首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 234 毫秒
1.
A protein (PhaX) that interacted with poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 and with PHB granule-associated phasin protein PhaP2 was identified by two-hybrid analysis. Deletion of phaX resulted in an increase in the level of polyphosphate (polyP) granule formation and in impairment of PHB utilization in nutrient broth-gluconate cultures. A procedure for enrichment of polyP granules from cell extracts was developed. Twenty-seven proteins that were absent in other cell fractions were identified in the polyP granule fraction by proteome analysis. One protein (A2437) harbored motifs characteristic of type 1 polyphosphate kinases (PPK1s), and two proteins (A1212, A1271) had PPK2 motifs. In vivo colocalization with polyP granules was confirmed by expression of C- and N-terminal fusions of enhanced yellow fluorescent protein (eYFP) with the three polyphosphate kinases (PPKs). Screening of the genome DNA sequence for additional proteins with PPK motifs revealed one protein with PPK1 motifs and three proteins with PPK2 motifs. Construction and subsequent expression of C- and N-terminal fusions of the four new PPK candidates with eYFP showed that only A1979 (PPK2 motif) colocalized with polyP granules. The other three proteins formed fluorescent foci near the cell pole (apart from polyP) (A0997, B1019) or were soluble (A0226). Expression of the Ralstonia eutropha ppk (ppkReu) genes in an Escherichia coli Δppk background and construction of a set of single and multiple chromosomal deletions revealed that both A2437 (PPK1a) and A1212 (PPK2c) contributed to polyP granule formation. Mutants with deletion of both genes were unable to produce polyP granules. The formation and utilization of PHB and polyP granules were investigated in different chromosomal backgrounds.  相似文献   

2.
Inorganic polyphosphate (polyP) is present in all living forms of life. Studied mainly in prokaryotes, polyP and its associated enzymes are vital in diverse metabolic activities, in some structural functions, and most importantly in stress responses. Bacterial species, including many pathogens, encode a homolog of a major polyP synthesis enzyme, Poly Phosphate Kinase (PPK) with 2 different genes coding for PPK1 and PPK2. Genetic deletion of the ppk1 gene leads to reduced polyP levels and the consequent loss of virulence and stress adaptation responses. This far, no PPK1 homolog has been identified in higher‐order eukaryotes, and, therefore, PPK1 represents a novel target for chemotherapy. The aim of the current study is to investigate PPK1 from Escherichia coli with comprehensive understanding of the enzyme's structure and binding sites, which were used to design pharmacophores and screen a library of compounds for potential discovery of selective PPK1 inhibitors. Verification of the resultant inhibitors activities was conducted using a combination of mutagenic and chemical biological approaches. The metabolic phenotypic maps of the wild type E. coli (WT) and ppk1 knockout mutant were generated and compared with the metabolic map of the chemically inhibited WT. In addition, biofilm formation ability was measured in WT, ppk1 knockout mutant, and the chemically inhibited WT. The results demonstrated that chemical inhibition of PPK1, with the designed inhibitors, was equivalent to gene deletion in altering specific metabolic pathways, changing the metabolic fingerprint, and suppressing the ability of E. coli to form a biofilm.  相似文献   

3.
Polyphosphate (polyP) is a ubiquitous biopolymer whose function and metabolism are incompletely understood. The polyphosphate kinase (PPK) of Acinetobacter sp. strain ADP1, an organism that accumulates large amounts of polyP, was purified to homogeneity and characterized. This enzyme, which adds the terminal phosphate from ATP to a growing chain of polyP, is a 79-kDa monomer. PPK is sensitive to magnesium concentrations, and optimum activity occurs in the presence of 3 mM MgCl2. The optimum pH was between pH 7 and 8, and significant reductions in activity occurred at lower pH values. The greatest activity occurred at 40°C. The half-saturation ATP concentration for PPK was 1 mM, and the maximum PPK activity was 28 nmol of polyP monomers per μg of protein per min. PPK was the primary, although not the sole, enzyme responsible for the production of polyP in Acinetobacter sp. strain ADP1. Under low-phosphate (Pi) conditions, despite strong induction of the ppk gene, there was a decline in net polyP synthesis activity and there were near-zero levels of polyP in Acinetobacter sp. strain ADP1. Once excess phosphate was added to the Pi-starved culture, both the polyP synthesis activity and the levels of polyP rose sharply. Increases in polyP-degrading activity, which appeared to be mainly due to a polyphosphatase and not to PPK working in reverse, were detected in cultures grown under low-Pi conditions. This activity declined when phosphate was added.  相似文献   

