首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Special features of the use of homo- and heteronuclear correlation methods of NMR in one and two dimensions for studying the spatial structure and intramolecular dynamics of modified analogues of steroid hormones (MASH) are considered. The application of these methods to the assignment of resonances in the high-field 1H NMR region and to the determination of the most stereospecifically important parameters, such as the vicinal constants of spin-spin coupling (3JH-H) and nuclear Overhauser effects (NOE), are discussed using the example of NMR studies of some estrogens and androgens at 300 MHz and on the basis of literature data. The most efficient combination of the methods and the necessary modification of each of them may be chosen considering the spectral and relaxation parameters of MASH in liquid medium, including the anisotropy of the overall diffusive motion. The characteristics of MASH are the wide use of correlations through long-range couplings (COSY-45 and DQF-COSY), the application of the 4,5JH-H constants for the determination of spatial structure, and the advantage of heteronuclear HSQC methods with and without 13C decoupling over the corresponding HMQC methods in both resolution and sensitivity. In the conformationally rigid MASH molecules, the anisotropy of the MASH diffusive motion in liquid adversely affects the determination of interproton distances by the calibrating processing method for the NOE difference and NOESY spectra: it results in both overestimated and underestimated distance values depending on the polar angle ratios of the reference and the determined distances. Under certain conditions, conformationally mobile MASH demonstrate the additional contribution of the scalar relaxation mechanism between the indirectly (scalarly) bound protons. This mechanism is responsible for the underestimated values of NOE and the corresponding errors in the distance determination.  相似文献   

2.
The structure of a pair of modules (6F11F2), that forms part of the collagen-binding region of fibronectin, is refined using heteronuclear relaxation data. A structure of the pair was previously derived from 1H-1H NOE and 3 J HHN data [Bocquier et al. (1999) Structure, 7, 1451–1460] and a weak module–module interface, comprising Leu19 and Leu28, in 6F1, and Tyr68 in 2F1, was identified. In this study, the definition of the average relative orientation of the two modules is improved using the dependence of 15N relaxation on rotational diffusion anisotropy. This structure refinement is based on the selection of a subset of structures from sets calculated with NOE and 3 J HHN data alone, using the quality of the fits to the relaxation data as the selection criterion. This simple approach is compared to a refinement strategy where 15N relaxation data are included in the force field as additional restraints [Tjandra et al. (1997) Nat. Struct. Biol., 4, 443–449].  相似文献   

3.
The five phosphates of the deoxynucleotide d(CpGpTpApCpG)2 have been assigned by two-dimensional heteronuclear NMR spectroscopy. The chemical shift anisotropy and correlation time of each phosphate group has been determined from measurements of the spin-lattice, spin-spin relaxation rate constants and the 31P-{1H} nuclear Overhauser enhancement (NOE) at three magnetic field strengths (4.7 T, 9.4 T, and 11.75 T) and two temperatures (288 K and 298 K). As expected, the relaxation data require two mechanisms to account for the observed rate constants, i.e. dipole-dipole and chemical shift anisotropy. At 9.4 T and 11.75 T, the latter mechanism dominates the relaxation, leading to insignificant NOE intensities. The correlation time, chemical shift anisotropy and effective P-H distance were obtained from least-squares fitting to the data. Comparison of the fitted value for the correlation time with that obtained from 1H measurements shows that the molecule behaves essentially as rigid rotor on the nanosecond timescale. Large amplitude motions observed in long segments of DNA are due to bending motions that do not contribute significantly to relaxation in short oligonucleotides.Abbreviations CSA chemical shift anisotropy - NOE nuclear Overhauser enhancement Offprint requests to: A. N. Lane  相似文献   

4.
The quality of molecular dynamics (MD) simulations of proteins depends critically on the biomolecular force field that is used. Such force fields are defined by force-field parameter sets, which are generally determined and improved through calibration of properties of small molecules against experimental or theoretical data. By application to large molecules such as proteins, a new force-field parameter set can be validated. We report two 3.5 ns molecular dynamics simulations of hen egg white lysozyme in water applying the widely used GROMOS force-field parameter set 43A1 and a new set 45A3. The two MD ensembles are evaluated against NMR spectroscopic data NOE atom–atom distance bounds, 3JNH and 3J coupling constants, and 15N relaxation data. It is shown that the two sets reproduce structural properties about equally well. The 45A3 ensemble fulfills the atom–atom distance bounds derived from NMR spectroscopy slightly less well than the 43A1 ensemble, with most of the NOE distance violations in both ensembles involving residues located in loops or flexible regions of the protein. Convergence patterns are very similar in both simulations atom-positional root-mean-square differences (RMSD) with respect to the X-ray and NMR model structures and NOE inter-proton distances converge within 1.0–1.5 ns while backbone 3JHN-coupling constants and 1H– 15N order parameters take slightly longer, 1.0–2.0 ns. As expected, side-chain 3J-coupling constants and 1H– 15N order parameters do not reach full convergence for all residues in the time period simulated. This is particularly noticeable for side chains which display rare structural transitions. When comparing each simulation trajectory with an older and a newer set of experimental NOE data on lysozyme, it is found that the newer, larger, set of experimental data agrees as well with each of the simulations. In other words, the experimental data converged towards the theoretical result.  相似文献   

