems for detoxification and tolerance acquisition. Here, we show that during chronic exposure to arsenite [As(III)], Saccharomyces cerevisiae (budding yeast) exports and accumulates the low‐molecular‐weight thiol molecule glutathione (GSH) outside of cells. Extracellular accumulation of the arsenite triglutathione complex As(GS)3 was also detected and direct transport assays demonstrate that As(GS)3 does not readily enter cells. Yeast cells with increased extracellular GSH levels accumulate less arsenic and display improved growth when challenged with As(III). Conversely, cells defective in export and extracellular accumulation of GSH are As(III) sensitive. Taken together, our data are consistent with a novel detoxification mechanism in which GSH is exported to protect yeast cells from arsenite toxicity by preventing its uptake.  相似文献   

13.
14.
15.
The Saccharomyces cerevisiae FPS1 gene, which encodes a channel protein belonging to the MIP family, has been isolated previously as a multicopy suppressor of the growth defect of the fdp1 mutant (allelic to GGS1/TPS1) on fermentable sugars. Here we show that overexpression of FPS1 enhances glycerol production. Enhanced glycerol production caused by overexpression of GPD1 encoding glycerol-3-phosphate dehydrogenase also suppressed the growth defect of ggs1/tps1 delta mutants, suggesting a novel role for glycerol production in the control of glycolysis. The suppression of ggs1/tps1 delta mutants by GPD1 depends on the presence of Fps1. Mutants lacking Fps1 accumulate a greater part of the glycerol intracellularly, indicating that Fps1 is involved in glycerol efflux. Glycerol-uptake experiments showed that the permeability of the yeast plasma membrane for glycerol consists of an Fps1-independent component probably due to simple diffusion and of an Fps1-dependent component representing facilitated diffusion. The Escherichia coli glycerol facilitator expressed in a yeast fps1 delta mutant can restore the characteristics of glycerol uptake, production and distribution fully, but restores only partially growth of a ggs1/tps1 delta fps1 delta double mutant on glucose. Fps1 appears to be closed under hyperosmotic stress when survival depends on intracellular accumulation of glycerol and apparently opens rapidly when osmostress is lifted. The osmostress-induced High Osmolarity Glycerol (HOG) response pathway is not required for inactivation of Fps1. We conclude that Fps1 is a regulated yeast glycerol facilitator controlling glycerol production and cytosolic concentration, and might have additional functions.  相似文献   

16.
17.
Bacterial oxidation of arsenite [As(III)] is a well-studied and important biogeochemical pathway that directly influences the mobility and toxicity of arsenic in the environment. In contrast, little is known about microbiological oxidation of the chemically similar anion antimonite [Sb(III)]. In this study, two bacterial strains, designated IDSBO-1 and IDSBO-4, which grow on tartrate compounds and oxidize Sb(III) using either oxygen or nitrate, respectively, as a terminal electron acceptor, were isolated from contaminated mine sediments. Both isolates belonged to the Comamonadaceae family and were 99% similar to previously described species. We identify these novel strains as Hydrogenophaga taeniospiralis strain IDSBO-1 and Variovorax paradoxus strain IDSBO-4. Both strains possess a gene with homology to the aioA gene, which encodes an As(III)-oxidase, and both oxidize As(III) aerobically, but only IDSBO-4 oxidized Sb(III) in the presence of air, while strain IDSBO-1 could achieve this via nitrate respiration. Our results suggest that expression of aioA is not induced by Sb(III) but may be involved in Sb(III) oxidation along with an Sb(III)-specific pathway. Phylogenetic analysis of proteins encoded by the aioA genes revealed a close sequence similarity (90%) among the two isolates and other known As(III)-oxidizing bacteria, particularly Acidovorax sp. strain NO1. Both isolates were capable of chemolithoautotrophic growth using As(III) as a primary electron donor, and strain IDSBO-4 exhibited incorporation of radiolabeled [14C]bicarbonate while oxidizing Sb(III) from Sb(III)-tartrate, suggesting possible Sb(III)-dependent autotrophy. Enrichment cultures produced the Sb(V) oxide mineral mopungite and lesser amounts of Sb(III)-bearing senarmontite as precipitates.  相似文献   

18.
Active transport of metalloids by Acr3p and Ycf1p in Saccharomyces cerevisiae and chelation by phytochelatins in Schizosaccharomyces pombe, nematodes, and plants represent distinct strategies of metalloid detoxification. In this report, we present results of functional comparison of both resistance mechanisms. The S. pombe and wheat phytochelatin synthase (PCS) genes, when expressed in S. cerevisiae, mediate only modest resistance to arsenite and thus cannot functionally compensate for Acr3p. On the other hand, we show for the first time that phytochelatins also contribute to antimony tolerance as PCS fully complement antimonite sensitivity of ycf1Delta mutant. Remarkably, heterologous expression of PCS sensitizes S. cerevisiae to arsenate, while ACR3 confers much higher arsenic resistance in pcsDelta than in wild-type S. pombe. The analysis of PCS and ACR3 homologues distribution in various organisms and our experimental data suggest that separation of ACR3 and PCS genes may lead to the optimal tolerance status of the cell.  相似文献   

19.
Leishmaniasis is a protozoan parasitic disease that affects 12 million people worldwide. The first line choice for the treatment of this disease is antimonial drugs. In the endemic regions, resistance to this class of drugs is a major impediment to treatment. Microbes often become resistant to drugs by mutation or down-regulation of uptake systems, but the uptake system for the antimonial drugs in Leishmania is unknown. In other organisms, aquaglyceroporins have been shown to facilitate uptake of trivalent metalloids. In this study, we report the identification and characterization of aquaglyceroporins from Leishmania major (LmAQP1) and Leishmania tarentolae (LtAQP1), respectively. These Leishmania proteins have the conserved signature motifs of aquaglyceroporins. Transfection of LmAQP1 into three species of Leishmania, L. tarentolae, Leishmania infantum, and L. major, produced hypersensitivity to both As(III) and Sb(III) in all three strains. Increased production of LmAQP1 was detected by immunoblotting. Drug-resistant parasites with various mutations leading to resistance mechanisms became hypersensitive to both metalloids after expression of LmAQP1. Increased rates of uptake of As(III) or Sb(III) correlated with metalloid sensitivity of the wild type and drug-resistant transfectants. Transfection of LmAQP1 in a Pentostam-resistant field isolate also sensitized the parasite in the macrophage-associated amastigote form. One allele of LmAQP1 was disrupted in L. major, and the resulting cells became 10-fold more resistant to Sb(III). This is the first report of the uptake of a metalloid drug by an aquaglyceroporin in Leishmania, suggesting a strategy to reverse resistance in the field.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号