4.
Polyphosphate kinase (PPK), the principal enzyme required for the synthesis of inorganic polyphosphate (polyP) from ATP, also exhibits other enzymatic activities, which differ significantly in their biochemical optima and responses to chemical agents. These several activities include: polyP synthesis (forward reaction), nATP --> polyP(n) + nADP (Equation 1); ATP synthesis from polyP (reverse reaction), ADP + polyP(n) --> ATP + polyP(n - 1) (Equation 2); general nucleoside-diphosphate kinase, GDP + polyP(n) --> GTP + polyP(n - 1) (Equation 3); linear guanosine 5'-tetraphosphate (ppppG) synthesis, GDP + polyP(n) --> ppppG + polyP(n - 2) (Equation 4); and autophosphorylation, PPK + ATP --> PPK-P + ADP (Equation 5). The Mg(2+) optima are 5, 2, 1, and 0.2 mM, respectively, for the activities in Equations 1, 2, 3, and 4. Inorganic pyrophosphate inhibits the activities in Equations 1 and 3 but stimulates that in Equation 4. The kinetics of the activities in Equations 1, 2, and 3 are highly processive, whereas the transfer of a pyrophosphoryl group from polyP to GDP (Equation 4) is distributive and demonstrates a rapid equilibrium, random Bi-Bi catalytic mechanism. Radiation target analysis revealed that the principal functional unit of the homotetrameric PPK is a dimer. Exceptions are a trimer for the synthesis of ppppG (Equation 4) and a tetrameric state for the autophosphorylation of PPK (Equation 5) at low ATP concentrations. Thus, the diverse functions of this enzyme involve different subunit organizations and conformations. The highly conserved homology of PPK among 18 microorganisms was used to determine important residues and conserved regions by alanine substitution, by site-directed mutagenesis, and by deletion mutagenesis. Of 46 single-site mutants, seven exhibit none of the five enzymatic activities; in one mutant, ATP synthesis from polyP is reduced relative to GTP synthesis. Among deletion mutants, some lost all five PPK activities, but others retained partial activity for some reactions but not for others.  相似文献   

5.
Inorganic polyphosphate (polyP) is obtained by the polymerization of the terminal phosphate of ATP through the action of the enzyme polyphosphate kinase (PPK). Despite the presence of polyP in every living cell, a gene homologous to that of known PPKs is missing from the currently sequenced genomes of Eukarya, Archaea, and several bacteria. To further study the metabolism of polyP in Archaea, we followed the previously published purification procedure for a glycogen-bound protein of 57 kDa with PPK as well as glycosyl transferase (GT) activities from Sulfolobus acidocaldarius (R. Skórko, J. Osipiuk, and K. O. Stetter, J. Bacteriol. 171:5162–5164, 1989). In spite of using recently developed specific enzymatic methods to analyze polyP, we could not reproduce the reported PPK activity for the 57-kDa protein and the polyP presumed to be the product of the reaction most likely corresponded to glycogen-bound ATP under our experimental conditions. Furthermore, no PPK activity was found associated to any of the proteins bound to the glycogen-protein complex. We cloned the gene corresponding to the 57-kDa protein by using reverse genetics and functionally characterized it. The predicted product of the gene did not show similarity to any described PPK but to archaeal and bacterial glycogen synthases instead. In agreement with these results, the recombinant protein showed only GT activity. Interestingly, the GT from S. acidocaldarius was phosphorylated in vivo. In conclusion, our results convincingly demonstrate that the glycogen-protein complex of S. acidocaldarius does not contain a PPK activity and that what was previously reported as being glycogen-bound PPK is a bacterial enzyme-like thermostable glycogen synthase.  相似文献   