5.
The backbone dynamics of a 15N-labeled recombinant PAK pilin peptide spanning residues 128–144 in the C-terminal receptor binding domain of Pseudomonas aeruginosa pilin protein strain PAK (Lys128-Cys-Thr-Ser-Asp-Gln-Asp-Glu-Gln-Phe-Ile-Pro-Lys-Gly-Cys-Ser-Lys144) were probed by measurements of 15N NMR relaxation. This PAK(128–144) sequence is a target for the design of a synthetic peptide vaccine effective against multiple strains of P. aeruginosa infection. The 15N longitudinal (T1) and transverse (T2) relaxation rates and the steady-state heteronuclear {1H}-15N NOE were measured at three fields (7.04, 11.74 and 14.1 Tesla), five temperatures (5, 10, 15, 20, and 25°C ) and at pH 4.5 and 7.2. Relaxation data was analyzed using both the `model-free' formalism [Lipari, G. and Szabo, A. (1982) J. Am. Chem. Soc., 104, 4546–4559 and 4559–4570] and the reduced spectral density mapping approach [Farrow, N.A., Szabo, A., Torchia, D.A. and Kay, L.E. (1995) J. Biomol. NMR, 6, 153–162]. The relaxation data, spectral densities and order parameters suggest that the type I and type II -turns spanning residues Asp134-Glu-Gln-Phe137 and Pro139-Lys-Gly-Cys142, respectively, are the most ordered and structured regions of the peptide. The biological implications of these results will be discussed in relation to the role that backbone motions play in PAK pilin peptide immunogenicity, and within the framework of developing a pilin peptide vaccine capable of conferring broad immunity across P. aeruginosa strains.  相似文献   

6.
Methyl α-cellobioside (methyl β-d-glucopyranosyl-(1→4)-α-d-glucopyranoside) was labeled with 13C at C4′ for use in NMR studies in DMSO-d6 solvent to attempt the detection of a trans-H-bond J-coupling (3hJCCOH) between C4′ and OH3. Analysis of the OH3 signal at 600 MHz revealed only the presence of two homonuclear J-couplings: 3JH3,OH3 and a smaller, longer range JHH. No evidence for 3hJC4′,OH3 was found. The longer range JHH was traced to 4JH4,OH3 based on 2D 1H–1H COSY data and inspection of the H2 and H4 signal lineshapes. A limited set of DFT calculations was performed on a methyl cellobioside mimic to evaluate the structural dependencies of 4JH2,O3H and 4JH4,O3H on the H3–C3–O3–H torsion angle. Computed couplings range from about −0.7 to about +1.1 Hz, with maximal values observed when the C–H and O–H bonds are roughly diaxial.  相似文献   

7.
Summary 3J x coupling constants and complementary nuclear Overhauser data on the intraresidue C x H–CH distances form an essential part of the data needed to obtain stereospecific assignments of -methylene protons in proteins. In this paper we show that information regarding the magnitude of the3J x coupling constants can be extracted from a semi-quantitative interpretation of relative peak intensities in a 3D15N-separated1H–1H Hartmann-Hahn1H–15N multiple quantum coherence (HOHAHA-HMQC) spectrum. In addition, we demonstrate that reliable information on the intraresidue C x H–CH distances, free of systematic errors arising from spin diffusion, can be obtained from a 3D13C-separated1H–1H rotating frame Overhauser effect1H–13C multiple quantum coherence (ROESY-HMQC) spectrum. The applicability of these experiments to larger proteins is illustrated with respect to interleukin-1, a protein of 153 residues and 17.4 kDa molecular weight.Abbreviations 1L-1 interleukin-1 - NOE nuclear Overhauser effect - ROE rotating frame Overhauser effect - HOHAHA homonuclear Hartmann-Hahn spectroscopy - NOESY nuclear Overhauser enhancement spectroscopy - ROESY rotating frame Overhauser spectroscopy - HMQC heteronuclear multiple quantum coherence spectroscopy  相似文献   

