首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
R H Devlin  D G Holm  K R Morin  B M Honda 《Génome》1990,33(3):405-415
Although little is known about the molecular organization of most genes within heterochromatin, the unusual properties of these chromosomal regions suggest that genes therein may be organized and expressed very differently from those in euchromatin. We report here the cloning, by P transposon tagging, of sequences associated with the expression of the light locus, an essential gene found in the heterochromatin of chromosome 2 of Drosophila melanogaster. We conclude that this DNA is either a segment of the light locus, or a closely linked, heterochromatic sequence affecting its expression. While other functional DNA sequences previously described in heterochromatin have been repetitive, light gene function may be associated, at least in part, with single-copy DNA. This conclusion is based upon analysis of DNA from mutations and reversions induced by P transposable elements. The cloned region is unusual in that this single-copy DNA is embedded within middle-repetitive sequences. The in situ hybridization experiments also show that, unlike most other sequences in heterochromatin, this light-associated DNA evidently replicates in polytene chromosomes, but its diffuse hybridization signal may suggest an unusual chromosomal organization.  相似文献   

2.
3.
Over 50 years ago Barbara McClintock discovered that maize contains mobile genetic elements, but her findings were at first considered nothing more than anomalies. Today it is widely recognized that transposable elements have colonized all eukaryotic genomes and represent a major force driving evolution of organisms. Our contribution to this special issue deals with the theme of transposable element-host genome interactions. We bring together published and unpublished work to provide a picture of the contribution of transposable elements to the evolution of the heterochromatic genome in Drosophila melanogaster. In particular, we discuss data on 1) colonization of constitutive heterochromatin by transposable elements, 2) instability of constitutive heterochromatin induced by the I factor, and 3) evolution of constitutive heterochromatin and heterochromatic genes driven by transposable elements. Drawing attention to these topics may have direct implications on important aspects of genome organization and gene expression.  相似文献   

4.
The Notch locus of Drosophila melanogaster   总被引:48,自引:0,他引:48  
S Kidd  T J Lockett  M W Young 《Cell》1983,34(2):421-433
  相似文献   

5.
《Mutation Research Letters》1993,301(2):121-124
Previous screens for autosomal genes that are necessary to resistance to DNA cross-linking agents but not to monofunctional agents have produced 6 mutations; all of which fall within the third chromosomal gene mus308. In an effort to identify analogous sex-linked genes, a screen of mutagenized X-chromosomes has been conducted for mutations that confer hypersensitivity to nitrogen mustard. This search has identified a new locus, mus115, through the recovery of a mutant that is strongly hypersensitive to nitrogen mustard but marginally sensitive to methyl methanesulfonate.  相似文献   

6.
7.
8.
9.
Quantitative cytogenetical analysis has been used to study the synapsis of D. melanogaster neuroblast mitotic chromosomes from normal females, flies with heterozygous deletions, duplications or inversions in the heterochromatic regions of chromosome 2 and in triploid females. In all these genotypes chromocentric fusion of heterochromatic regions of heterologous chromosomes is observed. Eu- and heterochromatic regions of homologous chromosomes are intimately paired at the same time during the cell cycle. The structural rearrangements lead to reduced frequencies of chromocentric association as well as of homologous synapsis compared with the frequencies in the wild-type. The results obtained are discussed with respect to the general problem of the homologous interaction of chromosomes and the significance of heterochromatin for these processes.  相似文献   

10.
11.
Cloning of heat-shock locus 93D from Drosophila melanogaster.   总被引:5,自引:1,他引:5       下载免费PDF全文
Using the microcloning approach a number of recombinant lambda phages carrying DNA from the 93D region have been isolated. Screening genomic libraries, cloned in phage lambda or cosmid vectors, with this isolated DNA yielded a series of overlapping DNA fragments from the region 93D6-7 as shown by in situ hybridization to polytene chromosomes. In vitro 32P-labelled nuclear RNA prepared from heat-shocked third instar larvae hybridized specifically to one fragment within 85 kb of cloned DNA. The region which is specifically transcribed after heat shock could be defined to a cluster of internally-repetitive DNA and its neighbouring proximal sequences. Over a sequence of 10-12 kb in length the DNA is cut into repeat units of approximately 280 nucleotides by the restriction endonuclease TaqI. The TaqI repeat sequences are unique in the Drosophila genome.  相似文献   

12.
Coulthard AB  Nolan N  Bell JB  Hilliker AJ 《Genetics》2005,170(4):1711-1721
Transvection is a phenomenon wherein gene expression is effected by the interaction of alleles in trans and often results in partial complementation between mutant alleles. Transvection is dependent upon somatic pairing between homologous chromosome regions and is a form of interallelic complementation that does not occur at the polypeptide level. In this study we demonstrated that transvection could occur at the vestigial (vg) locus by revealing that partial complementation between two vg mutant alleles could be disrupted by changing the genomic location of the alleles through chromosome rearrangement. If chromosome rearrangements affect transvection by disrupting somatic pairing, then combining chromosome rearrangements that restore somatic pairing should restore transvection. We were able to restore partial complementation in numerous rearrangement trans-heterozygotes, thus providing substantial evidence that the observed complementation at vg results from a transvection effect. Cytological analyses revealed this transvection effect to have a large proximal critical region, a feature common to other transvection effects. In the Drosophila interphase nucleus, paired chromosome arms are separated into distinct, nonoverlapping domains. We propose that if the relative position of each arm in the nucleus is determined by the centromere as a relic of chromosome positions after the last mitotic division, then a locus will be displaced to a different territory of the interphase nucleus relative to its nonrearranged homolog by any rearrangement that links that locus to a different centromere. This physical displacement in the nucleus hinders transvection by disrupting the somatic pairing of homologous chromosomes and gives rise to proximal critical regions.  相似文献   