6.
Inorganic polyphosphate (polyP) is a linear polymer of tens to hundreds of phosphate (Pi) residues linked by “high-energy” phosphoanhydride bonds as in ATP. PolyP kinases, responsible for the synthesis and utilization of polyP, are divided into two families (PPK1 and PPK2) due to differences in amino acid sequence and kinetic properties. PPK2 catalyzes preferentially polyP-driven nucleotide phosphorylation (utilization of polyP), which is important for the survival of microbial cells under conditions of stress or pathogenesis. Phylogenetic analysis suggested that the PPK2 family could be divided into three subfamilies (classes I, II, and III). Class I and II PPK2s catalyze nucleoside diphosphate and nucleoside monophosphate phosphorylation, respectively. Here, we demonstrated that class III PPK2 catalyzes both nucleoside monophosphate and nucleoside diphosphate phosphorylation, thereby enabling us to synthesize ATP from AMP by a single enzyme. Moreover, class III PPK2 showed broad substrate specificity over purine and pyrimidine bases. This is the first demonstration that class III PPK2 possesses both class I and II activities.  相似文献   

7.

Background

Pseudomonas aeruginosa is known to be a multidrug resistant opportunistic pathogen. Particularly, P. aeruginosa PAO1 polyphosphate kinase mutant (ppk1) is deficient in motility, quorum sensing, biofilm formation and virulence.

Findings

By using Phenotypic Microarrays (PM) we analyzed near 2000 phenotypes of P. aeruginosa PAO1 polyP kinase mutants (ppk1 and ppk2). We found that both ppk mutants shared most of the phenotypic changes and interestingly many of them related to susceptibility toward numerous and different type of antibiotics such as Ciprofloxacin, Chloramphenicol and Rifampicin.

Conclusions

Combining the fact that ppk1 mutants have reduced virulence and are more susceptible to antibiotics, polyP synthesis and particularly PPK1, is a good target for the design of molecules with anti-virulence and anti-persistence properties.

Electronic supplementary material

The online version of this article (doi:10.1186/s40659-015-0012-0) contains supplementary material, which is available to authorized users.  相似文献   

8.
Phosphate is essential for all major life processes, especially energy metabolism and signal transduction. A linear phosphate polymer, polyphosphate (polyP), linked by high-energy phosphoanhydride bonds, can interact with various proteins, playing important roles as an energy source and regulatory factor. However, polyP-binding structures are largely unknown. Here we proposed a putative polyP binding site, a positively-charged semi-tunnel (PCST), identified by surface electrostatics analyses in polyP kinases (PPKs) and many other polyP-related proteins. We found that the PCSTs in varied proteins were folded in different secondary structure compositions. Molecular docking calculations revealed a significant value for binding affinity to polyP in PCST-containing proteins. Utilizing the PCST identified in the β subunit of PPK3, we predicted the potential polyP-binding domain of PPK3. The discovery of this feature facilitates future searches for polyP-binding proteins and discovery of the mechanisms for polyP-binding activities. This should greatly enhance the understanding of the many physiological functions of protein-bound polyP and the involvement of polyP and polyP-binding proteins in various human diseases.  相似文献   

9.
Studies of polyphosphate (polyP) metabolism in microorganisms have been hampered by the lack of a convenient method for the assay in cell extracts of the activity of polyphosphate kinase (PPK), the enzyme principally responsible for microbial polyP biosynthesis. We report the development of such an assay, based on the well-established metachromatic reaction, with toluidine blue, of the polyP formed during the PPK-catalyzed reaction. The method was successfully used in the characterization of PPK activity in crude extracts of an environmental Burkholderia cepacia isolate. The development of a protocol for the physical recovery of polyP from solution is also reported.  相似文献   

10.
The ppk gene encodes polyphosphate kinase (PPK), the principal enzyme in many bacteria responsible for the synthesis of inorganic polyphosphate (polyP) from ATP. A null mutation in the ppk gene of six bacterial pathogens renders them greatly impaired in motility on semisolid agar plates; this defect can be corrected by the introduction of ppk gene in trans. In view of the fact that the motility of pathogens is essential to invade and establish systemic infections in host cells, this impairment in motility suggests a crucial and essential role of PPK or polyP in bacterial pathogenesis.  相似文献   

11.