8.
Summary The 1H, 13C and 15N NMR resonances of serine protease PB92 have been assigned using 3D tripleresonance NMR techniques. With a molecular weight of 27 kDa (269 residues) this protein is one of the largest monomeric proteins assigned so far. The side-chain assignments were based mainly on 3D H(C)CH and 3D (H)CCH COSY and TOCSY experiments. The set of assignments encompasses all backbone carbonyl and CHn carbons, all amide (NH and NH2) nitrogens and 99.2% of the amide and CHn protons. The secondary structure and general topology appear to be identical to those found in the crystal structure of serine protease PB92 [Van der Laan et al. (1992) Protein Eng., 5, 405–411], as judged by chemical shift deviations from random coil values, NH exchange data and analysis of NOEs between backbone NH groups.Abbreviations 2D/3D/4D two-/three-/four-dimensional - HSQC heteronuclear single-quantum coherence - HMQC heteronuclear multiple-quantum coherence - COSY correlation spectroscopy - TOCSY total correlation spectroscopy - NOE nuclear Overhauser enhancement (connectivity) - NOESY 2D NOE spectroscopy Experiment nomenclature (H(C)CH, etc.) follows the conventions used elsewhere [e.g. Ikura et al. (1990) Biochemistry, 29, 4659–4667].  相似文献   

9.
Summary Relaxation times of 13C carbons of uniformly 13C/15N-enriched probes have been investigated. The relaxation behaviour was analyzed in terms of a multispin system. Pulse sequences for the determination of T1, T2 and the heteronuclear NOE of 13C in uniformly 13C/15N-enriched ribonuclease T1 are presented. The experiments performed in order to obtain T1 and the heteronuclear NOE were similar to those of the corresponding 15N experiments published previously. The determination of T2 for the C-carbon in a completely labeled protein is more complicated, since the magnetization transfer during the T2 evolution period owing to the scalar coupling of C–C must be suppressed. Various different pulse sequences for the T2 evolution period were simulated in order to optimize the bandwidth for which reliable T2 relaxation times can be obtained. A proof for the quality of these pulse sequences is given by fitting the intensity decay of individual 1H–13C cross peaks, in a series of (1H, 13C)-ct-HSQC spectra with a modified CPMG sequence as well as a T1p sequence for the transverse relaxation time, to a single exponential using a simplex algorithm.  相似文献   

10.
Self-association of hexadeoxynucleotide 5"-d(TpApCpGpTpA) and its complexation with antitumor antibiotic daunomycin were studied by one- and two-dimensional homonuclear 1H NMR spectroscopy and heteronuclear 1H–31P NMR spectroscopy in water–salt solution. The concentration and temperature dependences of proton chemical shifts of the hexadeoxynucleotide and the ligand were measured, and equilibrium constants and thermodynamic parameters of corresponding reactions were calculated on this basis using models for the formation of hexadeoxynucleotide duplex and its complex with the antibiotic. The spatial structure of daunomycin–d(TACGTA)2complex in solution was calculated using X-PLOR software on the basis of 2D NOE spectral data and the limit values of proton chemical shifts of the ligand. Comparative analysis of different intermolecular interactions in sequence-specific binding of the antibiotic to the DNA fragment was carried out.  相似文献   

11.
Summary The1H NMR signals of the heme methyl, propionate and related chemical groups of cytochromec 3 fromDesulfovibrio vulgaris Miyazaki F (D.v. MF) were site-specifically assigned by means of ID NOE, 2D DQFCOSY and 2D TOCSY spectra. They were consistent with the site-specific assignments of the hemes with the highest and second-lowest redox potentials reported by Fan et al. (Biochemistry,29 (1990) 2257–2263). The site-specific heme assignments were also supported by NOE between the methyl groups of these hemes and the side chain of Val18. All the results contradicted the heme assignments forD.v. MF cytochromec 3 made on the basis of electron spin resonance (Gayda et al. (1987)FEBS Lett.,217 57–61). Based on these assignments, the interaction of cytochromec 3 withD.v. MF ferredoxin I was investigated by NMR. The major interaction site of cytochromec 3 was identified as the heme with the highest redox potential, which is surrounded by the highest density of positive charges. The stoichiometry and association constant were two cytochromec 3 molecules per monomer of ferredoxin I and 108 M–2 (at 53 mM ionic strength and 25°C), respectively.  相似文献   