13.
14.
Due to the complete absence of ribosomal DNA (genetic symbol bb-), the Xbb- chromosome of Drosophila is lethal both in homozygous conditions and in compound with the Xbb- chromosome. However, in the cross between the C(1)RM/Ybb- females and the Xbb-/BSYbb+ males, characterized by the development of lethal Xbb-/Ybb- zygotes, two fertile males were detected. These males possessed all the markers of the Xbb- chromosome but lacked the Y chromosome BS marker. Genetic analysis of their progeny showed that genes responsible for restoration of viability and fertility of these exceptional males were associated with the X chromosome. The crossover tests showed that in one case these genes were tightly linked to the w locus (the bbAM1 allele), and in the second case they were located 12.6 map units to the right of the Tu locus (the bbAM7 allele). It has also been shown that the bb locus was transposed to the X chromosome within the short arm of Y chromosome. Transposition of the BSYbb+ chromosome-specific rDNA sequences to the X chromosome was confirmed by means of Southern blotting. These data indicate that replacement of the bb locus is realized by transposition rather than recombination.  相似文献   

15.
We studied molecular characteristics of yellow (y; 1-0.0) locus, which determines the body coloration of phenotypically wild-type and mutant alleles isolated from geographically distant populations of Drosophila melanogaster in different years. According to Southern data, restrictions map of yellow locus of all studied strains differ from each other as well as from that of Oregon stock. FISH analysis shows that in the neighborhood of yellow locus in X chromosome neither P nor hobo elements are found in y1-775 stock, while only hobo is found there in y1-859 and y1-866 stocks, only P element in y+sn849 stock, and both elements in y1-719 stock. Thus, all studied mutant variants of yellow are of independent origin. Yellow locus residing at the very end of X chromosome (region 1A5-8 of cytologic map) carries significantly more transposon than retrotransposon-induced mutations, as compared to white locus (regions 3C2). It is possible that transposons are more active than retrotransposons at the chromosomal ends of D. melanogaster.  相似文献   

16.
A study was undertaken to isolate mutations affecting the temporal appearance of kynurenine hydroxylase in Drosophila melanogaster. Such mutations, lacking or having reduced enzyme activity at the larval or pupal stage only, could represent changes in regulatory functions. Mutagenesis was carried out using EMS. Potential mutations were isolated from mass F1 cultures. The screening of large numbers of individuals was made possible by the use of the mutant red, which allowed visual classification for the presence or absence of the enzyme at both stages. From a series of six mutagenesis experiments 111,561 chromosomes were tested, and 122 phenotypically mutant F1 individuals were found. From these, 38 inheritable mutations were isolated which, by phenotypic observation, lacked or had reduced enzyme activity at the larval and pupal stages. Assay of enzyme activity levels in several of the mutants confirmed the phenotypic data. All of the 27 mutations that could be tested further are recessive and behave as cinnabar alleles. Complementation tests were performed between these 27 mutant stocks, and no complementation in the production of eye color has been seen between the mutants examined. When extended collection periods were used, a significantly higher percentage of inheritable mutations was isolated from the first 3 days of the screen. Over 80% of the F1 phenotypic mutants could be classified as mosaics, which indicates that cinnabar can be autonomous under certain conditions. The failure to isolate mutations in possible regulatory function is discussed.  相似文献   

17.
Nefedova LN  Kim AI 《Genetika》2007,43(10):1388-1395
Drosophila melanogaster retrotransposons of the gypsy group are considered to be potential errantiviruses. Their infectivity is caused by the functional activity of the third open reading frame (ORF3) encoding the Env protein, which was probably captured from baculoviruses. Mobile genetic elements (MGEs) of the gypsy group can be conventionally divided into three subgroups: with three ORFs, with a defective ORF3, and without the ORF3. To establish the patterns of evolution of gypsy retrotransposons in D. melanogaster, the members of the three subgroups were examined. Structural analysis of retrotransposons opus and rover, which carry a defective ORF3, as well as retrotransposons Burdock, McClintock, qbert, and HMS-Beagle, which lack the ORF3, suggests that the evolution of these MGEs followed the pattern of loosing the ORF3. At the same time, an MGE of the same subgroup, Transpac, may be an ancestral form, which had acquired the env gene and gave rise to the first errantiviruses. The capture of the ORF3 by retrotransposons provided their conversion to a fundamentally new state. However, the ORF3 in the genome is not subjected to strong selective pressure, because it is not essential for intragenomic transpositions. Because of this, the process of its gradual loss seems quite natural.  相似文献   

18.
19.
20.
Molecular organization of the cut locus of Drosophila melanogaster   总被引:21,自引:0,他引:21  
J W Jack 《Cell》1985,42(3):869-876
Mutations of the cut locus (ct) of Drosophila can be divided into four groups based on their phenotypes and complementation patterns. Each group alters the phenotype of a different set of tissues. Two hundred kilobases of ct DNA, located in 7B1-2, have been cloned by chromosomal walking, and the cloned sequences have been used to analyze more than 40 mutants. Based on the location of transposable element mutations and the extent of deficiencies and an inversion, four cut locus regions can be defined. Mutations in each region affect the phenotype of a different set of tissues. The most centromere proximal region contains mutations that are null for cut locus function. Within individual regions, a higher level of organization can be detected.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号