Background

Inorganic polyphosphate (polyP) is a fundamental and ubiquitous molecule in prokaryotes and eukaryotes. PolyP has been found in mammalian tissues with particularly high levels of long-chain polyP in bone and cartilage where critical questions remain as to its localization and function. Here, we investigated polyP presence and function in osteoblast-like SaOS-2 cells and cell-derived matrix vesicles (MVs), the initial sites of bone mineral formation.

Methods

PolyP was quantified by 4′,6-diamidino-2-phenylindole (DAPI) fluorescence and characterized by enzymatic methods coupled to urea polyacrylamide gel electrophoresis. Transmission electron microscopy and confocal microscopy were used to investigate polyP localization. A chicken embryo cartilage model was used to investigate the effect of polyP on mineralization.

Results

PolyP increased in concentration as SaOS-2 cells matured and mineralized. Particularly high levels of polyP were observed in MVs. The average length of MV polyP was determined to be longer than 196 Pi residues by gel chromatography. Electron micrographs of MVs, stained by two polyP-specific staining approaches, revealed polyP localization in the vicinity of the MV membrane. Additional extracellular polyP binds to MVs and inhibits MV-induced hydroxyapatite formation.

Conclusion

PolyP is highly enriched in matrix vesicles and can inhibit apatite formation. PolyP may be hydrolysed to phosphate for further mineralization in the extracellular matrix.

General significance

PolyP is a unique yet underappreciated macromolecule which plays a critical role in extracellular mineralization in matrix vesicles.  相似文献   

12.
Processes for the biological removal of phosphate from wastewater rely on temporary manipulation of bacterial polyphosphate levels by phased environmental stimuli. In E. coli polyphosphate levels are controlled via the polyphosphate‐synthesizing enzyme polyphosphate kinase (PPK1) and exopolyphosphatases (PPX and GPPA), and are temporarily enhanced by PPK1 overexpression and reduced by PPX overexpression. We hypothesised that partitioning PPK1 from cytoplasmic exopolyphosphatases would increase and stabilise E. coli polyphosphate levels. Partitioning was achieved by co‐expression of E. coli PPK1 fused with a microcompartment‐targeting sequence and an artificial operon of Citrobacter freundii bacterial microcompartment genes. Encapsulation of targeted PPK1 resulted in persistent phosphate uptake and stably increased cellular polyphosphate levels throughout cell growth and into the stationary phase, while PPK1 overexpression alone produced temporary polyphosphate increase and phosphate uptake. Targeted PPK1 increased polyphosphate in microcompartments 8‐fold compared with non‐targeted PPK1. Co‐expression of PPX polyphosphatase with targeted PPK1 had little effect on elevated cellular polyphosphate levels because microcompartments retained polyphosphate. Co‐expression of PPX with non‐targeted PPK1 reduced cellular polyphosphate levels. Thus, subcellular compartmentalisation of a polymerising enzyme sequesters metabolic products from competing catabolism by preventing catabolic enzyme access. Specific application of this process to polyphosphate is of potential application for biological phosphate removal.  相似文献   