12.
This paper describes NMR measurements of 15N–15N and 1H–15N scalar couplings across hydrogen bonds in Watson–Crick base pairs, h2 J NN and h1 J HN, in a 17 kDa Antennapedia homeodomain–DNA complex. A new NMR experiment is introduced which relies on zero-quantum coherence-based transverse relaxation-optimized spectroscopy (ZQ-TROSY) and enables measurements of h1 J HN couplings in larger molecules. The h2 J NN and h1 J HN couplings open a new avenue for comparative studies of DNA duplexes and other forms of nucleic acids free in solution and in complexes with proteins, drugs or possibly other classes of compounds.  相似文献   

13.
Summary A method for measuring three-bond 13C-1H scalar coupling constants across glycosidic bonds in a cyclic (12)-glucan icosamer is presented. This oligosaccharide molecule, with its high degree of symmetry, represents a particular challenge for NMR spectroscopy to distinguish inter-residue from intra-residue heteronuclear coupling effects. Chemically equivalent H2 protons in adjacent glucosyl residues are distinguished on the basis of their different through-space, dipolar interactions with the anomeric protons (H1). The strong NOE contact between anomeric (H1) and aglyconic (H2) protons permits the selective observation of the inter-residue heteronuclear couplings 3JC1H2 and 3JC2H1 in a natural-abundance 13C-1-half-filtered {1H,1H} ROESY experiment.Abbreviations COSY scalar correlated spectroscopy - NOE nuclear Overhauser effect - NOESY NOE spectroscopy - ROESY rotating-frame NOE spectroscopy  相似文献   

14.
Summary A search algorithm, called MEDUSA, is presented which allows the determination of multiple conformations of biomolecules in solution with exchange rate constants typically between 103 and 107 s–1 on the basis of experimental high-resolution NMR data. Multiples of structures are generated which are consistent as ensembles with NMR cross-relaxation rates (NOESY, ROESY), scalar J-coupling constants, and T1p measurements. The algorithm is applied to the cyclic decapeptide antamanide dissolved in chloroform. The characteristic radio-frequency field dependence of the T1p relaxation rates found for the NH protons of Val1 and Phe6 can be explained by a dynamical exchange between two structures.  相似文献   

15.
The interference between conformational exchange-induced time-dependent variations of chemical shifts in a pair of scalar coupled 1H and 15N spins is used to construct novel TROSY-type NMR experiments to suppress NMR signal loss in [15N,1H]-correlation spectra of a 14-mer DNA duplex free in solution and complexed with the Antp homeodomain. An analysis of double- and zero-quantum relaxation rates of base 1H–15N moieties showed that for certain residues the contribution of conformational exchange-induced transverse relaxation might represent a dominant relaxation mechanism, which, in turn, can be effectively suppressed by TROSY. The use of the new TROSY method for exchange-induced transverse relaxation optimization is illustrated with two new experiments, 2D h1 J HN,h2 J NN-quantitative [15N,1H]-TROSY to measure h1 J HN and h2 J NN scalar coupling constants across hydrogen bonds in nucleic acids, and 2D (h2 J NN+h1 J NH)-correlation-[15N,1H]-TROSY to correlate 1HN chemical shifts of bases with the chemical shifts of the tertiary 15N spins across hydrogen bonds using the sum of the trans-hydrogen bond coupling constants in nucleic acids.  相似文献   

16.
Summary The effects of selective deuteration on calculated NOESY intensities have been analyzed for the structure of theE. coli trp aporepressor, a 25 kDa protein. It is shown that selectively deuteratedtrp aporepressor proteins display larger calculated NOESY intensities than those for the same interproton distances in the natural abundance protein. The relatively larger magnetization transfer is demonstrated by a comparison of the NOE build-up curves for specific proton pairs, and for the calculated NOE intensities of short-range NOEs to backbone amide protons. This increase in intensity is especially pronounced for the NH1–NH1+1 cross peaks in the -helical regions, and particularly for amide protons of two sequential deuterated residues. The effect is shown to be further intensified for longer mixing times. It is also shown that in all cases, each amide proton exhibits stronger NOEs to its own side chain, with an enhanced effect for deuterated derivatives. This theoretical analysis demonstrates that an evaluation of the relative NOE intensities for different selectively deuterated analogs may be an important tool in assigning NMR spectra of large proteins. These results also serve as a guide for the interpretation of NOEs in terms of distances for structure calculations based on data using selectively deuterated proteins.  相似文献   