13.
Polyphosphate (polyP) is a ubiquitous biopolymer whose function and metabolism are incompletely understood. The polyphosphate kinase (PPK) of Acinetobacter sp. strain ADP1, an organism that accumulates large amounts of polyP, was purified to homogeneity and characterized. This enzyme, which adds the terminal phosphate from ATP to a growing chain of polyP, is a 79-kDa monomer. PPK is sensitive to magnesium concentrations, and optimum activity occurs in the presence of 3 mM MgCl(2). The optimum pH was between pH 7 and 8, and significant reductions in activity occurred at lower pH values. The greatest activity occurred at 40 degrees C. The half-saturation ATP concentration for PPK was 1 mM, and the maximum PPK activity was 28 nmol of polyP monomers per microg of protein per min. PPK was the primary, although not the sole, enzyme responsible for the production of polyP in Acinetobacter sp. strain ADP1. Under low-phosphate (P(i)) conditions, despite strong induction of the ppk gene, there was a decline in net polyP synthesis activity and there were near-zero levels of polyP in Acinetobacter sp. strain ADP1. Once excess phosphate was added to the P(i)-starved culture, both the polyP synthesis activity and the levels of polyP rose sharply. Increases in polyP-degrading activity, which appeared to be mainly due to a polyphosphatase and not to PPK working in reverse, were detected in cultures grown under low-P(i) conditions. This activity declined when phosphate was added.  相似文献   

14.
Gene expression reporter systems, in which a promoter of interest is cloned upstream of a readily assayed reporter gene, have been developed and used extensively to study gene expression in prokaryotes and eukaryotes. Unfortunately, most of these systems cannot be used to assay gene expression in nonsuperficial tissues in living organisms. This study examines a novel reporter gene system based on the gene encoding Escherichia coli polyphosphate kinase (PPK), which can be used to monitor gene expression in mammalian cells. PPK catalyzes the synthesis of inorganic polyphosphate (polyP) from ATP, and because mammalian cells do not contain detectable levels of polyP, PPK activity can be measured in mammalian cells using 31P-magnetic resonance spectroscopy or 31P-magnetic resonance imaging. The ppk reporter gene system described here is noninvasive, does not require an exogenous substrate, and can potentially be used in internal tissues of living organisms.  相似文献   

15.
16.

Objectives

To develop a new one-pot polyphosphate kinase (PPK) system with low cost and high efficiency for ATP regeneration in industrial CTP production.

Results

We developed a new one-pot PPK system by applying a three-enzyme cascade (CMK, NDK and PPK) with an in vitro polyP-based ATP regeneration system. The PPK was selected from twenty sources, and was made solvable by fusion expressing with soluble protein and constructing polycistronic plasmids, or co-expressing with molecular chaperones GroES/EL. Activities of other enzymes were optimized by employing fusion expression, tac-pBAD system, Rosetta host and codon optimization. After 24 h, the concentration of CDP and CTP reached 3.8 ± 0.2 and 6.9 ± 0.3 mM l?1 respectively with a yield of approximately 79%. The molar conversion rate of CTP was 51%, and its yield and conversion rate increased 100% from the traditional system.

Conclusions

A new one-pot ATP regeneration system applying polyphosphate kinase for CTP production was developed.
  相似文献   

17.
Inorganic polyphosphate (polyP) is obtained by the polymerization of the terminal phosphate of ATP through the action of the enzyme polyphosphate kinase (PPK). Despite the presence of polyP in every living cell, a gene homologous to that of known PPKs is missing from the currently sequenced genomes of Eukarya, Archaea, and several bacteria. To further study the metabolism of polyP in Archaea, we followed the previously published purification procedure for a glycogen-bound protein of 57 kDa with PPK as well as glycosyl transferase (GT) activities from Sulfolobus acidocaldarius (R. Skórko, J. Osipiuk, and K. O. Stetter, J. Bacteriol. 171:5162-5164, 1989). In spite of using recently developed specific enzymatic methods to analyze polyP, we could not reproduce the reported PPK activity for the 57-kDa protein and the polyP presumed to be the product of the reaction most likely corresponded to glycogen-bound ATP under our experimental conditions. Furthermore, no PPK activity was found associated to any of the proteins bound to the glycogen-protein complex. We cloned the gene corresponding to the 57-kDa protein by using reverse genetics and functionally characterized it. The predicted product of the gene did not show similarity to any described PPK but to archaeal and bacterial glycogen synthases instead. In agreement with these results, the recombinant protein showed only GT activity. Interestingly, the GT from S. acidocaldarius was phosphorylated in vivo. In conclusion, our results convincingly demonstrate that the glycogen-protein complex of S. acidocaldarius does not contain a PPK activity and that what was previously reported as being glycogen-bound PPK is a bacterial enzyme-like thermostable glycogen synthase.  相似文献   

18.