17.
Two halogenated C15 acetogenins, itomanallenes A and B, with a terminal bromoallene moiety along with a halogenated sesquiterpene, itomanol, have been isolated from the red alga Laurencia intricata collected in Okinawan waters. Their structures were deduced from 1D and 2D NMR experiments including 1H–1H COSY, HSQC, HMBC, and NOESY methods. The alcohol corresponding to itomanallene B seems to be a plausible precursor of itomanallene A, which has an unusual 2,10-dioxabicyclo[7.3.0]dodecene skeleton. Itomanol was found to be a selinane-type bromosesquiterpenoid, and is the first example of a selinane to be isolated from Japanese Laurencia species.  相似文献   

18.
The 17 base pair operator O R 3 oligonucleotide, which is the preferential binding site for the Cro repressor of phage , was studied by two-dimensional NMR spectroscopy. A sequential assignment procedure based on two-dimensional Nuclear Overhauser Effect (NOESY) and scalar coupling correlated (COSY) NMR spectroscopy, together with the knowledge of the oligodesoxynucleotide sequence, made it possible to assign the non-exhangeable base protons and the H1 and the H2-H2 sugar protons of the O R 3 operator DNA. The pattern of the observed NOE connectivities is consistent with a right-handed helical DNA structure. The base and sugar proton assignments provide the necessary information for further studies of the O R 3 operator — Cro repressor interaction.Abbreviations COSY correlated spectroscopy - FID free induction decay - NOE nuclear Overhauser effect - NOESY nuclear Overhauser effect spectroscopy - RD relaxation delay - TSP sodium 3-trimethylsilyl-(2,2,3,3-2H4)propionate - EDTA sodium ethylendiamine tetraacetate  相似文献   

19.
Summary The Na+ requirement for active, electrogenic Cl absorption byAmphiuma small intestine was studied by tracer techniques and double-barreled Cl-sensitive microelectrodes. Addition of Cl to a Cl-free medium bathingin vitro intestinal segments produced a saturable (K m =5.4mm) increase in shortcircuit current (I sc) which was inhibitable by 1mm SITS. The selectivity sequence for the anion-evoked current was Cl=Br>SCN>NO 3 >F=I. Current evoked by Cl reached a maximum with increasing medium Na concentration (K m =12.4mm). Addition of Na+, as Na gluconate (10mm), to mucosal and serosal Na+-free media stimulated the Cl current and simultaneously increased the absorptive Cl flux (J ms Cl ) and net flux (J net Cl ) without changing the secretory Cl flux (J sm Cl ). Addition of Na+ only to the serosal fluid stimulatedJ ms Cl much more than Na+ addition only to the mucosal fluid in paired tissues. Serosal DIDS (1mm) blocked the stimulation. Serosal 10mm Tris gluconate or choline gluconate failed to stimulateJ ms Cl . Intracellular Cl activity (a Cl i ) in villus epithelial cells was above electrochemical equilibrium indicating active Cl uptake. Ouabain (1mm) eliminated Cl accumulation and reduced the mucosal membrane potential m over 2 to 3 hr. In contrast, SITS had no effect on Cl accumulation and hyperpolarized the mucosal membrane. Replacement of serosal Na+ with choline eliminated Cl accumulation while replacement of mucosal Na+ had no effect. In conclusion by two independent methods active electrogenic Cl absorption depends on serosal rather than mucosal Na+. It is concluded that Cl enters the cell via a primary (rheogenic) transport mechanism. At the serosal membrane the Na+ gradient most likely energizes H+ export and regulates mucosal Cl accumulation perhaps by influencing cell pH or HCO 3 concentration.  相似文献   

20.
Simple pulse schemes are presented for the measurement of methyl 13C and 1H CSA values from 1H–13C dipole/13C CSA and 1H–13C dipole/1H CSA cross-correlated relaxation. The methodology is applied to protein L and malate synthase G. Average 13C CSA values are considerably smaller for Ile than Leu/Val (17 vs 25 ppm) and are in good agreement with previous solid state NMR studies of powders of amino acids and dipeptides and in reasonable agreement with quantum-chemical DFT calculations of methyl carbon CSA values in peptide fragments. Small averaged 1H CSA values on the order of 1 ppm are measured, consistent with a solid state NMR determination of the methyl group 1H CSA in dimethylmalonic acid.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号