Background

In bacteria polyphosphates (poly-P) are involved in cellular metabolism and development especially during stress. The enzyme, principally involved in polyphosphate biosynthesis and its mobilization leading to generation of NTPs, is known as polyphosphate kinase (PPK).

Principal Findings

Among two genes of polyphosphate kinases present in Mycobacterium tuberculosis, we cloned and expressed PPK1 in Escherichia coli as histidine-tagged protein. This ∼86 kDa protein is capable of autophosphorylation and synthesis of poly-P as well as NTP. Among 22 conserved histidine residues, we found only His-491 is autophosphorylated and crucial for any enzymatic activity. Substitution of His-510 caused mPPK1 protein deficient but not defective in autophosphorylation, thereby contrary to earlier reports negating any role of this residue in the process. However, mutation of His-510 with either Ala or Gln affected ATP or poly-P synthesis depending on the substitution; while such effects were severe with H510A but mild with H510Q. Furthermore, mPPK1 also renders auxiliary nucleotide diphosphate kinase function by synthesizing virtually all NTPs/dNTPs from their cognate NDPs/dNDPs by utilizing poly-P as the phosphate donor albeit with varied efficiency. To assess the influence of other catalytic domain residues of mPPK1 towards its functionality, we designed mutations based on E. coli PPK1 crystal structure since it owes 68% amino acid sequence similarity with mPPK1. Interestingly, our results revealed that mutations in mPPK1 affecting poly-P synthesis always affected its ATP synthesizing ability; however, the reverse may not be true.

Conclusions/Significance

We conclude that amino acid residues involved in poly-P and ATP synthesizing activities of mPPK1 are distinct. Considering conserved nature of PPK1, it seems our observations have broader implications and not solely restricted to M. tuberculosis only.  相似文献   

19.
Polyphosphate kinases (PPKs) catalyse the polymerisation and degradation of polyphosphate chains. As a result of this process, PPK produces or consumes energy in the form of ATP. Polyphosphate is a linear molecule that contains tens to hundreds of phosphate residues connected by macroergic bonds, and it appears to be an easily obtainable and rich source of energy from prebiotic times to the present. Notably, polyphosphate is present in the cells of all three domains of life, but PPKs are widely distributed only in Bacteria, as Archaea and Eucarya use various unrelated or “nonhomologous” proteins for energy and metabolic balance. The present study focuses on PPK1 and PPK2 homologues, which have been described to some extent in Bacteria, and the aim was to determine which homologue group, PPK1 or PPK2, is older. Phylogenetic analyses of 109 sequence homologues of Escherichia coli PPK1 and 109 sequence homologues of Pseudomonas aeruginosa PPK2 from 109 bacterial genomes imply that polyphosphate consumption (PPK2) evolved first and that phosphate polymerisation (PPK1) evolved later. Independently, a theory of the trends in amino acid loss and gain also confirms that PPK2 is older than PPK1. According to the results of this study, we propose 68 hypothetical proteins to mark as PPK2 homologues and 3 hypothetical proteins to mark as PPK1 homologues.  相似文献   

20.
Polyphosphate kinase (PPK) catalyzes the reversible transfer of the terminal phosphate of ATP to form a long-chain polyphosphate (polyP) (Ahn, K., and Kornberg, A. (1990) J. Biol. Chem. 265, 11734-11739). The Escherichia coli gene (ppk) encoding PPK has been cloned, sequenced, and overexpressed (about 100-fold). The gene possesses an open reading frame for 687 amino acids (mass of 80,278 Da). PPK has been purified from overproducing cells after release from attachment to the cell outer membrane; the purified soluble PPK reassociate with cell membrane fractions. About 850 molecules of PPK are found in a wild type cell.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号